summaryrefslogtreecommitdiff
path: root/Documentation/vm/hmm.txt
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/vm/hmm.txt')
-rw-r--r--Documentation/vm/hmm.txt384
1 files changed, 384 insertions, 0 deletions
diff --git a/Documentation/vm/hmm.txt b/Documentation/vm/hmm.txt
new file mode 100644
index 000000000000..4d3aac9f4a5d
--- /dev/null
+++ b/Documentation/vm/hmm.txt
@@ -0,0 +1,384 @@
+Heterogeneous Memory Management (HMM)
+
+Transparently allow any component of a program to use any memory region of said
+program with a device without using device specific memory allocator. This is
+becoming a requirement to simplify the use of advance heterogeneous computing
+where GPU, DSP or FPGA are use to perform various computations.
+
+This document is divided as follow, in the first section i expose the problems
+related to the use of a device specific allocator. The second section i expose
+the hardware limitations that are inherent to many platforms. The third section
+gives an overview of HMM designs. The fourth section explains how CPU page-
+table mirroring works and what is HMM purpose in this context. Fifth section
+deals with how device memory is represented inside the kernel. Finaly the last
+section present the new migration helper that allow to leverage the device DMA
+engine.
+
+
+1) Problems of using device specific memory allocator:
+2) System bus, device memory characteristics
+3) Share address space and migration
+4) Address space mirroring implementation and API
+5) Represent and manage device memory from core kernel point of view
+6) Migrate to and from device memory
+7) Memory cgroup (memcg) and rss accounting
+
+
+-------------------------------------------------------------------------------
+
+1) Problems of using device specific memory allocator:
+
+Device with large amount of on board memory (several giga bytes) like GPU have
+historically manage their memory through dedicated driver specific API. This
+creates a disconnect between memory allocated and managed by device driver and
+regular application memory (private anonymous, share memory or regular file
+back memory). From here on i will refer to this aspect as split address space.
+I use share address space to refer to the opposite situation ie one in which
+any memory region can be use by device transparently.
+
+Split address space because device can only access memory allocated through the
+device specific API. This imply that all memory object in a program are not
+equal from device point of view which complicate large program that rely on a
+wide set of libraries.
+
+Concretly this means that code that wants to leverage device like GPU need to
+copy object between genericly allocated memory (malloc, mmap private/share/)
+and memory allocated through the device driver API (this still end up with an
+mmap but of the device file).
+
+For flat dataset (array, grid, image, ...) this isn't too hard to achieve but
+complex data-set (list, tree, ...) are hard to get right. Duplicating a complex
+data-set need to re-map all the pointer relations between each of its elements.
+This is error prone and program gets harder to debug because of the duplicate
+data-set.
+
+Split address space also means that library can not transparently use data they
+are getting from core program or other library and thus each library might have
+to duplicate its input data-set using specific memory allocator. Large project
+suffer from this and waste resources because of the various memory copy.
+
+Duplicating each library API to accept as input or output memory allocted by
+each device specific allocator is not a viable option. It would lead to a
+combinatorial explosions in the library entry points.
+
+Finaly with the advance of high level language constructs (in C++ but in other
+language too) it is now possible for compiler to leverage GPU or other devices
+without even the programmer knowledge. Some of compiler identified patterns are
+only do-able with a share address. It is as well more reasonable to use a share
+address space for all the other patterns.
+
+
+-------------------------------------------------------------------------------
+
+2) System bus, device memory characteristics
+
+System bus cripple share address due to few limitations. Most system bus only
+allow basic memory access from device to main memory, even cache coherency is
+often optional. Access to device memory from CPU is even more limited, most
+often than not it is not cache coherent.
+
+If we only consider the PCIE bus than device can access main memory (often
+through an IOMMU) and be cache coherent with the CPUs. However it only allows
+a limited set of atomic operation from device on main memory. This is worse
+in the other direction the CPUs can only access a limited range of the device
+memory and can not perform atomic operations on it. Thus device memory can not
+be consider like regular memory from kernel point of view.
+
+Another crippling factor is the limited bandwidth (~32GBytes/s with PCIE 4.0
+and 16 lanes). This is 33 times less that fastest GPU memory (1 TBytes/s).
+The final limitation is latency, access to main memory from the device has an
+order of magnitude higher latency than when the device access its own memory.
+
+Some platform are developing new system bus or additions/modifications to PCIE
+to address some of those limitations (OpenCAPI, CCIX). They mainly allow two
+way cache coherency between CPU and device and allow all atomic operations the
+architecture supports. Saddly not all platform are following this trends and
+some major architecture are left without hardware solutions to those problems.
+
+So for share address space to make sense not only we must allow device to
+access any memory memory but we must also permit any memory to be migrated to
+device memory while device is using it (blocking CPU access while it happens).
+
+
+-------------------------------------------------------------------------------
+
+3) Share address space and migration
+
+HMM intends to provide two main features. First one is to share the address
+space by duplication the CPU page table into the device page table so same
+address point to same memory and this for any valid main memory address in
+the process address space.
+
+To achieve this, HMM offer a set of helpers to populate the device page table
+while keeping track of CPU page table updates. Device page table updates are
+not as easy as CPU page table updates. To update the device page table you must
+allow a buffer (or use a pool of pre-allocated buffer) and write GPU specifics
+commands in it to perform the update (unmap, cache invalidations and flush,
+...). This can not be done through common code for all device. Hence why HMM
+provides helpers to factor out everything that can be while leaving the gory
+details to the device driver.
+
+The second mechanism HMM provide is a new kind of ZONE_DEVICE memory that does
+allow to allocate a struct page for each page of the device memory. Those page
+are special because the CPU can not map them. They however allow to migrate
+main memory to device memory using exhisting migration mechanism and everything
+looks like if page was swap out to disk from CPU point of view. Using a struct
+page gives the easiest and cleanest integration with existing mm mechanisms.
+Again here HMM only provide helpers, first to hotplug new ZONE_DEVICE memory
+for the device memory and second to perform migration. Policy decision of what
+and when to migrate things is left to the device driver.
+
+Note that any CPU access to a device page trigger a page fault and a migration
+back to main memory ie when a page backing an given address A is migrated from
+a main memory page to a device page then any CPU access to address A trigger a
+page fault and initiate a migration back to main memory.
+
+
+With this two features, HMM not only allow a device to mirror a process address
+space and keeps both CPU and device page table synchronize, but also allow to
+leverage device memory by migrating part of data-set that is actively use by a
+device.
+
+
+-------------------------------------------------------------------------------
+
+4) Address space mirroring implementation and API
+
+Address space mirroring main objective is to allow to duplicate range of CPU
+page table into a device page table and HMM helps keeping both synchronize. A
+device driver that want to mirror a process address space must start with the
+registration of an hmm_mirror struct:
+
+ int hmm_mirror_register(struct hmm_mirror *mirror,
+ struct mm_struct *mm);
+ int hmm_mirror_register_locked(struct hmm_mirror *mirror,
+ struct mm_struct *mm);
+
+The locked variant is to be use when the driver is already holding the mmap_sem
+of the mm in write mode. The mirror struct has a set of callback that are use
+to propagate CPU page table:
+
+ struct hmm_mirror_ops {
+ /* sync_cpu_device_pagetables() - synchronize page tables
+ *
+ * @mirror: pointer to struct hmm_mirror
+ * @update_type: type of update that occurred to the CPU page table
+ * @start: virtual start address of the range to update
+ * @end: virtual end address of the range to update
+ *
+ * This callback ultimately originates from mmu_notifiers when the CPU
+ * page table is updated. The device driver must update its page table
+ * in response to this callback. The update argument tells what action
+ * to perform.
+ *
+ * The device driver must not return from this callback until the device
+ * page tables are completely updated (TLBs flushed, etc); this is a
+ * synchronous call.
+ */
+ void (*update)(struct hmm_mirror *mirror,
+ enum hmm_update action,
+ unsigned long start,
+ unsigned long end);
+ };
+
+Device driver must perform update to the range following action (turn range
+read only, or fully unmap, ...). Once driver callback returns the device must
+be done with the update.
+
+
+When device driver wants to populate a range of virtual address it can use
+either:
+ int hmm_vma_get_pfns(struct vm_area_struct *vma,
+ struct hmm_range *range,
+ unsigned long start,
+ unsigned long end,
+ hmm_pfn_t *pfns);
+ int hmm_vma_fault(struct vm_area_struct *vma,
+ struct hmm_range *range,
+ unsigned long start,
+ unsigned long end,
+ hmm_pfn_t *pfns,
+ bool write,
+ bool block);
+
+First one (hmm_vma_get_pfns()) will only fetch present CPU page table entry and
+will not trigger a page fault on missing or non present entry. The second one
+do trigger page fault on missing or read only entry if write parameter is true.
+Page fault use the generic mm page fault code path just like a CPU page fault.
+
+Both function copy CPU page table into their pfns array argument. Each entry in
+that array correspond to an address in the virtual range. HMM provide a set of
+flags to help driver identify special CPU page table entries.
+
+Locking with the update() callback is the most important aspect the driver must
+respect in order to keep things properly synchronize. The usage pattern is :
+
+ int driver_populate_range(...)
+ {
+ struct hmm_range range;
+ ...
+ again:
+ ret = hmm_vma_get_pfns(vma, &range, start, end, pfns);
+ if (ret)
+ return ret;
+ take_lock(driver->update);
+ if (!hmm_vma_range_done(vma, &range)) {
+ release_lock(driver->update);
+ goto again;
+ }
+
+ // Use pfns array content to update device page table
+
+ release_lock(driver->update);
+ return 0;
+ }
+
+The driver->update lock is the same lock that driver takes inside its update()
+callback. That lock must be call before hmm_vma_range_done() to avoid any race
+with a concurrent CPU page table update.
+
+HMM implements all this on top of the mmu_notifier API because we wanted to a
+simpler API and also to be able to perform optimization latter own like doing
+concurrent device update in multi-devices scenario.
+
+HMM also serve as an impedence missmatch between how CPU page table update are
+done (by CPU write to the page table and TLB flushes) from how device update
+their own page table. Device update is a multi-step process, first appropriate
+commands are write to a buffer, then this buffer is schedule for execution on
+the device. It is only once the device has executed commands in the buffer that
+the update is done. Creating and scheduling update command buffer can happen
+concurrently for multiple devices. Waiting for each device to report commands
+as executed is serialize (there is no point in doing this concurrently).
+
+
+-------------------------------------------------------------------------------
+
+5) Represent and manage device memory from core kernel point of view
+
+Several differents design were try to support device memory. First one use
+device specific data structure to keep information about migrated memory and
+HMM hooked itself in various place of mm code to handle any access to address
+that were back by device memory. It turns out that this ended up replicating
+most of the fields of struct page and also needed many kernel code path to be
+updated to understand this new kind of memory.
+
+Thing is most kernel code path never try to access the memory behind a page
+but only care about struct page contents. Because of this HMM switchted to
+directly using struct page for device memory which left most kernel code path
+un-aware of the difference. We only need to make sure that no one ever try to
+map those page from the CPU side.
+
+HMM provide a set of helpers to register and hotplug device memory as a new
+region needing struct page. This is offer through a very simple API:
+
+ struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops,
+ struct device *device,
+ unsigned long size);
+ void hmm_devmem_remove(struct hmm_devmem *devmem);
+
+The hmm_devmem_ops is where most of the important things are:
+
+ struct hmm_devmem_ops {
+ void (*free)(struct hmm_devmem *devmem, struct page *page);
+ int (*fault)(struct hmm_devmem *devmem,
+ struct vm_area_struct *vma,
+ unsigned long addr,
+ struct page *page,
+ unsigned flags,
+ pmd_t *pmdp);
+ };
+
+The first callback (free()) happens when the last reference on a device page is
+drop. This means the device page is now free and no longer use by anyone. The
+second callback happens whenever CPU try to access a device page which it can
+not do. This second callback must trigger a migration back to system memory.
+
+
+-------------------------------------------------------------------------------
+
+6) Migrate to and from device memory
+
+Because CPU can not access device memory, migration must use device DMA engine
+to perform copy from and to device memory. For this we need a new migration
+helper:
+
+ int migrate_vma(const struct migrate_vma_ops *ops,
+ struct vm_area_struct *vma,
+ unsigned long mentries,
+ unsigned long start,
+ unsigned long end,
+ unsigned long *src,
+ unsigned long *dst,
+ void *private);
+
+Unlike other migration function it works on a range of virtual address, there
+is two reasons for that. First device DMA copy has a high setup overhead cost
+and thus batching multiple pages is needed as otherwise the migration overhead
+make the whole excersie pointless. The second reason is because driver trigger
+such migration base on range of address the device is actively accessing.
+
+The migrate_vma_ops struct define two callbacks. First one (alloc_and_copy())
+control destination memory allocation and copy operation. Second one is there
+to allow device driver to perform cleanup operation after migration.
+
+ struct migrate_vma_ops {
+ void (*alloc_and_copy)(struct vm_area_struct *vma,
+ const unsigned long *src,
+ unsigned long *dst,
+ unsigned long start,
+ unsigned long end,
+ void *private);
+ void (*finalize_and_map)(struct vm_area_struct *vma,
+ const unsigned long *src,
+ const unsigned long *dst,
+ unsigned long start,
+ unsigned long end,
+ void *private);
+ };
+
+It is important to stress that this migration helpers allow for hole in the
+virtual address range. Some pages in the range might not be migrated for all
+the usual reasons (page is pin, page is lock, ...). This helper does not fail
+but just skip over those pages.
+
+The alloc_and_copy() might as well decide to not migrate all pages in the
+range (for reasons under the callback control). For those the callback just
+have to leave the corresponding dst entry empty.
+
+Finaly the migration of the struct page might fails (for file back page) for
+various reasons (failure to freeze reference, or update page cache, ...). If
+that happens then the finalize_and_map() can catch any pages that was not
+migrated. Note those page were still copied to new page and thus we wasted
+bandwidth but this is considered as a rare event and a price that we are
+willing to pay to keep all the code simpler.
+
+
+-------------------------------------------------------------------------------
+
+7) Memory cgroup (memcg) and rss accounting
+
+For now device memory is accounted as any regular page in rss counters (either
+anonymous if device page is use for anonymous, file if device page is use for
+file back page or shmem if device page is use for share memory). This is a
+deliberate choice to keep existing application that might start using device
+memory without knowing about it to keep runing unimpacted.
+
+Drawbacks is that OOM killer might kill an application using a lot of device
+memory and not a lot of regular system memory and thus not freeing much system
+memory. We want to gather more real world experience on how application and
+system react under memory pressure in the presence of device memory before
+deciding to account device memory differently.
+
+
+Same decision was made for memory cgroup. Device memory page are accounted
+against same memory cgroup a regular page would be accounted to. This does
+simplify migration to and from device memory. This also means that migration
+back from device memory to regular memory can not fail because it would
+go above memory cgroup limit. We might revisit this choice latter on once we
+get more experience in how device memory is use and its impact on memory
+resource control.
+
+
+Note that device memory can never be pin nor by device driver nor through GUP
+and thus such memory is always free upon process exit. Or when last reference
+is drop in case of share memory or file back memory.