diff options
Diffstat (limited to 'fs')
-rw-r--r-- | fs/coredump.c | 4 | ||||
-rw-r--r-- | fs/exec.c | 2 | ||||
-rw-r--r-- | fs/ext2/file.c | 2 | ||||
-rw-r--r-- | fs/ext4/super.c | 6 | ||||
-rw-r--r-- | fs/kernfs/file.c | 4 | ||||
-rw-r--r-- | fs/proc/base.c | 6 | ||||
-rw-r--r-- | fs/proc/task_mmu.c | 6 | ||||
-rw-r--r-- | fs/userfaultfd.c | 18 | ||||
-rw-r--r-- | fs/xfs/xfs_file.c | 2 | ||||
-rw-r--r-- | fs/xfs/xfs_inode.c | 14 | ||||
-rw-r--r-- | fs/xfs/xfs_iops.c | 4 |
11 files changed, 34 insertions, 34 deletions
diff --git a/fs/coredump.c b/fs/coredump.c index 9fde263af452..7237f07ff6be 100644 --- a/fs/coredump.c +++ b/fs/coredump.c @@ -393,7 +393,7 @@ static int zap_threads(struct task_struct *tsk, struct mm_struct *mm, * of ->siglock provides a memory barrier. * * do_exit: - * The caller holds mm->mmap_sem. This means that the task which + * The caller holds mm->mmap_lock. This means that the task which * uses this mm can't pass exit_mm(), so it can't exit or clear * its ->mm. * @@ -401,7 +401,7 @@ static int zap_threads(struct task_struct *tsk, struct mm_struct *mm, * It does list_replace_rcu(&leader->tasks, ¤t->tasks), * we must see either old or new leader, this does not matter. * However, it can change p->sighand, so lock_task_sighand(p) - * must be used. Since p->mm != NULL and we hold ->mmap_sem + * must be used. Since p->mm != NULL and we hold ->mmap_lock * it can't fail. * * Note also that "g" can be the old leader with ->mm == NULL diff --git a/fs/exec.c b/fs/exec.c index 105b91d191eb..e6e8a9a70327 100644 --- a/fs/exec.c +++ b/fs/exec.c @@ -1091,7 +1091,7 @@ static int exec_mmap(struct mm_struct *mm) /* * Make sure that if there is a core dump in progress * for the old mm, we get out and die instead of going - * through with the exec. We must hold mmap_sem around + * through with the exec. We must hold mmap_lock around * checking core_state and changing tsk->mm. */ mmap_read_lock(old_mm); diff --git a/fs/ext2/file.c b/fs/ext2/file.c index b4de9a0f170d..60378ddf1424 100644 --- a/fs/ext2/file.c +++ b/fs/ext2/file.c @@ -79,7 +79,7 @@ out_unlock: /* * The lock ordering for ext2 DAX fault paths is: * - * mmap_sem (MM) + * mmap_lock (MM) * sb_start_pagefault (vfs, freeze) * ext2_inode_info->dax_sem * address_space->i_mmap_rwsem or page_lock (mutually exclusive in DAX) diff --git a/fs/ext4/super.c b/fs/ext4/super.c index a29e8ea1a7ab..c668f6b42374 100644 --- a/fs/ext4/super.c +++ b/fs/ext4/super.c @@ -93,11 +93,11 @@ static struct inode *ext4_get_journal_inode(struct super_block *sb, * i_mmap_rwsem (inode->i_mmap_rwsem)! * * page fault path: - * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start -> + * mmap_lock -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start -> * page lock -> i_data_sem (rw) * * buffered write path: - * sb_start_write -> i_mutex -> mmap_sem + * sb_start_write -> i_mutex -> mmap_lock * sb_start_write -> i_mutex -> transaction start -> page lock -> * i_data_sem (rw) * @@ -107,7 +107,7 @@ static struct inode *ext4_get_journal_inode(struct super_block *sb, * i_data_sem (rw) * * direct IO: - * sb_start_write -> i_mutex -> mmap_sem + * sb_start_write -> i_mutex -> mmap_lock * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw) * * writepages: diff --git a/fs/kernfs/file.c b/fs/kernfs/file.c index fd6ddfe4cd94..06b342d8462b 100644 --- a/fs/kernfs/file.c +++ b/fs/kernfs/file.c @@ -652,9 +652,9 @@ static int kernfs_fop_open(struct inode *inode, struct file *file) * The following is done to give a different lockdep key to * @of->mutex for files which implement mmap. This is a rather * crude way to avoid false positive lockdep warning around - * mm->mmap_sem - mmap nests @of->mutex under mm->mmap_sem and + * mm->mmap_lock - mmap nests @of->mutex under mm->mmap_lock and * reading /sys/block/sda/trace/act_mask grabs sr_mutex, under - * which mm->mmap_sem nests, while holding @of->mutex. As each + * which mm->mmap_lock nests, while holding @of->mutex. As each * open file has a separate mutex, it's okay as long as those don't * happen on the same file. At this point, we can't easily give * each file a separate locking class. Let's differentiate on diff --git a/fs/proc/base.c b/fs/proc/base.c index 4f0d6f40b8f1..d86c0afc8a85 100644 --- a/fs/proc/base.c +++ b/fs/proc/base.c @@ -2333,11 +2333,11 @@ proc_map_files_readdir(struct file *file, struct dir_context *ctx) /* * We need two passes here: * - * 1) Collect vmas of mapped files with mmap_sem taken - * 2) Release mmap_sem and instantiate entries + * 1) Collect vmas of mapped files with mmap_lock taken + * 2) Release mmap_lock and instantiate entries * * otherwise we get lockdep complained, since filldir() - * routine might require mmap_sem taken in might_fault(). + * routine might require mmap_lock taken in might_fault(). */ for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) { diff --git a/fs/proc/task_mmu.c b/fs/proc/task_mmu.c index 81b985476c1d..dbda4499a859 100644 --- a/fs/proc/task_mmu.c +++ b/fs/proc/task_mmu.c @@ -593,7 +593,7 @@ static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, if (pmd_trans_unstable(pmd)) goto out; /* - * The mmap_sem held all the way back in m_start() is what + * The mmap_lock held all the way back in m_start() is what * keeps khugepaged out of here and from collapsing things * in here. */ @@ -752,7 +752,7 @@ static void smap_gather_stats(struct vm_area_struct *vma, } } #endif - /* mmap_sem is held in m_start */ + /* mmap_lock is held in m_start */ walk_page_vma(vma, &smaps_walk_ops, mss); } @@ -1827,7 +1827,7 @@ static int show_numa_map(struct seq_file *m, void *v) if (is_vm_hugetlb_page(vma)) seq_puts(m, " huge"); - /* mmap_sem is held by m_start */ + /* mmap_lock is held by m_start */ walk_page_vma(vma, &show_numa_ops, md); if (!md->pages) diff --git a/fs/userfaultfd.c b/fs/userfaultfd.c index 3a63d75ed2fd..52de29000c7e 100644 --- a/fs/userfaultfd.c +++ b/fs/userfaultfd.c @@ -369,13 +369,13 @@ static inline bool userfaultfd_signal_pending(unsigned int flags) * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" * recommendation in __lock_page_or_retry is not an understatement. * - * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released + * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is * not set. * * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not * set, VM_FAULT_RETRY can still be returned if and only if there are - * fatal_signal_pending()s, and the mmap_sem must be released before + * fatal_signal_pending()s, and the mmap_lock must be released before * returning it. */ vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason) @@ -396,14 +396,14 @@ vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason) * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with * the no_page_table() helper in follow_page_mask(), but the * shmem_vm_ops->fault method is invoked even during - * coredumping without mmap_sem and it ends up here. + * coredumping without mmap_lock and it ends up here. */ if (current->flags & (PF_EXITING|PF_DUMPCORE)) goto out; /* - * Coredumping runs without mmap_sem so we can only check that - * the mmap_sem is held, if PF_DUMPCORE was not set. + * Coredumping runs without mmap_lock so we can only check that + * the mmap_lock is held, if PF_DUMPCORE was not set. */ mmap_assert_locked(mm); @@ -422,7 +422,7 @@ vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason) /* * If it's already released don't get it. This avoids to loop * in __get_user_pages if userfaultfd_release waits on the - * caller of handle_userfault to release the mmap_sem. + * caller of handle_userfault to release the mmap_lock. */ if (unlikely(READ_ONCE(ctx->released))) { /* @@ -481,7 +481,7 @@ vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason) if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) goto out; - /* take the reference before dropping the mmap_sem */ + /* take the reference before dropping the mmap_lock */ userfaultfd_ctx_get(ctx); init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); @@ -890,9 +890,9 @@ static int userfaultfd_release(struct inode *inode, struct file *file) * Flush page faults out of all CPUs. NOTE: all page faults * must be retried without returning VM_FAULT_SIGBUS if * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx - * changes while handle_userfault released the mmap_sem. So + * changes while handle_userfault released the mmap_lock. So * it's critical that released is set to true (above), before - * taking the mmap_sem for writing. + * taking the mmap_lock for writing. */ mmap_write_lock(mm); still_valid = mmget_still_valid(mm); diff --git a/fs/xfs/xfs_file.c b/fs/xfs/xfs_file.c index 403c90309a8f..00db81eac80d 100644 --- a/fs/xfs/xfs_file.c +++ b/fs/xfs/xfs_file.c @@ -1173,7 +1173,7 @@ xfs_file_llseek( * Locking for serialisation of IO during page faults. This results in a lock * ordering of: * - * mmap_sem (MM) + * mmap_lock (MM) * sb_start_pagefault(vfs, freeze) * i_mmaplock (XFS - truncate serialisation) * page_lock (MM) diff --git a/fs/xfs/xfs_inode.c b/fs/xfs/xfs_inode.c index 64f5f9a440ae..4c91fb25ec66 100644 --- a/fs/xfs/xfs_inode.c +++ b/fs/xfs/xfs_inode.c @@ -145,17 +145,17 @@ xfs_ilock_attr_map_shared( * * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock * - * mmap_sem locking order: + * mmap_lock locking order: * - * i_rwsem -> page lock -> mmap_sem - * mmap_sem -> i_mmap_lock -> page_lock + * i_rwsem -> page lock -> mmap_lock + * mmap_lock -> i_mmap_lock -> page_lock * - * The difference in mmap_sem locking order mean that we cannot hold the + * The difference in mmap_lock locking order mean that we cannot hold the * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can - * fault in pages during copy in/out (for buffered IO) or require the mmap_sem + * fault in pages during copy in/out (for buffered IO) or require the mmap_lock * in get_user_pages() to map the user pages into the kernel address space for * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because - * page faults already hold the mmap_sem. + * page faults already hold the mmap_lock. * * Hence to serialise fully against both syscall and mmap based IO, we need to * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both @@ -1630,7 +1630,7 @@ xfs_release( return 0; /* * If we can't get the iolock just skip truncating the blocks - * past EOF because we could deadlock with the mmap_sem + * past EOF because we could deadlock with the mmap_lock * otherwise. We'll get another chance to drop them once the * last reference to the inode is dropped, so we'll never leak * blocks permanently. diff --git a/fs/xfs/xfs_iops.c b/fs/xfs/xfs_iops.c index 202b2c0a9e9d..80a13c8561d8 100644 --- a/fs/xfs/xfs_iops.c +++ b/fs/xfs/xfs_iops.c @@ -28,11 +28,11 @@ #include <linux/fiemap.h> /* - * Directories have different lock order w.r.t. mmap_sem compared to regular + * Directories have different lock order w.r.t. mmap_lock compared to regular * files. This is due to readdir potentially triggering page faults on a user * buffer inside filldir(), and this happens with the ilock on the directory * held. For regular files, the lock order is the other way around - the - * mmap_sem is taken during the page fault, and then we lock the ilock to do + * mmap_lock is taken during the page fault, and then we lock the ilock to do * block mapping. Hence we need a different class for the directory ilock so * that lockdep can tell them apart. */ |