summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--Documentation/cpu-freq/cpu-drivers.rst3
-rw-r--r--Documentation/devicetree/bindings/cpufreq/cpufreq-dt.txt2
-rw-r--r--Documentation/devicetree/bindings/cpufreq/cpufreq-mediatek-hw.yaml70
-rw-r--r--Documentation/devicetree/bindings/cpufreq/cpufreq-mediatek.txt2
-rw-r--r--Documentation/devicetree/bindings/cpufreq/cpufreq-st.txt6
-rw-r--r--Documentation/devicetree/bindings/cpufreq/nvidia,tegra20-cpufreq.txt2
-rw-r--r--Documentation/devicetree/bindings/devfreq/rk3399_dmc.txt2
-rw-r--r--Documentation/devicetree/bindings/gpu/arm,mali-bifrost.yaml2
-rw-r--r--Documentation/devicetree/bindings/gpu/arm,mali-midgard.yaml2
-rw-r--r--Documentation/devicetree/bindings/interconnect/fsl,imx8m-noc.yaml4
-rw-r--r--Documentation/devicetree/bindings/opp/allwinner,sun50i-h6-operating-points.yaml4
-rw-r--r--Documentation/devicetree/bindings/opp/opp-v1.yaml51
-rw-r--r--Documentation/devicetree/bindings/opp/opp-v2-base.yaml214
-rw-r--r--Documentation/devicetree/bindings/opp/opp-v2.yaml475
-rw-r--r--Documentation/devicetree/bindings/opp/opp.txt622
-rw-r--r--Documentation/devicetree/bindings/opp/qcom-opp.txt2
-rw-r--r--Documentation/devicetree/bindings/opp/ti-omap5-opp-supply.txt2
-rw-r--r--Documentation/devicetree/bindings/power/power-domain.yaml2
-rw-r--r--Documentation/translations/zh_CN/cpu-freq/cpu-drivers.rst2
-rw-r--r--arch/arm/boot/dts/omap34xx.dtsi1
-rw-r--r--arch/arm/boot/dts/omap36xx.dtsi1
-rw-r--r--drivers/base/arch_topology.c2
-rw-r--r--drivers/cpufreq/Kconfig.arm12
-rw-r--r--drivers/cpufreq/Makefile1
-rw-r--r--drivers/cpufreq/acpi-cpufreq.c14
-rw-r--r--drivers/cpufreq/cpufreq-dt-platdev.c4
-rw-r--r--drivers/cpufreq/cpufreq-dt.c3
-rw-r--r--drivers/cpufreq/cpufreq.c17
-rw-r--r--drivers/cpufreq/imx6q-cpufreq.c2
-rw-r--r--drivers/cpufreq/intel_pstate.c39
-rw-r--r--drivers/cpufreq/mediatek-cpufreq-hw.c308
-rw-r--r--drivers/cpufreq/mediatek-cpufreq.c3
-rw-r--r--drivers/cpufreq/omap-cpufreq.c2
-rw-r--r--drivers/cpufreq/qcom-cpufreq-hw.c151
-rw-r--r--drivers/cpufreq/scmi-cpufreq.c65
-rw-r--r--drivers/cpufreq/scpi-cpufreq.c3
-rw-r--r--drivers/cpufreq/sh-cpufreq.c11
-rw-r--r--drivers/cpufreq/vexpress-spc-cpufreq.c25
-rw-r--r--include/linux/cpufreq.h75
39 files changed, 1441 insertions, 767 deletions
diff --git a/Documentation/cpu-freq/cpu-drivers.rst b/Documentation/cpu-freq/cpu-drivers.rst
index d84ededb66f9..3b32336a7803 100644
--- a/Documentation/cpu-freq/cpu-drivers.rst
+++ b/Documentation/cpu-freq/cpu-drivers.rst
@@ -75,9 +75,6 @@ And optionally
.resume - A pointer to a per-policy resume function which is called
with interrupts disabled and _before_ the governor is started again.
- .ready - A pointer to a per-policy ready function which is called after
- the policy is fully initialized.
-
.attr - A pointer to a NULL-terminated list of "struct freq_attr" which
allow to export values to sysfs.
diff --git a/Documentation/devicetree/bindings/cpufreq/cpufreq-dt.txt b/Documentation/devicetree/bindings/cpufreq/cpufreq-dt.txt
index 56f442374383..1d7e49167666 100644
--- a/Documentation/devicetree/bindings/cpufreq/cpufreq-dt.txt
+++ b/Documentation/devicetree/bindings/cpufreq/cpufreq-dt.txt
@@ -11,7 +11,7 @@ Required properties:
- None
Optional properties:
-- operating-points: Refer to Documentation/devicetree/bindings/opp/opp.txt for
+- operating-points: Refer to Documentation/devicetree/bindings/opp/opp-v1.yaml for
details. OPPs *must* be supplied either via DT, i.e. this property, or
populated at runtime.
- clock-latency: Specify the possible maximum transition latency for clock,
diff --git a/Documentation/devicetree/bindings/cpufreq/cpufreq-mediatek-hw.yaml b/Documentation/devicetree/bindings/cpufreq/cpufreq-mediatek-hw.yaml
new file mode 100644
index 000000000000..9cd42a64b13e
--- /dev/null
+++ b/Documentation/devicetree/bindings/cpufreq/cpufreq-mediatek-hw.yaml
@@ -0,0 +1,70 @@
+# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/cpufreq/cpufreq-mediatek-hw.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: MediaTek's CPUFREQ Bindings
+
+maintainers:
+ - Hector Yuan <hector.yuan@mediatek.com>
+
+description:
+ CPUFREQ HW is a hardware engine used by MediaTek SoCs to
+ manage frequency in hardware. It is capable of controlling
+ frequency for multiple clusters.
+
+properties:
+ compatible:
+ const: mediatek,cpufreq-hw
+
+ reg:
+ minItems: 1
+ maxItems: 2
+ description:
+ Addresses and sizes for the memory of the HW bases in
+ each frequency domain. Each entry corresponds to
+ a register bank for each frequency domain present.
+
+ "#performance-domain-cells":
+ description:
+ Number of cells in a performance domain specifier.
+ Set const to 1 here for nodes providing multiple
+ performance domains.
+ const: 1
+
+required:
+ - compatible
+ - reg
+ - "#performance-domain-cells"
+
+additionalProperties: false
+
+examples:
+ - |
+ cpus {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ cpu0: cpu@0 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a55";
+ enable-method = "psci";
+ performance-domains = <&performance 0>;
+ reg = <0x000>;
+ };
+ };
+
+ /* ... */
+
+ soc {
+ #address-cells = <2>;
+ #size-cells = <2>;
+
+ performance: performance-controller@11bc00 {
+ compatible = "mediatek,cpufreq-hw";
+ reg = <0 0x0011bc10 0 0x120>, <0 0x0011bd30 0 0x120>;
+
+ #performance-domain-cells = <1>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/cpufreq/cpufreq-mediatek.txt b/Documentation/devicetree/bindings/cpufreq/cpufreq-mediatek.txt
index ef68711716fb..b8233ec91d3d 100644
--- a/Documentation/devicetree/bindings/cpufreq/cpufreq-mediatek.txt
+++ b/Documentation/devicetree/bindings/cpufreq/cpufreq-mediatek.txt
@@ -10,7 +10,7 @@ Required properties:
transition and not stable yet.
Please refer to Documentation/devicetree/bindings/clock/clock-bindings.txt for
generic clock consumer properties.
-- operating-points-v2: Please refer to Documentation/devicetree/bindings/opp/opp.txt
+- operating-points-v2: Please refer to Documentation/devicetree/bindings/opp/opp-v2.yaml
for detail.
- proc-supply: Regulator for Vproc of CPU cluster.
diff --git a/Documentation/devicetree/bindings/cpufreq/cpufreq-st.txt b/Documentation/devicetree/bindings/cpufreq/cpufreq-st.txt
index d91a02a3b6b0..6b0b452acef0 100644
--- a/Documentation/devicetree/bindings/cpufreq/cpufreq-st.txt
+++ b/Documentation/devicetree/bindings/cpufreq/cpufreq-st.txt
@@ -6,8 +6,6 @@ from the SoC, then supplies the OPP framework with 'prop' and 'supported
hardware' information respectively. The framework is then able to read
the DT and operate in the usual way.
-For more information about the expected DT format [See: ../opp/opp.txt].
-
Frequency Scaling only
----------------------
@@ -15,7 +13,7 @@ No vendor specific driver required for this.
Located in CPU's node:
-- operating-points : [See: ../power/opp.txt]
+- operating-points : [See: ../power/opp-v1.yaml]
Example [safe]
--------------
@@ -37,7 +35,7 @@ This requires the ST CPUFreq driver to supply 'process' and 'version' info.
Located in CPU's node:
-- operating-points-v2 : [See ../power/opp.txt]
+- operating-points-v2 : [See ../power/opp-v2.yaml]
Example [unsafe]
----------------
diff --git a/Documentation/devicetree/bindings/cpufreq/nvidia,tegra20-cpufreq.txt b/Documentation/devicetree/bindings/cpufreq/nvidia,tegra20-cpufreq.txt
index 52a24b82fd86..bdbfd7c36101 100644
--- a/Documentation/devicetree/bindings/cpufreq/nvidia,tegra20-cpufreq.txt
+++ b/Documentation/devicetree/bindings/cpufreq/nvidia,tegra20-cpufreq.txt
@@ -4,7 +4,7 @@ Binding for NVIDIA Tegra20 CPUFreq
Required properties:
- clocks: Must contain an entry for the CPU clock.
See ../clocks/clock-bindings.txt for details.
-- operating-points-v2: See ../bindings/opp/opp.txt for details.
+- operating-points-v2: See ../bindings/opp/opp-v2.yaml for details.
- #cooling-cells: Should be 2. See ../thermal/thermal-cooling-devices.yaml for details.
For each opp entry in 'operating-points-v2' table:
diff --git a/Documentation/devicetree/bindings/devfreq/rk3399_dmc.txt b/Documentation/devicetree/bindings/devfreq/rk3399_dmc.txt
index ac189dd82b08..3fbeb3733c48 100644
--- a/Documentation/devicetree/bindings/devfreq/rk3399_dmc.txt
+++ b/Documentation/devicetree/bindings/devfreq/rk3399_dmc.txt
@@ -8,7 +8,7 @@ Required properties:
- clocks: Phandles for clock specified in "clock-names" property
- clock-names : The name of clock used by the DFI, must be
"pclk_ddr_mon";
-- operating-points-v2: Refer to Documentation/devicetree/bindings/opp/opp.txt
+- operating-points-v2: Refer to Documentation/devicetree/bindings/opp/opp-v2.yaml
for details.
- center-supply: DMC supply node.
- status: Marks the node enabled/disabled.
diff --git a/Documentation/devicetree/bindings/gpu/arm,mali-bifrost.yaml b/Documentation/devicetree/bindings/gpu/arm,mali-bifrost.yaml
index c5f6092a2855..6f98dd55fb4c 100644
--- a/Documentation/devicetree/bindings/gpu/arm,mali-bifrost.yaml
+++ b/Documentation/devicetree/bindings/gpu/arm,mali-bifrost.yaml
@@ -137,7 +137,7 @@ examples:
resets = <&reset 0>, <&reset 1>;
};
- gpu_opp_table: opp_table0 {
+ gpu_opp_table: opp-table {
compatible = "operating-points-v2";
opp-533000000 {
diff --git a/Documentation/devicetree/bindings/gpu/arm,mali-midgard.yaml b/Documentation/devicetree/bindings/gpu/arm,mali-midgard.yaml
index 696c17aedbbe..d209f272625d 100644
--- a/Documentation/devicetree/bindings/gpu/arm,mali-midgard.yaml
+++ b/Documentation/devicetree/bindings/gpu/arm,mali-midgard.yaml
@@ -160,7 +160,7 @@ examples:
#cooling-cells = <2>;
};
- gpu_opp_table: opp_table0 {
+ gpu_opp_table: opp-table {
compatible = "operating-points-v2";
opp-533000000 {
diff --git a/Documentation/devicetree/bindings/interconnect/fsl,imx8m-noc.yaml b/Documentation/devicetree/bindings/interconnect/fsl,imx8m-noc.yaml
index a8873739d61a..b8204ed22dd5 100644
--- a/Documentation/devicetree/bindings/interconnect/fsl,imx8m-noc.yaml
+++ b/Documentation/devicetree/bindings/interconnect/fsl,imx8m-noc.yaml
@@ -81,10 +81,10 @@ examples:
noc_opp_table: opp-table {
compatible = "operating-points-v2";
- opp-133M {
+ opp-133333333 {
opp-hz = /bits/ 64 <133333333>;
};
- opp-800M {
+ opp-800000000 {
opp-hz = /bits/ 64 <800000000>;
};
};
diff --git a/Documentation/devicetree/bindings/opp/allwinner,sun50i-h6-operating-points.yaml b/Documentation/devicetree/bindings/opp/allwinner,sun50i-h6-operating-points.yaml
index aeff2bd774dd..729ae97b63d9 100644
--- a/Documentation/devicetree/bindings/opp/allwinner,sun50i-h6-operating-points.yaml
+++ b/Documentation/devicetree/bindings/opp/allwinner,sun50i-h6-operating-points.yaml
@@ -18,6 +18,9 @@ description: |
sun50i-cpufreq-nvmem driver reads the efuse value from the SoC to
provide the OPP framework with required information.
+allOf:
+ - $ref: opp-v2-base.yaml#
+
properties:
compatible:
const: allwinner,sun50i-h6-operating-points
@@ -43,6 +46,7 @@ patternProperties:
properties:
opp-hz: true
+ clock-latency-ns: true
patternProperties:
"opp-microvolt-.*": true
diff --git a/Documentation/devicetree/bindings/opp/opp-v1.yaml b/Documentation/devicetree/bindings/opp/opp-v1.yaml
new file mode 100644
index 000000000000..d585d536a3fb
--- /dev/null
+++ b/Documentation/devicetree/bindings/opp/opp-v1.yaml
@@ -0,0 +1,51 @@
+# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/opp/opp-v1.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Generic OPP (Operating Performance Points) v1 Bindings
+
+maintainers:
+ - Viresh Kumar <viresh.kumar@linaro.org>
+
+description: |+
+ Devices work at voltage-current-frequency combinations and some implementations
+ have the liberty of choosing these. These combinations are called Operating
+ Performance Points aka OPPs. This document defines bindings for these OPPs
+ applicable across wide range of devices. For illustration purpose, this document
+ uses CPU as a device.
+
+ This binding only supports voltage-frequency pairs.
+
+select: true
+
+properties:
+ operating-points:
+ $ref: /schemas/types.yaml#/definitions/uint32-matrix
+ items:
+ items:
+ - description: Frequency in kHz
+ - description: Voltage for OPP in uV
+
+
+additionalProperties: true
+examples:
+ - |
+ cpus {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ cpu@0 {
+ compatible = "arm,cortex-a9";
+ device_type = "cpu";
+ reg = <0>;
+ next-level-cache = <&L2>;
+ operating-points =
+ /* kHz uV */
+ <792000 1100000>,
+ <396000 950000>,
+ <198000 850000>;
+ };
+ };
+...
diff --git a/Documentation/devicetree/bindings/opp/opp-v2-base.yaml b/Documentation/devicetree/bindings/opp/opp-v2-base.yaml
new file mode 100644
index 000000000000..ae3ae4d39843
--- /dev/null
+++ b/Documentation/devicetree/bindings/opp/opp-v2-base.yaml
@@ -0,0 +1,214 @@
+# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/opp/opp-v2-base.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Generic OPP (Operating Performance Points) Common Binding
+
+maintainers:
+ - Viresh Kumar <viresh.kumar@linaro.org>
+
+description: |
+ Devices work at voltage-current-frequency combinations and some implementations
+ have the liberty of choosing these. These combinations are called Operating
+ Performance Points aka OPPs. This document defines bindings for these OPPs
+ applicable across wide range of devices. For illustration purpose, this document
+ uses CPU as a device.
+
+ This describes the OPPs belonging to a device.
+
+select: false
+
+properties:
+ $nodename:
+ pattern: '^opp-table(-[a-z0-9]+)?$'
+
+ opp-shared:
+ description:
+ Indicates that device nodes using this OPP Table Node's phandle switch
+ their DVFS state together, i.e. they share clock/voltage/current lines.
+ Missing property means devices have independent clock/voltage/current
+ lines, but they share OPP tables.
+ type: boolean
+
+patternProperties:
+ '^opp-?[0-9]+$':
+ type: object
+ description:
+ One or more OPP nodes describing voltage-current-frequency combinations.
+ Their name isn't significant but their phandle can be used to reference an
+ OPP. These are mandatory except for the case where the OPP table is
+ present only to indicate dependency between devices using the opp-shared
+ property.
+
+ properties:
+ opp-hz:
+ description:
+ Frequency in Hz, expressed as a 64-bit big-endian integer. This is a
+ required property for all device nodes, unless another "required"
+ property to uniquely identify the OPP nodes exists. Devices like power
+ domains must have another (implementation dependent) property.
+
+ opp-microvolt:
+ description: |
+ Voltage for the OPP
+
+ A single regulator's voltage is specified with an array of size one or three.
+ Single entry is for target voltage and three entries are for <target min max>
+ voltages.
+
+ Entries for multiple regulators shall be provided in the same field separated
+ by angular brackets <>. The OPP binding doesn't provide any provisions to
+ relate the values to their power supplies or the order in which the supplies
+ need to be configured and that is left for the implementation specific
+ binding.
+
+ Entries for all regulators shall be of the same size, i.e. either all use a
+ single value or triplets.
+ minItems: 1
+ maxItems: 8 # Should be enough regulators
+ items:
+ minItems: 1
+ maxItems: 3
+
+ opp-microamp:
+ description: |
+ The maximum current drawn by the device in microamperes considering
+ system specific parameters (such as transients, process, aging,
+ maximum operating temperature range etc.) as necessary. This may be
+ used to set the most efficient regulator operating mode.
+
+ Should only be set if opp-microvolt or opp-microvolt-<name> is set for
+ the OPP.
+
+ Entries for multiple regulators shall be provided in the same field
+ separated by angular brackets <>. If current values aren't required
+ for a regulator, then it shall be filled with 0. If current values
+ aren't required for any of the regulators, then this field is not
+ required. The OPP binding doesn't provide any provisions to relate the
+ values to their power supplies or the order in which the supplies need
+ to be configured and that is left for the implementation specific
+ binding.
+ minItems: 1
+ maxItems: 8 # Should be enough regulators
+
+ opp-level:
+ description:
+ A value representing the performance level of the device.
+ $ref: /schemas/types.yaml#/definitions/uint32
+
+ opp-peak-kBps:
+ description:
+ Peak bandwidth in kilobytes per second, expressed as an array of
+ 32-bit big-endian integers. Each element of the array represents the
+ peak bandwidth value of each interconnect path. The number of elements
+ should match the number of interconnect paths.
+ minItems: 1
+ maxItems: 32 # Should be enough
+
+ opp-avg-kBps:
+ description:
+ Average bandwidth in kilobytes per second, expressed as an array
+ of 32-bit big-endian integers. Each element of the array represents the
+ average bandwidth value of each interconnect path. The number of elements
+ should match the number of interconnect paths. This property is only
+ meaningful in OPP tables where opp-peak-kBps is present.
+ minItems: 1
+ maxItems: 32 # Should be enough
+
+ clock-latency-ns:
+ description:
+ Specifies the maximum possible transition latency (in nanoseconds) for
+ switching to this OPP from any other OPP.
+
+ turbo-mode:
+ description:
+ Marks the OPP to be used only for turbo modes. Turbo mode is available
+ on some platforms, where the device can run over its operating
+ frequency for a short duration of time limited by the device's power,
+ current and thermal limits.
+ type: boolean
+
+ opp-suspend:
+ description:
+ Marks the OPP to be used during device suspend. If multiple OPPs in
+ the table have this, the OPP with highest opp-hz will be used.
+ type: boolean
+
+ opp-supported-hw:
+ description: |
+ This property allows a platform to enable only a subset of the OPPs
+ from the larger set present in the OPP table, based on the current
+ version of the hardware (already known to the operating system).
+
+ Each block present in the array of blocks in this property, represents
+ a sub-group of hardware versions supported by the OPP. i.e. <sub-group
+ A>, <sub-group B>, etc. The OPP will be enabled if _any_ of these
+ sub-groups match the hardware's version.
+
+ Each sub-group is a platform defined array representing the hierarchy
+ of hardware versions supported by the platform. For a platform with
+ three hierarchical levels of version (X.Y.Z), this field shall look
+ like
+
+ opp-supported-hw = <X1 Y1 Z1>, <X2 Y2 Z2>, <X3 Y3 Z3>.
+
+ Each level (eg. X1) in version hierarchy is represented by a 32 bit
+ value, one bit per version and so there can be maximum 32 versions per
+ level. Logical AND (&) operation is performed for each level with the
+ hardware's level version and a non-zero output for _all_ the levels in
+ a sub-group means the OPP is supported by hardware. A value of
+ 0xFFFFFFFF for each level in the sub-group will enable the OPP for all
+ versions for the hardware.
+ $ref: /schemas/types.yaml#/definitions/uint32-matrix
+ maxItems: 32
+ items:
+ minItems: 1
+ maxItems: 4
+
+ required-opps:
+ description:
+ This contains phandle to an OPP node in another device's OPP table. It
+ may contain an array of phandles, where each phandle points to an OPP
+ of a different device. It should not contain multiple phandles to the
+ OPP nodes in the same OPP table. This specifies the minimum required
+ OPP of the device(s), whose OPP's phandle is present in this property,
+ for the functioning of the current device at the current OPP (where
+ this property is present).
+ $ref: /schemas/types.yaml#/definitions/phandle-array
+
+ patternProperties:
+ '^opp-microvolt-':
+ description:
+ Named opp-microvolt property. This is exactly similar to the above
+ opp-microvolt property, but allows multiple voltage ranges to be
+ provided for the same OPP. At runtime, the platform can pick a <name>
+ and matching opp-microvolt-<name> property will be enabled for all
+ OPPs. If the platform doesn't pick a specific <name> or the <name>
+ doesn't match with any opp-microvolt-<name> properties, then
+ opp-microvolt property shall be used, if present.
+ $ref: /schemas/types.yaml#/definitions/uint32-matrix
+ minItems: 1
+ maxItems: 8 # Should be enough regulators
+ items:
+ minItems: 1
+ maxItems: 3
+
+ '^opp-microamp-':
+ description:
+ Named opp-microamp property. Similar to opp-microvolt-<name> property,
+ but for microamp instead.
+ $ref: /schemas/types.yaml#/definitions/uint32-array
+ minItems: 1
+ maxItems: 8 # Should be enough regulators
+
+ dependencies:
+ opp-avg-kBps: [ opp-peak-kBps ]
+
+required:
+ - compatible
+
+additionalProperties: true
+
+...
diff --git a/Documentation/devicetree/bindings/opp/opp-v2.yaml b/Documentation/devicetree/bindings/opp/opp-v2.yaml
new file mode 100644
index 000000000000..eaf8fba2c691
--- /dev/null
+++ b/Documentation/devicetree/bindings/opp/opp-v2.yaml
@@ -0,0 +1,475 @@
+# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/opp/opp-v2.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Generic OPP (Operating Performance Points) Bindings
+
+maintainers:
+ - Viresh Kumar <viresh.kumar@linaro.org>
+
+allOf:
+ - $ref: opp-v2-base.yaml#
+
+properties:
+ compatible:
+ const: operating-points-v2
+
+unevaluatedProperties: false
+
+examples:
+ - |
+ /*
+ * Example 1: Single cluster Dual-core ARM cortex A9, switch DVFS states
+ * together.
+ */
+ cpus {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ cpu@0 {
+ compatible = "arm,cortex-a9";
+ device_type = "cpu";
+ reg = <0>;
+ next-level-cache = <&L2>;
+ clocks = <&clk_controller 0>;
+ clock-names = "cpu";
+ cpu-supply = <&cpu_supply0>;
+ operating-points-v2 = <&cpu0_opp_table0>;
+ };
+
+ cpu@1 {
+ compatible = "arm,cortex-a9";
+ device_type = "cpu";
+ reg = <1>;
+ next-level-cache = <&L2>;
+ clocks = <&clk_controller 0>;
+ clock-names = "cpu";
+ cpu-supply = <&cpu_supply0>;
+ operating-points-v2 = <&cpu0_opp_table0>;
+ };
+ };
+
+ cpu0_opp_table0: opp-table {
+ compatible = "operating-points-v2";
+ opp-shared;
+
+ opp-1000000000 {
+ opp-hz = /bits/ 64 <1000000000>;
+ opp-microvolt = <975000 970000 985000>;
+ opp-microamp = <70000>;
+ clock-latency-ns = <300000>;
+ opp-suspend;
+ };
+ opp-1100000000 {
+ opp-hz = /bits/ 64 <1100000000>;
+ opp-microvolt = <1000000 980000 1010000>;
+ opp-microamp = <80000>;
+ clock-latency-ns = <310000>;
+ };
+ opp-1200000000 {
+ opp-hz = /bits/ 64 <1200000000>;
+ opp-microvolt = <1025000>;
+ clock-latency-ns = <290000>;
+ turbo-mode;
+ };
+ };
+
+ - |
+ /*
+ * Example 2: Single cluster, Quad-core Qualcom-krait, switches DVFS states
+ * independently.
+ */
+ cpus {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ cpu@0 {
+ compatible = "qcom,krait";
+ device_type = "cpu";
+ reg = <0>;
+ next-level-cache = <&L2>;
+ clocks = <&clk_controller 0>;
+ clock-names = "cpu";
+ cpu-supply = <&cpu_supply0>;
+ operating-points-v2 = <&cpu_opp_table>;
+ };
+
+ cpu@1 {
+ compatible = "qcom,krait";
+ device_type = "cpu";
+ reg = <1>;
+ next-level-cache = <&L2>;
+ clocks = <&clk_controller 1>;
+ clock-names = "cpu";
+ cpu-supply = <&cpu_supply1>;
+ operating-points-v2 = <&cpu_opp_table>;
+ };
+
+ cpu@2 {
+ compatible = "qcom,krait";
+ device_type = "cpu";
+ reg = <2>;
+ next-level-cache = <&L2>;
+ clocks = <&clk_controller 2>;
+ clock-names = "cpu";
+ cpu-supply = <&cpu_supply2>;
+ operating-points-v2 = <&cpu_opp_table>;
+ };
+
+ cpu@3 {
+ compatible = "qcom,krait";
+ device_type = "cpu";
+ reg = <3>;
+ next-level-cache = <&L2>;
+ clocks = <&clk_controller 3>;
+ clock-names = "cpu";
+ cpu-supply = <&cpu_supply3>;
+ operating-points-v2 = <&cpu_opp_table>;
+ };
+ };
+
+ cpu_opp_table: opp-table {
+ compatible = "operating-points-v2";
+
+ /*
+ * Missing opp-shared property means CPUs switch DVFS states
+ * independently.
+ */
+
+ opp-1000000000 {
+ opp-hz = /bits/ 64 <1000000000>;
+ opp-microvolt = <975000 970000 985000>;
+ opp-microamp = <70000>;
+ clock-latency-ns = <300000>;
+ opp-suspend;
+ };
+ opp-1100000000 {
+ opp-hz = /bits/ 64 <1100000000>;
+ opp-microvolt = <1000000 980000 1010000>;
+ opp-microamp = <80000>;
+ clock-latency-ns = <310000>;
+ };
+ opp-1200000000 {
+ opp-hz = /bits/ 64 <1200000000>;
+ opp-microvolt = <1025000>;
+ opp-microamp = <90000>;
+ lock-latency-ns = <290000>;
+ turbo-mode;
+ };
+ };
+
+ - |
+ /*
+ * Example 3: Dual-cluster, Dual-core per cluster. CPUs within a cluster switch
+ * DVFS state together.
+ */
+ cpus {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ cpu@0 {
+ compatible = "arm,cortex-a7";
+ device_type = "cpu";
+ reg = <0>;
+ next-level-cache = <&L2>;
+ clocks = <&clk_controller 0>;
+ clock-names = "cpu";
+ cpu-supply = <&cpu_supply0>;
+ operating-points-v2 = <&cluster0_opp>;
+ };
+
+ cpu@1 {
+ compatible = "arm,cortex-a7";
+ device_type = "cpu";
+ reg = <1>;
+ next-level-cache = <&L2>;
+ clocks = <&clk_controller 0>;
+ clock-names = "cpu";
+ cpu-supply = <&cpu_supply0>;
+ operating-points-v2 = <&cluster0_opp>;
+ };
+
+ cpu@100 {
+ compatible = "arm,cortex-a15";
+ device_type = "cpu";
+ reg = <100>;
+ next-level-cache = <&L2>;
+ clocks = <&clk_controller 1>;
+ clock-names = "cpu";
+ cpu-supply = <&cpu_supply1>;
+ operating-points-v2 = <&cluster1_opp>;
+ };
+
+ cpu@101 {
+ compatible = "arm,cortex-a15";
+ device_type = "cpu";
+ reg = <101>;
+ next-level-cache = <&L2>;
+ clocks = <&clk_controller 1>;
+ clock-names = "cpu";
+ cpu-supply = <&cpu_supply1>;
+ operating-points-v2 = <&cluster1_opp>;
+ };
+ };
+
+ cluster0_opp: opp-table-0 {
+ compatible = "operating-points-v2";
+ opp-shared;
+
+ opp-1000000000 {
+ opp-hz = /bits/ 64 <1000000000>;
+ opp-microvolt = <975000 970000 985000>;
+ opp-microamp = <70000>;
+ clock-latency-ns = <300000>;
+ opp-suspend;
+ };
+ opp-1100000000 {
+ opp-hz = /bits/ 64 <1100000000>;
+ opp-microvolt = <1000000 980000 1010000>;
+ opp-microamp = <80000>;
+ clock-latency-ns = <310000>;
+ };
+ opp-1200000000 {
+ opp-hz = /bits/ 64 <1200000000>;
+ opp-microvolt = <1025000>;
+ opp-microamp = <90000>;
+ clock-latency-ns = <290000>;
+ turbo-mode;
+ };
+ };
+
+ cluster1_opp: opp-table-1 {
+ compatible = "operating-points-v2";
+ opp-shared;
+
+ opp-1300000000 {
+ opp-hz = /bits/ 64 <1300000000>;
+ opp-microvolt = <1050000 1045000 1055000>;
+ opp-microamp = <95000>;
+ clock-latency-ns = <400000>;
+ opp-suspend;
+ };
+ opp-1400000000 {
+ opp-hz = /bits/ 64 <1400000000>;
+ opp-microvolt = <1075000>;
+ opp-microamp = <100000>;
+ clock-latency-ns = <400000>;
+ };
+ opp-1500000000 {
+ opp-hz = /bits/ 64 <1500000000>;
+ opp-microvolt = <1100000 1010000 1110000>;
+ opp-microamp = <95000>;
+ clock-latency-ns = <400000>;
+ turbo-mode;
+ };
+ };
+
+ - |
+ /* Example 4: Handling multiple regulators */
+ cpus {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ cpu@0 {
+ compatible = "foo,cpu-type";
+ device_type = "cpu";
+ reg = <0>;
+
+ vcc0-supply = <&cpu_supply0>;
+ vcc1-supply = <&cpu_supply1>;
+ vcc2-supply = <&cpu_supply2>;
+ operating-points-v2 = <&cpu0_opp_table4>;
+ };
+ };
+
+ cpu0_opp_table4: opp-table-0 {
+ compatible = "operating-points-v2";
+ opp-shared;
+
+ opp-1000000000 {
+ opp-hz = /bits/ 64 <1000000000>;
+ opp-microvolt = <970000>, /* Supply 0 */
+ <960000>, /* Supply 1 */
+ <960000>; /* Supply 2 */
+ opp-microamp = <70000>, /* Supply 0 */
+ <70000>, /* Supply 1 */
+ <70000>; /* Supply 2 */
+ clock-latency-ns = <300000>;
+ };
+
+ /* OR */
+
+ opp-1000000001 {
+ opp-hz = /bits/ 64 <1000000001>;
+ opp-microvolt = <975000 970000 985000>, /* Supply 0 */
+ <965000 960000 975000>, /* Supply 1 */
+ <965000 960000 975000>; /* Supply 2 */
+ opp-microamp = <70000>, /* Supply 0 */
+ <70000>, /* Supply 1 */
+ <70000>; /* Supply 2 */
+ clock-latency-ns = <300000>;
+ };
+
+ /* OR */
+
+ opp-1000000002 {
+ opp-hz = /bits/ 64 <1000000002>;
+ opp-microvolt = <975000 970000 985000>, /* Supply 0 */
+ <965000 960000 975000>, /* Supply 1 */
+ <965000 960000 975000>; /* Supply 2 */
+ opp-microamp = <70000>, /* Supply 0 */
+ <0>, /* Supply 1 doesn't need this */
+ <70000>; /* Supply 2 */
+ clock-latency-ns = <300000>;
+ };
+ };
+
+ - |
+ /*
+ * Example 5: opp-supported-hw
+ * (example: three level hierarchy of versions: cuts, substrate and process)
+ */
+ cpus {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ cpu@0 {
+ compatible = "arm,cortex-a7";
+ device_type = "cpu";
+ reg = <0>;
+ cpu-supply = <&cpu_supply>;
+ operating-points-v2 = <&cpu0_opp_table_slow>;
+ };
+ };
+
+ cpu0_opp_table_slow: opp-table {
+ compatible = "operating-points-v2";
+ opp-shared;
+
+ opp-600000000 {
+ /*
+ * Supports all substrate and process versions for 0xF
+ * cuts, i.e. only first four cuts.
+ */
+ opp-supported-hw = <0xF 0xFFFFFFFF 0xFFFFFFFF>;
+ opp-hz = /bits/ 64 <600000000>;
+ };
+
+ opp-800000000 {
+ /*
+ * Supports:
+ * - cuts: only one, 6th cut (represented by 6th bit).
+ * - substrate: supports 16 different substrate versions
+ * - process: supports 9 different process versions
+ */
+ opp-supported-hw = <0x20 0xff0000ff 0x0000f4f0>;
+ opp-hz = /bits/ 64 <800000000>;
+ };
+
+ opp-900000000 {
+ /*
+ * Supports:
+ * - All cuts and substrate where process version is 0x2.
+ * - All cuts and process where substrate version is 0x2.
+ */
+ opp-supported-hw = <0xFFFFFFFF 0xFFFFFFFF 0x02>,
+ <0xFFFFFFFF 0x01 0xFFFFFFFF>;
+ opp-hz = /bits/ 64 <900000000>;
+ };
+ };
+
+ - |
+ /*
+ * Example 6: opp-microvolt-<name>, opp-microamp-<name>:
+ * (example: device with two possible microvolt ranges: slow and fast)
+ */
+ cpus {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ cpu@0 {
+ compatible = "arm,cortex-a7";
+ device_type = "cpu";
+ reg = <0>;
+ operating-points-v2 = <&cpu0_opp_table6>;
+ };
+ };
+
+ cpu0_opp_table6: opp-table-0 {
+ compatible = "operating-points-v2";
+ opp-shared;
+
+ opp-1000000000 {
+ opp-hz = /bits/ 64 <1000000000>;
+ opp-microvolt-slow = <915000 900000 925000>;
+ opp-microvolt-fast = <975000 970000 985000>;
+ opp-microamp-slow = <70000>;
+ opp-microamp-fast = <71000>;
+ };
+
+ opp-1200000000 {
+ opp-hz = /bits/ 64 <1200000000>;
+ opp-microvolt-slow = <915000 900000 925000>, /* Supply vcc0 */
+ <925000 910000 935000>; /* Supply vcc1 */
+ opp-microvolt-fast = <975000 970000 985000>, /* Supply vcc0 */
+ <965000 960000 975000>; /* Supply vcc1 */
+ opp-microamp = <70000>; /* Will be used for both slow/fast */
+ };
+ };
+
+ - |
+ /*
+ * Example 7: Single cluster Quad-core ARM cortex A53, OPP points from firmware,
+ * distinct clock controls but two sets of clock/voltage/current lines.
+ */
+ cpus {
+ #address-cells = <2>;
+ #size-cells = <0>;
+
+ cpu@0 {
+ compatible = "arm,cortex-a53";
+ device_type = "cpu";
+ reg = <0x0 0x100>;
+ next-level-cache = <&A53_L2>;
+ clocks = <&dvfs_controller 0>;
+ operating-points-v2 = <&cpu_opp0_table>;
+ };
+ cpu@1 {
+ compatible = "arm,cortex-a53";
+ device_type = "cpu";
+ reg = <0x0 0x101>;
+ next-level-cache = <&A53_L2>;
+ clocks = <&dvfs_controller 1>;
+ operating-points-v2 = <&cpu_opp0_table>;
+ };
+ cpu@2 {
+ compatible = "arm,cortex-a53";
+ device_type = "cpu";
+ reg = <0x0 0x102>;
+ next-level-cache = <&A53_L2>;
+ clocks = <&dvfs_controller 2>;
+ operating-points-v2 = <&cpu_opp1_table>;
+ };
+ cpu@3 {
+ compatible = "arm,cortex-a53";
+ device_type = "cpu";
+ reg = <0x0 0x103>;
+ next-level-cache = <&A53_L2>;
+ clocks = <&dvfs_controller 3>;
+ operating-points-v2 = <&cpu_opp1_table>;
+ };
+
+ };
+
+ cpu_opp0_table: opp-table-0 {
+ compatible = "operating-points-v2";
+ opp-shared;
+ };
+
+ cpu_opp1_table: opp-table-1 {
+ compatible = "operating-points-v2";
+ opp-shared;
+ };
+...
diff --git a/Documentation/devicetree/bindings/opp/opp.txt b/Documentation/devicetree/bindings/opp/opp.txt
deleted file mode 100644
index 08b3da4736cf..000000000000
--- a/Documentation/devicetree/bindings/opp/opp.txt
+++ /dev/null
@@ -1,622 +0,0 @@
-Generic OPP (Operating Performance Points) Bindings
-----------------------------------------------------
-
-Devices work at voltage-current-frequency combinations and some implementations
-have the liberty of choosing these. These combinations are called Operating
-Performance Points aka OPPs. This document defines bindings for these OPPs
-applicable across wide range of devices. For illustration purpose, this document
-uses CPU as a device.
-
-This document contain multiple versions of OPP binding and only one of them
-should be used per device.
-
-Binding 1: operating-points
-============================
-
-This binding only supports voltage-frequency pairs.
-
-Properties:
-- operating-points: An array of 2-tuples items, and each item consists
- of frequency and voltage like <freq-kHz vol-uV>.
- freq: clock frequency in kHz
- vol: voltage in microvolt
-
-Examples:
-
-cpu@0 {
- compatible = "arm,cortex-a9";
- reg = <0>;
- next-level-cache = <&L2>;
- operating-points = <
- /* kHz uV */
- 792000 1100000
- 396000 950000
- 198000 850000
- >;
-};
-
-
-Binding 2: operating-points-v2
-============================
-
-* Property: operating-points-v2
-
-Devices supporting OPPs must set their "operating-points-v2" property with
-phandle to a OPP table in their DT node. The OPP core will use this phandle to
-find the operating points for the device.
-
-This can contain more than one phandle for power domain providers that provide
-multiple power domains. That is, one phandle for each power domain. If only one
-phandle is available, then the same OPP table will be used for all power domains
-provided by the power domain provider.
-
-If required, this can be extended for SoC vendor specific bindings. Such bindings
-should be documented as Documentation/devicetree/bindings/power/<vendor>-opp.txt
-and should have a compatible description like: "operating-points-v2-<vendor>".
-
-* OPP Table Node
-
-This describes the OPPs belonging to a device. This node can have following
-properties:
-
-Required properties:
-- compatible: Allow OPPs to express their compatibility. It should be:
- "operating-points-v2".
-
-- OPP nodes: One or more OPP nodes describing voltage-current-frequency
- combinations. Their name isn't significant but their phandle can be used to
- reference an OPP. These are mandatory except for the case where the OPP table
- is present only to indicate dependency between devices using the opp-shared
- property.
-
-Optional properties:
-- opp-shared: Indicates that device nodes using this OPP Table Node's phandle
- switch their DVFS state together, i.e. they share clock/voltage/current lines.
- Missing property means devices have independent clock/voltage/current lines,
- but they share OPP tables.
-
-- status: Marks the OPP table enabled/disabled.
-
-
-* OPP Node
-
-This defines voltage-current-frequency combinations along with other related
-properties.
-
-Required properties:
-- opp-hz: Frequency in Hz, expressed as a 64-bit big-endian integer. This is a
- required property for all device nodes, unless another "required" property to
- uniquely identify the OPP nodes exists. Devices like power domains must have
- another (implementation dependent) property.
-
-- opp-peak-kBps: Peak bandwidth in kilobytes per second, expressed as an array
- of 32-bit big-endian integers. Each element of the array represents the
- peak bandwidth value of each interconnect path. The number of elements should
- match the number of interconnect paths.
-
-Optional properties:
-- opp-microvolt: voltage in micro Volts.
-
- A single regulator's voltage is specified with an array of size one or three.
- Single entry is for target voltage and three entries are for <target min max>
- voltages.
-
- Entries for multiple regulators shall be provided in the same field separated
- by angular brackets <>. The OPP binding doesn't provide any provisions to
- relate the values to their power supplies or the order in which the supplies
- need to be configured and that is left for the implementation specific
- binding.
-
- Entries for all regulators shall be of the same size, i.e. either all use a
- single value or triplets.
-
-- opp-microvolt-<name>: Named opp-microvolt property. This is exactly similar to
- the above opp-microvolt property, but allows multiple voltage ranges to be
- provided for the same OPP. At runtime, the platform can pick a <name> and
- matching opp-microvolt-<name> property will be enabled for all OPPs. If the
- platform doesn't pick a specific <name> or the <name> doesn't match with any
- opp-microvolt-<name> properties, then opp-microvolt property shall be used, if
- present.
-
-- opp-microamp: The maximum current drawn by the device in microamperes
- considering system specific parameters (such as transients, process, aging,
- maximum operating temperature range etc.) as necessary. This may be used to
- set the most efficient regulator operating mode.
-
- Should only be set if opp-microvolt is set for the OPP.
-
- Entries for multiple regulators shall be provided in the same field separated
- by angular brackets <>. If current values aren't required for a regulator,
- then it shall be filled with 0. If current values aren't required for any of
- the regulators, then this field is not required. The OPP binding doesn't
- provide any provisions to relate the values to their power supplies or the
- order in which the supplies need to be configured and that is left for the
- implementation specific binding.
-
-- opp-microamp-<name>: Named opp-microamp property. Similar to
- opp-microvolt-<name> property, but for microamp instead.
-
-- opp-level: A value representing the performance level of the device,
- expressed as a 32-bit integer.
-
-- opp-avg-kBps: Average bandwidth in kilobytes per second, expressed as an array
- of 32-bit big-endian integers. Each element of the array represents the
- average bandwidth value of each interconnect path. The number of elements
- should match the number of interconnect paths. This property is only
- meaningful in OPP tables where opp-peak-kBps is present.
-
-- clock-latency-ns: Specifies the maximum possible transition latency (in
- nanoseconds) for switching to this OPP from any other OPP.
-
-- turbo-mode: Marks the OPP to be used only for turbo modes. Turbo mode is
- available on some platforms, where the device can run over its operating
- frequency for a short duration of time limited by the device's power, current
- and thermal limits.
-
-- opp-suspend: Marks the OPP to be used during device suspend. If multiple OPPs
- in the table have this, the OPP with highest opp-hz will be used.
-
-- opp-supported-hw: This property allows a platform to enable only a subset of
- the OPPs from the larger set present in the OPP table, based on the current
- version of the hardware (already known to the operating system).
-
- Each block present in the array of blocks in this property, represents a
- sub-group of hardware versions supported by the OPP. i.e. <sub-group A>,
- <sub-group B>, etc. The OPP will be enabled if _any_ of these sub-groups match
- the hardware's version.
-
- Each sub-group is a platform defined array representing the hierarchy of
- hardware versions supported by the platform. For a platform with three
- hierarchical levels of version (X.Y.Z), this field shall look like
-
- opp-supported-hw = <X1 Y1 Z1>, <X2 Y2 Z2>, <X3 Y3 Z3>.
-
- Each level (eg. X1) in version hierarchy is represented by a 32 bit value, one
- bit per version and so there can be maximum 32 versions per level. Logical AND
- (&) operation is performed for each level with the hardware's level version
- and a non-zero output for _all_ the levels in a sub-group means the OPP is
- supported by hardware. A value of 0xFFFFFFFF for each level in the sub-group
- will enable the OPP for all versions for the hardware.
-
-- status: Marks the node enabled/disabled.
-
-- required-opps: This contains phandle to an OPP node in another device's OPP
- table. It may contain an array of phandles, where each phandle points to an
- OPP of a different device. It should not contain multiple phandles to the OPP
- nodes in the same OPP table. This specifies the minimum required OPP of the
- device(s), whose OPP's phandle is present in this property, for the
- functioning of the current device at the current OPP (where this property is
- present).
-
-Example 1: Single cluster Dual-core ARM cortex A9, switch DVFS states together.
-
-/ {
- cpus {
- #address-cells = <1>;
- #size-cells = <0>;
-
- cpu@0 {
- compatible = "arm,cortex-a9";
- reg = <0>;
- next-level-cache = <&L2>;
- clocks = <&clk_controller 0>;
- clock-names = "cpu";
- cpu-supply = <&cpu_supply0>;
- operating-points-v2 = <&cpu0_opp_table>;
- };
-
- cpu@1 {
- compatible = "arm,cortex-a9";
- reg = <1>;
- next-level-cache = <&L2>;
- clocks = <&clk_controller 0>;
- clock-names = "cpu";
- cpu-supply = <&cpu_supply0>;
- operating-points-v2 = <&cpu0_opp_table>;
- };
- };
-
- cpu0_opp_table: opp_table0 {
- compatible = "operating-points-v2";
- opp-shared;
-
- opp-1000000000 {
- opp-hz = /bits/ 64 <1000000000>;
- opp-microvolt = <975000 970000 985000>;
- opp-microamp = <70000>;
- clock-latency-ns = <300000>;
- opp-suspend;
- };
- opp-1100000000 {
- opp-hz = /bits/ 64 <1100000000>;
- opp-microvolt = <1000000 980000 1010000>;
- opp-microamp = <80000>;
- clock-latency-ns = <310000>;
- };
- opp-1200000000 {
- opp-hz = /bits/ 64 <1200000000>;
- opp-microvolt = <1025000>;
- clock-latency-ns = <290000>;
- turbo-mode;
- };
- };
-};
-
-Example 2: Single cluster, Quad-core Qualcom-krait, switches DVFS states
-independently.
-
-/ {
- cpus {
- #address-cells = <1>;
- #size-cells = <0>;
-
- cpu@0 {
- compatible = "qcom,krait";
- reg = <0>;
- next-level-cache = <&L2>;
- clocks = <&clk_controller 0>;
- clock-names = "cpu";
- cpu-supply = <&cpu_supply0>;
- operating-points-v2 = <&cpu_opp_table>;
- };
-
- cpu@1 {
- compatible = "qcom,krait";
- reg = <1>;
- next-level-cache = <&L2>;
- clocks = <&clk_controller 1>;
- clock-names = "cpu";
- cpu-supply = <&cpu_supply1>;
- operating-points-v2 = <&cpu_opp_table>;
- };
-
- cpu@2 {
- compatible = "qcom,krait";
- reg = <2>;
- next-level-cache = <&L2>;
- clocks = <&clk_controller 2>;
- clock-names = "cpu";
- cpu-supply = <&cpu_supply2>;
- operating-points-v2 = <&cpu_opp_table>;
- };
-
- cpu@3 {
- compatible = "qcom,krait";
- reg = <3>;
- next-level-cache = <&L2>;
- clocks = <&clk_controller 3>;
- clock-names = "cpu";
- cpu-supply = <&cpu_supply3>;
- operating-points-v2 = <&cpu_opp_table>;
- };
- };
-
- cpu_opp_table: opp_table {
- compatible = "operating-points-v2";
-
- /*
- * Missing opp-shared property means CPUs switch DVFS states
- * independently.
- */
-
- opp-1000000000 {
- opp-hz = /bits/ 64 <1000000000>;
- opp-microvolt = <975000 970000 985000>;
- opp-microamp = <70000>;
- clock-latency-ns = <300000>;
- opp-suspend;
- };
- opp-1100000000 {
- opp-hz = /bits/ 64 <1100000000>;
- opp-microvolt = <1000000 980000 1010000>;
- opp-microamp = <80000>;
- clock-latency-ns = <310000>;
- };
- opp-1200000000 {
- opp-hz = /bits/ 64 <1200000000>;
- opp-microvolt = <1025000>;
- opp-microamp = <90000;
- lock-latency-ns = <290000>;
- turbo-mode;
- };
- };
-};
-
-Example 3: Dual-cluster, Dual-core per cluster. CPUs within a cluster switch
-DVFS state together.
-
-/ {
- cpus {
- #address-cells = <1>;
- #size-cells = <0>;
-
- cpu@0 {
- compatible = "arm,cortex-a7";
- reg = <0>;
- next-level-cache = <&L2>;
- clocks = <&clk_controller 0>;
- clock-names = "cpu";
- cpu-supply = <&cpu_supply0>;
- operating-points-v2 = <&cluster0_opp>;
- };
-
- cpu@1 {
- compatible = "arm,cortex-a7";
- reg = <1>;
- next-level-cache = <&L2>;
- clocks = <&clk_controller 0>;
- clock-names = "cpu";
- cpu-supply = <&cpu_supply0>;
- operating-points-v2 = <&cluster0_opp>;
- };
-
- cpu@100 {
- compatible = "arm,cortex-a15";
- reg = <100>;
- next-level-cache = <&L2>;
- clocks = <&clk_controller 1>;
- clock-names = "cpu";
- cpu-supply = <&cpu_supply1>;
- operating-points-v2 = <&cluster1_opp>;
- };
-
- cpu@101 {
- compatible = "arm,cortex-a15";
- reg = <101>;
- next-level-cache = <&L2>;
- clocks = <&clk_controller 1>;
- clock-names = "cpu";
- cpu-supply = <&cpu_supply1>;
- operating-points-v2 = <&cluster1_opp>;
- };
- };
-
- cluster0_opp: opp_table0 {
- compatible = "operating-points-v2";
- opp-shared;
-
- opp-1000000000 {
- opp-hz = /bits/ 64 <1000000000>;
- opp-microvolt = <975000 970000 985000>;
- opp-microamp = <70000>;
- clock-latency-ns = <300000>;
- opp-suspend;
- };
- opp-1100000000 {
- opp-hz = /bits/ 64 <1100000000>;
- opp-microvolt = <1000000 980000 1010000>;
- opp-microamp = <80000>;
- clock-latency-ns = <310000>;
- };
- opp-1200000000 {
- opp-hz = /bits/ 64 <1200000000>;
- opp-microvolt = <1025000>;
- opp-microamp = <90000>;
- clock-latency-ns = <290000>;
- turbo-mode;
- };
- };
-
- cluster1_opp: opp_table1 {
- compatible = "operating-points-v2";
- opp-shared;
-
- opp-1300000000 {
- opp-hz = /bits/ 64 <1300000000>;
- opp-microvolt = <1050000 1045000 1055000>;
- opp-microamp = <95000>;
- clock-latency-ns = <400000>;
- opp-suspend;
- };
- opp-1400000000 {
- opp-hz = /bits/ 64 <1400000000>;
- opp-microvolt = <1075000>;
- opp-microamp = <100000>;
- clock-latency-ns = <400000>;
- };
- opp-1500000000 {
- opp-hz = /bits/ 64 <1500000000>;
- opp-microvolt = <1100000 1010000 1110000>;
- opp-microamp = <95000>;
- clock-latency-ns = <400000>;
- turbo-mode;
- };
- };
-};
-
-Example 4: Handling multiple regulators
-
-/ {
- cpus {
- cpu@0 {
- compatible = "vendor,cpu-type";
- ...
-
- vcc0-supply = <&cpu_supply0>;
- vcc1-supply = <&cpu_supply1>;
- vcc2-supply = <&cpu_supply2>;
- operating-points-v2 = <&cpu0_opp_table>;
- };
- };
-
- cpu0_opp_table: opp_table0 {
- compatible = "operating-points-v2";
- opp-shared;
-
- opp-1000000000 {
- opp-hz = /bits/ 64 <1000000000>;
- opp-microvolt = <970000>, /* Supply 0 */
- <960000>, /* Supply 1 */
- <960000>; /* Supply 2 */
- opp-microamp = <70000>, /* Supply 0 */
- <70000>, /* Supply 1 */
- <70000>; /* Supply 2 */
- clock-latency-ns = <300000>;
- };
-
- /* OR */
-
- opp-1000000000 {
- opp-hz = /bits/ 64 <1000000000>;
- opp-microvolt = <975000 970000 985000>, /* Supply 0 */
- <965000 960000 975000>, /* Supply 1 */
- <965000 960000 975000>; /* Supply 2 */
- opp-microamp = <70000>, /* Supply 0 */
- <70000>, /* Supply 1 */
- <70000>; /* Supply 2 */
- clock-latency-ns = <300000>;
- };
-
- /* OR */
-
- opp-1000000000 {
- opp-hz = /bits/ 64 <1000000000>;
- opp-microvolt = <975000 970000 985000>, /* Supply 0 */
- <965000 960000 975000>, /* Supply 1 */
- <965000 960000 975000>; /* Supply 2 */
- opp-microamp = <70000>, /* Supply 0 */
- <0>, /* Supply 1 doesn't need this */
- <70000>; /* Supply 2 */
- clock-latency-ns = <300000>;
- };
- };
-};
-
-Example 5: opp-supported-hw
-(example: three level hierarchy of versions: cuts, substrate and process)
-
-/ {
- cpus {
- cpu@0 {
- compatible = "arm,cortex-a7";
- ...
-
- cpu-supply = <&cpu_supply>
- operating-points-v2 = <&cpu0_opp_table_slow>;
- };
- };
-
- opp_table {
- compatible = "operating-points-v2";
- opp-shared;
-
- opp-600000000 {
- /*
- * Supports all substrate and process versions for 0xF
- * cuts, i.e. only first four cuts.
- */
- opp-supported-hw = <0xF 0xFFFFFFFF 0xFFFFFFFF>
- opp-hz = /bits/ 64 <600000000>;
- ...
- };
-
- opp-800000000 {
- /*
- * Supports:
- * - cuts: only one, 6th cut (represented by 6th bit).
- * - substrate: supports 16 different substrate versions
- * - process: supports 9 different process versions
- */
- opp-supported-hw = <0x20 0xff0000ff 0x0000f4f0>
- opp-hz = /bits/ 64 <800000000>;
- ...
- };
-
- opp-900000000 {
- /*
- * Supports:
- * - All cuts and substrate where process version is 0x2.
- * - All cuts and process where substrate version is 0x2.
- */
- opp-supported-hw = <0xFFFFFFFF 0xFFFFFFFF 0x02>, <0xFFFFFFFF 0x01 0xFFFFFFFF>
- opp-hz = /bits/ 64 <900000000>;
- ...
- };
- };
-};
-
-Example 6: opp-microvolt-<name>, opp-microamp-<name>:
-(example: device with two possible microvolt ranges: slow and fast)
-
-/ {
- cpus {
- cpu@0 {
- compatible = "arm,cortex-a7";
- ...
-
- operating-points-v2 = <&cpu0_opp_table>;
- };
- };
-
- cpu0_opp_table: opp_table0 {
- compatible = "operating-points-v2";
- opp-shared;
-
- opp-1000000000 {
- opp-hz = /bits/ 64 <1000000000>;
- opp-microvolt-slow = <915000 900000 925000>;
- opp-microvolt-fast = <975000 970000 985000>;
- opp-microamp-slow = <70000>;
- opp-microamp-fast = <71000>;
- };
-
- opp-1200000000 {
- opp-hz = /bits/ 64 <1200000000>;
- opp-microvolt-slow = <915000 900000 925000>, /* Supply vcc0 */
- <925000 910000 935000>; /* Supply vcc1 */
- opp-microvolt-fast = <975000 970000 985000>, /* Supply vcc0 */
- <965000 960000 975000>; /* Supply vcc1 */
- opp-microamp = <70000>; /* Will be used for both slow/fast */
- };
- };
-};
-
-Example 7: Single cluster Quad-core ARM cortex A53, OPP points from firmware,
-distinct clock controls but two sets of clock/voltage/current lines.
-
-/ {
- cpus {
- #address-cells = <2>;
- #size-cells = <0>;
-
- cpu@0 {
- compatible = "arm,cortex-a53";
- reg = <0x0 0x100>;
- next-level-cache = <&A53_L2>;
- clocks = <&dvfs_controller 0>;
- operating-points-v2 = <&cpu_opp0_table>;
- };
- cpu@1 {
- compatible = "arm,cortex-a53";
- reg = <0x0 0x101>;
- next-level-cache = <&A53_L2>;
- clocks = <&dvfs_controller 1>;
- operating-points-v2 = <&cpu_opp0_table>;
- };
- cpu@2 {
- compatible = "arm,cortex-a53";
- reg = <0x0 0x102>;
- next-level-cache = <&A53_L2>;
- clocks = <&dvfs_controller 2>;
- operating-points-v2 = <&cpu_opp1_table>;
- };
- cpu@3 {
- compatible = "arm,cortex-a53";
- reg = <0x0 0x103>;
- next-level-cache = <&A53_L2>;
- clocks = <&dvfs_controller 3>;
- operating-points-v2 = <&cpu_opp1_table>;
- };
-
- };
-
- cpu_opp0_table: opp0_table {
- compatible = "operating-points-v2";
- opp-shared;
- };
-
- cpu_opp1_table: opp1_table {
- compatible = "operating-points-v2";
- opp-shared;
- };
-};
diff --git a/Documentation/devicetree/bindings/opp/qcom-opp.txt b/Documentation/devicetree/bindings/opp/qcom-opp.txt
index 32eb0793c7e6..41d3e4ff2dc3 100644
--- a/Documentation/devicetree/bindings/opp/qcom-opp.txt
+++ b/Documentation/devicetree/bindings/opp/qcom-opp.txt
@@ -1,7 +1,7 @@
Qualcomm OPP bindings to describe OPP nodes
The bindings are based on top of the operating-points-v2 bindings
-described in Documentation/devicetree/bindings/opp/opp.txt
+described in Documentation/devicetree/bindings/opp/opp-v2-base.yaml
Additional properties are described below.
* OPP Table Node
diff --git a/Documentation/devicetree/bindings/opp/ti-omap5-opp-supply.txt b/Documentation/devicetree/bindings/opp/ti-omap5-opp-supply.txt
index 832346e489a3..b70d326117cd 100644
--- a/Documentation/devicetree/bindings/opp/ti-omap5-opp-supply.txt
+++ b/Documentation/devicetree/bindings/opp/ti-omap5-opp-supply.txt
@@ -13,7 +13,7 @@ regulators to the device that will undergo OPP transitions we can make use
of the multi regulator binding that is part of the OPP core described here [1]
to describe both regulators needed by the platform.
-[1] Documentation/devicetree/bindings/opp/opp.txt
+[1] Documentation/devicetree/bindings/opp/opp-v2.yaml
Required Properties for Device Node:
- vdd-supply: phandle to regulator controlling VDD supply
diff --git a/Documentation/devicetree/bindings/power/power-domain.yaml b/Documentation/devicetree/bindings/power/power-domain.yaml
index aed51e9dcb11..3143ed9a3313 100644
--- a/Documentation/devicetree/bindings/power/power-domain.yaml
+++ b/Documentation/devicetree/bindings/power/power-domain.yaml
@@ -46,7 +46,7 @@ properties:
Phandles to the OPP tables of power domains provided by a power domain
provider. If the provider provides a single power domain only or all
the power domains provided by the provider have identical OPP tables,
- then this shall contain a single phandle. Refer to ../opp/opp.txt
+ then this shall contain a single phandle. Refer to ../opp/opp-v2-base.yaml
for more information.
"#power-domain-cells":
diff --git a/Documentation/translations/zh_CN/cpu-freq/cpu-drivers.rst b/Documentation/translations/zh_CN/cpu-freq/cpu-drivers.rst
index b9846173dd71..0fc5d1495789 100644
--- a/Documentation/translations/zh_CN/cpu-freq/cpu-drivers.rst
+++ b/Documentation/translations/zh_CN/cpu-freq/cpu-drivers.rst
@@ -82,8 +82,6 @@ CPUfreq核心层注册一个cpufreq_driver结构体。
.resume - 一个指向per-policy恢复函数的指针,该函数在关中断且在调节器再一次开始前被
调用。
- .ready - 一个指向per-policy准备函数的指针,该函数在策略完全初始化之后被调用。
-
.attr - 一个指向NULL结尾的"struct freq_attr"列表的指针,该函数允许导出值到
sysfs。
diff --git a/arch/arm/boot/dts/omap34xx.dtsi b/arch/arm/boot/dts/omap34xx.dtsi
index feaa43b78535..8b8451399784 100644
--- a/arch/arm/boot/dts/omap34xx.dtsi
+++ b/arch/arm/boot/dts/omap34xx.dtsi
@@ -24,7 +24,6 @@
};
};
- /* see Documentation/devicetree/bindings/opp/opp.txt */
cpu0_opp_table: opp-table {
compatible = "operating-points-v2-ti-cpu";
syscon = <&scm_conf>;
diff --git a/arch/arm/boot/dts/omap36xx.dtsi b/arch/arm/boot/dts/omap36xx.dtsi
index 20844dbc002e..22b33098b1a2 100644
--- a/arch/arm/boot/dts/omap36xx.dtsi
+++ b/arch/arm/boot/dts/omap36xx.dtsi
@@ -29,7 +29,6 @@
};
};
- /* see Documentation/devicetree/bindings/opp/opp.txt */
cpu0_opp_table: opp-table {
compatible = "operating-points-v2-ti-cpu";
syscon = <&scm_conf>;
diff --git a/drivers/base/arch_topology.c b/drivers/base/arch_topology.c
index 921312a8d957..43407665918f 100644
--- a/drivers/base/arch_topology.c
+++ b/drivers/base/arch_topology.c
@@ -149,6 +149,7 @@ void topology_set_freq_scale(const struct cpumask *cpus, unsigned long cur_freq,
}
DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
+EXPORT_PER_CPU_SYMBOL_GPL(cpu_scale);
void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity)
{
@@ -165,6 +166,7 @@ void topology_set_thermal_pressure(const struct cpumask *cpus,
for_each_cpu(cpu, cpus)
WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
}
+EXPORT_SYMBOL_GPL(topology_set_thermal_pressure);
static ssize_t cpu_capacity_show(struct device *dev,
struct device_attribute *attr,
diff --git a/drivers/cpufreq/Kconfig.arm b/drivers/cpufreq/Kconfig.arm
index a5c5f70acfc9..954749afb5fe 100644
--- a/drivers/cpufreq/Kconfig.arm
+++ b/drivers/cpufreq/Kconfig.arm
@@ -133,6 +133,18 @@ config ARM_MEDIATEK_CPUFREQ
help
This adds the CPUFreq driver support for MediaTek SoCs.
+config ARM_MEDIATEK_CPUFREQ_HW
+ tristate "MediaTek CPUFreq HW driver"
+ depends on ARCH_MEDIATEK || COMPILE_TEST
+ default m
+ help
+ Support for the CPUFreq HW driver.
+ Some MediaTek chipsets have a HW engine to offload the steps
+ necessary for changing the frequency of the CPUs. Firmware loaded
+ in this engine exposes a programming interface to the OS.
+ The driver implements the cpufreq interface for this HW engine.
+ Say Y if you want to support CPUFreq HW.
+
config ARM_OMAP2PLUS_CPUFREQ
bool "TI OMAP2+"
depends on ARCH_OMAP2PLUS
diff --git a/drivers/cpufreq/Makefile b/drivers/cpufreq/Makefile
index 27d3bd7ea9d4..48ee5859030c 100644
--- a/drivers/cpufreq/Makefile
+++ b/drivers/cpufreq/Makefile
@@ -56,6 +56,7 @@ obj-$(CONFIG_ARM_IMX6Q_CPUFREQ) += imx6q-cpufreq.o
obj-$(CONFIG_ARM_IMX_CPUFREQ_DT) += imx-cpufreq-dt.o
obj-$(CONFIG_ARM_KIRKWOOD_CPUFREQ) += kirkwood-cpufreq.o
obj-$(CONFIG_ARM_MEDIATEK_CPUFREQ) += mediatek-cpufreq.o
+obj-$(CONFIG_ARM_MEDIATEK_CPUFREQ_HW) += mediatek-cpufreq-hw.o
obj-$(CONFIG_MACH_MVEBU_V7) += mvebu-cpufreq.o
obj-$(CONFIG_ARM_OMAP2PLUS_CPUFREQ) += omap-cpufreq.o
obj-$(CONFIG_ARM_PXA2xx_CPUFREQ) += pxa2xx-cpufreq.o
diff --git a/drivers/cpufreq/acpi-cpufreq.c b/drivers/cpufreq/acpi-cpufreq.c
index b49612895c78..28467d83c745 100644
--- a/drivers/cpufreq/acpi-cpufreq.c
+++ b/drivers/cpufreq/acpi-cpufreq.c
@@ -889,6 +889,9 @@ static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
policy->fast_switch_possible = !acpi_pstate_strict &&
!(policy_is_shared(policy) && policy->shared_type != CPUFREQ_SHARED_TYPE_ANY);
+ if (perf->states[0].core_frequency * 1000 != freq_table[0].frequency)
+ pr_warn(FW_WARN "P-state 0 is not max freq\n");
+
return result;
err_unreg:
@@ -918,16 +921,6 @@ static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
return 0;
}
-static void acpi_cpufreq_cpu_ready(struct cpufreq_policy *policy)
-{
- struct acpi_processor_performance *perf = per_cpu_ptr(acpi_perf_data,
- policy->cpu);
- unsigned int freq = policy->freq_table[0].frequency;
-
- if (perf->states[0].core_frequency * 1000 != freq)
- pr_warn(FW_WARN "P-state 0 is not max freq\n");
-}
-
static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
{
struct acpi_cpufreq_data *data = policy->driver_data;
@@ -955,7 +948,6 @@ static struct cpufreq_driver acpi_cpufreq_driver = {
.bios_limit = acpi_processor_get_bios_limit,
.init = acpi_cpufreq_cpu_init,
.exit = acpi_cpufreq_cpu_exit,
- .ready = acpi_cpufreq_cpu_ready,
.resume = acpi_cpufreq_resume,
.name = "acpi-cpufreq",
.attr = acpi_cpufreq_attr,
diff --git a/drivers/cpufreq/cpufreq-dt-platdev.c b/drivers/cpufreq/cpufreq-dt-platdev.c
index 231e585f6ba2..ca1d103ec449 100644
--- a/drivers/cpufreq/cpufreq-dt-platdev.c
+++ b/drivers/cpufreq/cpufreq-dt-platdev.c
@@ -137,11 +137,15 @@ static const struct of_device_id blocklist[] __initconst = {
{ .compatible = "qcom,apq8096", },
{ .compatible = "qcom,msm8996", },
{ .compatible = "qcom,qcs404", },
+ { .compatible = "qcom,sa8155p" },
{ .compatible = "qcom,sc7180", },
{ .compatible = "qcom,sc7280", },
{ .compatible = "qcom,sc8180x", },
{ .compatible = "qcom,sdm845", },
+ { .compatible = "qcom,sm6350", },
{ .compatible = "qcom,sm8150", },
+ { .compatible = "qcom,sm8250", },
+ { .compatible = "qcom,sm8350", },
{ .compatible = "st,stih407", },
{ .compatible = "st,stih410", },
diff --git a/drivers/cpufreq/cpufreq-dt.c b/drivers/cpufreq/cpufreq-dt.c
index ece52863ba62..8fcaba541539 100644
--- a/drivers/cpufreq/cpufreq-dt.c
+++ b/drivers/cpufreq/cpufreq-dt.c
@@ -143,8 +143,6 @@ static int cpufreq_init(struct cpufreq_policy *policy)
cpufreq_dt_attr[1] = &cpufreq_freq_attr_scaling_boost_freqs;
}
- dev_pm_opp_of_register_em(cpu_dev, policy->cpus);
-
return 0;
out_clk_put:
@@ -184,6 +182,7 @@ static struct cpufreq_driver dt_cpufreq_driver = {
.exit = cpufreq_exit,
.online = cpufreq_online,
.offline = cpufreq_offline,
+ .register_em = cpufreq_register_em_with_opp,
.name = "cpufreq-dt",
.attr = cpufreq_dt_attr,
.suspend = cpufreq_generic_suspend,
diff --git a/drivers/cpufreq/cpufreq.c b/drivers/cpufreq/cpufreq.c
index 06c526d66dd3..5782b15a8caa 100644
--- a/drivers/cpufreq/cpufreq.c
+++ b/drivers/cpufreq/cpufreq.c
@@ -1491,6 +1491,19 @@ static int cpufreq_online(unsigned int cpu)
write_lock_irqsave(&cpufreq_driver_lock, flags);
list_add(&policy->policy_list, &cpufreq_policy_list);
write_unlock_irqrestore(&cpufreq_driver_lock, flags);
+
+ /*
+ * Register with the energy model before
+ * sched_cpufreq_governor_change() is called, which will result
+ * in rebuilding of the sched domains, which should only be done
+ * once the energy model is properly initialized for the policy
+ * first.
+ *
+ * Also, this should be called before the policy is registered
+ * with cooling framework.
+ */
+ if (cpufreq_driver->register_em)
+ cpufreq_driver->register_em(policy);
}
ret = cpufreq_init_policy(policy);
@@ -1504,10 +1517,6 @@ static int cpufreq_online(unsigned int cpu)
kobject_uevent(&policy->kobj, KOBJ_ADD);
- /* Callback for handling stuff after policy is ready */
- if (cpufreq_driver->ready)
- cpufreq_driver->ready(policy);
-
if (cpufreq_thermal_control_enabled(cpufreq_driver))
policy->cdev = of_cpufreq_cooling_register(policy);
diff --git a/drivers/cpufreq/imx6q-cpufreq.c b/drivers/cpufreq/imx6q-cpufreq.c
index 5bf5fc759881..90beb26ed34e 100644
--- a/drivers/cpufreq/imx6q-cpufreq.c
+++ b/drivers/cpufreq/imx6q-cpufreq.c
@@ -192,7 +192,6 @@ static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
policy->clk = clks[ARM].clk;
cpufreq_generic_init(policy, freq_table, transition_latency);
policy->suspend_freq = max_freq;
- dev_pm_opp_of_register_em(cpu_dev, policy->cpus);
return 0;
}
@@ -204,6 +203,7 @@ static struct cpufreq_driver imx6q_cpufreq_driver = {
.target_index = imx6q_set_target,
.get = cpufreq_generic_get,
.init = imx6q_cpufreq_init,
+ .register_em = cpufreq_register_em_with_opp,
.name = "imx6q-cpufreq",
.attr = cpufreq_generic_attr,
.suspend = cpufreq_generic_suspend,
diff --git a/drivers/cpufreq/intel_pstate.c b/drivers/cpufreq/intel_pstate.c
index b4ffe6c8a0d0..2d83a9f9651b 100644
--- a/drivers/cpufreq/intel_pstate.c
+++ b/drivers/cpufreq/intel_pstate.c
@@ -32,7 +32,6 @@
#include <asm/cpu_device_id.h>
#include <asm/cpufeature.h>
#include <asm/intel-family.h>
-#include "../drivers/thermal/intel/thermal_interrupt.h"
#define INTEL_PSTATE_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC)
@@ -220,7 +219,6 @@ struct global_params {
* @sched_flags: Store scheduler flags for possible cross CPU update
* @hwp_boost_min: Last HWP boosted min performance
* @suspended: Whether or not the driver has been suspended.
- * @hwp_notify_work: workqueue for HWP notifications.
*
* This structure stores per CPU instance data for all CPUs.
*/
@@ -259,7 +257,6 @@ struct cpudata {
unsigned int sched_flags;
u32 hwp_boost_min;
bool suspended;
- struct delayed_work hwp_notify_work;
};
static struct cpudata **all_cpu_data;
@@ -1628,40 +1625,6 @@ static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
/************************** sysfs end ************************/
-static void intel_pstate_notify_work(struct work_struct *work)
-{
- mutex_lock(&intel_pstate_driver_lock);
- cpufreq_update_policy(smp_processor_id());
- wrmsrl(MSR_HWP_STATUS, 0);
- mutex_unlock(&intel_pstate_driver_lock);
-}
-
-void notify_hwp_interrupt(void)
-{
- unsigned int this_cpu = smp_processor_id();
- struct cpudata *cpudata;
- u64 value;
-
- if (!hwp_active || !boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
- return;
-
- rdmsrl(MSR_HWP_STATUS, value);
- if (!(value & 0x01))
- return;
-
- cpudata = all_cpu_data[this_cpu];
- schedule_delayed_work_on(this_cpu, &cpudata->hwp_notify_work, msecs_to_jiffies(10));
-}
-
-static void intel_pstate_enable_hwp_interrupt(struct cpudata *cpudata)
-{
- /* Enable HWP notification interrupt for guaranteed performance change */
- if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) {
- INIT_DELAYED_WORK(&cpudata->hwp_notify_work, intel_pstate_notify_work);
- wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x01);
- }
-}
-
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
{
/* First disable HWP notification interrupt as we don't process them */
@@ -1671,8 +1634,6 @@ static void intel_pstate_hwp_enable(struct cpudata *cpudata)
wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
if (cpudata->epp_default == -EINVAL)
cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
-
- intel_pstate_enable_hwp_interrupt(cpudata);
}
static int atom_get_min_pstate(void)
diff --git a/drivers/cpufreq/mediatek-cpufreq-hw.c b/drivers/cpufreq/mediatek-cpufreq-hw.c
new file mode 100644
index 000000000000..0cf18dd46b92
--- /dev/null
+++ b/drivers/cpufreq/mediatek-cpufreq-hw.c
@@ -0,0 +1,308 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (c) 2020 MediaTek Inc.
+ */
+
+#include <linux/bitfield.h>
+#include <linux/cpufreq.h>
+#include <linux/energy_model.h>
+#include <linux/init.h>
+#include <linux/iopoll.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/of_address.h>
+#include <linux/of_platform.h>
+#include <linux/slab.h>
+
+#define LUT_MAX_ENTRIES 32U
+#define LUT_FREQ GENMASK(11, 0)
+#define LUT_ROW_SIZE 0x4
+#define CPUFREQ_HW_STATUS BIT(0)
+#define SVS_HW_STATUS BIT(1)
+#define POLL_USEC 1000
+#define TIMEOUT_USEC 300000
+
+enum {
+ REG_FREQ_LUT_TABLE,
+ REG_FREQ_ENABLE,
+ REG_FREQ_PERF_STATE,
+ REG_FREQ_HW_STATE,
+ REG_EM_POWER_TBL,
+ REG_FREQ_LATENCY,
+
+ REG_ARRAY_SIZE,
+};
+
+struct mtk_cpufreq_data {
+ struct cpufreq_frequency_table *table;
+ void __iomem *reg_bases[REG_ARRAY_SIZE];
+ int nr_opp;
+};
+
+static const u16 cpufreq_mtk_offsets[REG_ARRAY_SIZE] = {
+ [REG_FREQ_LUT_TABLE] = 0x0,
+ [REG_FREQ_ENABLE] = 0x84,
+ [REG_FREQ_PERF_STATE] = 0x88,
+ [REG_FREQ_HW_STATE] = 0x8c,
+ [REG_EM_POWER_TBL] = 0x90,
+ [REG_FREQ_LATENCY] = 0x110,
+};
+
+static int __maybe_unused
+mtk_cpufreq_get_cpu_power(unsigned long *mW,
+ unsigned long *KHz, struct device *cpu_dev)
+{
+ struct mtk_cpufreq_data *data;
+ struct cpufreq_policy *policy;
+ int i;
+
+ policy = cpufreq_cpu_get_raw(cpu_dev->id);
+ if (!policy)
+ return 0;
+
+ data = policy->driver_data;
+
+ for (i = 0; i < data->nr_opp; i++) {
+ if (data->table[i].frequency < *KHz)
+ break;
+ }
+ i--;
+
+ *KHz = data->table[i].frequency;
+ *mW = readl_relaxed(data->reg_bases[REG_EM_POWER_TBL] +
+ i * LUT_ROW_SIZE) / 1000;
+
+ return 0;
+}
+
+static int mtk_cpufreq_hw_target_index(struct cpufreq_policy *policy,
+ unsigned int index)
+{
+ struct mtk_cpufreq_data *data = policy->driver_data;
+
+ writel_relaxed(index, data->reg_bases[REG_FREQ_PERF_STATE]);
+
+ return 0;
+}
+
+static unsigned int mtk_cpufreq_hw_get(unsigned int cpu)
+{
+ struct mtk_cpufreq_data *data;
+ struct cpufreq_policy *policy;
+ unsigned int index;
+
+ policy = cpufreq_cpu_get_raw(cpu);
+ if (!policy)
+ return 0;
+
+ data = policy->driver_data;
+
+ index = readl_relaxed(data->reg_bases[REG_FREQ_PERF_STATE]);
+ index = min(index, LUT_MAX_ENTRIES - 1);
+
+ return data->table[index].frequency;
+}
+
+static unsigned int mtk_cpufreq_hw_fast_switch(struct cpufreq_policy *policy,
+ unsigned int target_freq)
+{
+ struct mtk_cpufreq_data *data = policy->driver_data;
+ unsigned int index;
+
+ index = cpufreq_table_find_index_dl(policy, target_freq);
+
+ writel_relaxed(index, data->reg_bases[REG_FREQ_PERF_STATE]);
+
+ return policy->freq_table[index].frequency;
+}
+
+static int mtk_cpu_create_freq_table(struct platform_device *pdev,
+ struct mtk_cpufreq_data *data)
+{
+ struct device *dev = &pdev->dev;
+ u32 temp, i, freq, prev_freq = 0;
+ void __iomem *base_table;
+
+ data->table = devm_kcalloc(dev, LUT_MAX_ENTRIES + 1,
+ sizeof(*data->table), GFP_KERNEL);
+ if (!data->table)
+ return -ENOMEM;
+
+ base_table = data->reg_bases[REG_FREQ_LUT_TABLE];
+
+ for (i = 0; i < LUT_MAX_ENTRIES; i++) {
+ temp = readl_relaxed(base_table + (i * LUT_ROW_SIZE));
+ freq = FIELD_GET(LUT_FREQ, temp) * 1000;
+
+ if (freq == prev_freq)
+ break;
+
+ data->table[i].frequency = freq;
+
+ dev_dbg(dev, "index=%d freq=%d\n", i, data->table[i].frequency);
+
+ prev_freq = freq;
+ }
+
+ data->table[i].frequency = CPUFREQ_TABLE_END;
+ data->nr_opp = i;
+
+ return 0;
+}
+
+static int mtk_cpu_resources_init(struct platform_device *pdev,
+ struct cpufreq_policy *policy,
+ const u16 *offsets)
+{
+ struct mtk_cpufreq_data *data;
+ struct device *dev = &pdev->dev;
+ void __iomem *base;
+ int ret, i;
+ int index;
+
+ data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
+ if (!data)
+ return -ENOMEM;
+
+ index = of_perf_domain_get_sharing_cpumask(policy->cpu, "performance-domains",
+ "#performance-domain-cells",
+ policy->cpus);
+ if (index < 0)
+ return index;
+
+ base = devm_platform_ioremap_resource(pdev, index);
+ if (IS_ERR(base))
+ return PTR_ERR(base);
+
+ for (i = REG_FREQ_LUT_TABLE; i < REG_ARRAY_SIZE; i++)
+ data->reg_bases[i] = base + offsets[i];
+
+ ret = mtk_cpu_create_freq_table(pdev, data);
+ if (ret) {
+ dev_info(dev, "Domain-%d failed to create freq table\n", index);
+ return ret;
+ }
+
+ policy->freq_table = data->table;
+ policy->driver_data = data;
+
+ return 0;
+}
+
+static int mtk_cpufreq_hw_cpu_init(struct cpufreq_policy *policy)
+{
+ struct platform_device *pdev = cpufreq_get_driver_data();
+ int sig, pwr_hw = CPUFREQ_HW_STATUS | SVS_HW_STATUS;
+ struct mtk_cpufreq_data *data;
+ unsigned int latency;
+ int ret;
+
+ /* Get the bases of cpufreq for domains */
+ ret = mtk_cpu_resources_init(pdev, policy, platform_get_drvdata(pdev));
+ if (ret) {
+ dev_info(&pdev->dev, "CPUFreq resource init failed\n");
+ return ret;
+ }
+
+ data = policy->driver_data;
+
+ latency = readl_relaxed(data->reg_bases[REG_FREQ_LATENCY]) * 1000;
+ if (!latency)
+ latency = CPUFREQ_ETERNAL;
+
+ policy->cpuinfo.transition_latency = latency;
+ policy->fast_switch_possible = true;
+
+ /* HW should be in enabled state to proceed now */
+ writel_relaxed(0x1, data->reg_bases[REG_FREQ_ENABLE]);
+ if (readl_poll_timeout(data->reg_bases[REG_FREQ_HW_STATE], sig,
+ (sig & pwr_hw) == pwr_hw, POLL_USEC,
+ TIMEOUT_USEC)) {
+ if (!(sig & CPUFREQ_HW_STATUS)) {
+ pr_info("cpufreq hardware of CPU%d is not enabled\n",
+ policy->cpu);
+ return -ENODEV;
+ }
+
+ pr_info("SVS of CPU%d is not enabled\n", policy->cpu);
+ }
+
+ return 0;
+}
+
+static int mtk_cpufreq_hw_cpu_exit(struct cpufreq_policy *policy)
+{
+ struct mtk_cpufreq_data *data = policy->driver_data;
+
+ /* HW should be in paused state now */
+ writel_relaxed(0x0, data->reg_bases[REG_FREQ_ENABLE]);
+
+ return 0;
+}
+
+static void mtk_cpufreq_register_em(struct cpufreq_policy *policy)
+{
+ struct em_data_callback em_cb = EM_DATA_CB(mtk_cpufreq_get_cpu_power);
+ struct mtk_cpufreq_data *data = policy->driver_data;
+
+ em_dev_register_perf_domain(get_cpu_device(policy->cpu), data->nr_opp,
+ &em_cb, policy->cpus, true);
+}
+
+static struct cpufreq_driver cpufreq_mtk_hw_driver = {
+ .flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK |
+ CPUFREQ_HAVE_GOVERNOR_PER_POLICY |
+ CPUFREQ_IS_COOLING_DEV,
+ .verify = cpufreq_generic_frequency_table_verify,
+ .target_index = mtk_cpufreq_hw_target_index,
+ .get = mtk_cpufreq_hw_get,
+ .init = mtk_cpufreq_hw_cpu_init,
+ .exit = mtk_cpufreq_hw_cpu_exit,
+ .register_em = mtk_cpufreq_register_em,
+ .fast_switch = mtk_cpufreq_hw_fast_switch,
+ .name = "mtk-cpufreq-hw",
+ .attr = cpufreq_generic_attr,
+};
+
+static int mtk_cpufreq_hw_driver_probe(struct platform_device *pdev)
+{
+ const void *data;
+ int ret;
+
+ data = of_device_get_match_data(&pdev->dev);
+ if (!data)
+ return -EINVAL;
+
+ platform_set_drvdata(pdev, (void *) data);
+ cpufreq_mtk_hw_driver.driver_data = pdev;
+
+ ret = cpufreq_register_driver(&cpufreq_mtk_hw_driver);
+ if (ret)
+ dev_err(&pdev->dev, "CPUFreq HW driver failed to register\n");
+
+ return ret;
+}
+
+static int mtk_cpufreq_hw_driver_remove(struct platform_device *pdev)
+{
+ return cpufreq_unregister_driver(&cpufreq_mtk_hw_driver);
+}
+
+static const struct of_device_id mtk_cpufreq_hw_match[] = {
+ { .compatible = "mediatek,cpufreq-hw", .data = &cpufreq_mtk_offsets },
+ {}
+};
+
+static struct platform_driver mtk_cpufreq_hw_driver = {
+ .probe = mtk_cpufreq_hw_driver_probe,
+ .remove = mtk_cpufreq_hw_driver_remove,
+ .driver = {
+ .name = "mtk-cpufreq-hw",
+ .of_match_table = mtk_cpufreq_hw_match,
+ },
+};
+module_platform_driver(mtk_cpufreq_hw_driver);
+
+MODULE_AUTHOR("Hector Yuan <hector.yuan@mediatek.com>");
+MODULE_DESCRIPTION("Mediatek cpufreq-hw driver");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/cpufreq/mediatek-cpufreq.c b/drivers/cpufreq/mediatek-cpufreq.c
index 87019d5a9547..866163883b48 100644
--- a/drivers/cpufreq/mediatek-cpufreq.c
+++ b/drivers/cpufreq/mediatek-cpufreq.c
@@ -448,8 +448,6 @@ static int mtk_cpufreq_init(struct cpufreq_policy *policy)
policy->driver_data = info;
policy->clk = info->cpu_clk;
- dev_pm_opp_of_register_em(info->cpu_dev, policy->cpus);
-
return 0;
}
@@ -471,6 +469,7 @@ static struct cpufreq_driver mtk_cpufreq_driver = {
.get = cpufreq_generic_get,
.init = mtk_cpufreq_init,
.exit = mtk_cpufreq_exit,
+ .register_em = cpufreq_register_em_with_opp,
.name = "mtk-cpufreq",
.attr = cpufreq_generic_attr,
};
diff --git a/drivers/cpufreq/omap-cpufreq.c b/drivers/cpufreq/omap-cpufreq.c
index e035ee216b0f..1b50df06c6bc 100644
--- a/drivers/cpufreq/omap-cpufreq.c
+++ b/drivers/cpufreq/omap-cpufreq.c
@@ -131,7 +131,6 @@ static int omap_cpu_init(struct cpufreq_policy *policy)
/* FIXME: what's the actual transition time? */
cpufreq_generic_init(policy, freq_table, 300 * 1000);
- dev_pm_opp_of_register_em(mpu_dev, policy->cpus);
return 0;
}
@@ -150,6 +149,7 @@ static struct cpufreq_driver omap_driver = {
.get = cpufreq_generic_get,
.init = omap_cpu_init,
.exit = omap_cpu_exit,
+ .register_em = cpufreq_register_em_with_opp,
.name = "omap",
.attr = cpufreq_generic_attr,
};
diff --git a/drivers/cpufreq/qcom-cpufreq-hw.c b/drivers/cpufreq/qcom-cpufreq-hw.c
index f86859bf76f1..a2be0df7e174 100644
--- a/drivers/cpufreq/qcom-cpufreq-hw.c
+++ b/drivers/cpufreq/qcom-cpufreq-hw.c
@@ -7,12 +7,14 @@
#include <linux/cpufreq.h>
#include <linux/init.h>
#include <linux/interconnect.h>
+#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/of_platform.h>
#include <linux/pm_opp.h>
#include <linux/slab.h>
+#include <linux/spinlock.h>
#define LUT_MAX_ENTRIES 40U
#define LUT_SRC GENMASK(31, 30)
@@ -22,10 +24,13 @@
#define CLK_HW_DIV 2
#define LUT_TURBO_IND 1
+#define HZ_PER_KHZ 1000
+
struct qcom_cpufreq_soc_data {
u32 reg_enable;
u32 reg_freq_lut;
u32 reg_volt_lut;
+ u32 reg_current_vote;
u32 reg_perf_state;
u8 lut_row_size;
};
@@ -34,6 +39,16 @@ struct qcom_cpufreq_data {
void __iomem *base;
struct resource *res;
const struct qcom_cpufreq_soc_data *soc_data;
+
+ /*
+ * Mutex to synchronize between de-init sequence and re-starting LMh
+ * polling/interrupts
+ */
+ struct mutex throttle_lock;
+ int throttle_irq;
+ bool cancel_throttle;
+ struct delayed_work throttle_work;
+ struct cpufreq_policy *policy;
};
static unsigned long cpu_hw_rate, xo_rate;
@@ -251,10 +266,92 @@ static void qcom_get_related_cpus(int index, struct cpumask *m)
}
}
+static unsigned int qcom_lmh_get_throttle_freq(struct qcom_cpufreq_data *data)
+{
+ unsigned int val = readl_relaxed(data->base + data->soc_data->reg_current_vote);
+
+ return (val & 0x3FF) * 19200;
+}
+
+static void qcom_lmh_dcvs_notify(struct qcom_cpufreq_data *data)
+{
+ unsigned long max_capacity, capacity, freq_hz, throttled_freq;
+ struct cpufreq_policy *policy = data->policy;
+ int cpu = cpumask_first(policy->cpus);
+ struct device *dev = get_cpu_device(cpu);
+ struct dev_pm_opp *opp;
+ unsigned int freq;
+
+ /*
+ * Get the h/w throttled frequency, normalize it using the
+ * registered opp table and use it to calculate thermal pressure.
+ */
+ freq = qcom_lmh_get_throttle_freq(data);
+ freq_hz = freq * HZ_PER_KHZ;
+
+ opp = dev_pm_opp_find_freq_floor(dev, &freq_hz);
+ if (IS_ERR(opp) && PTR_ERR(opp) == -ERANGE)
+ dev_pm_opp_find_freq_ceil(dev, &freq_hz);
+
+ throttled_freq = freq_hz / HZ_PER_KHZ;
+
+ /* Update thermal pressure */
+
+ max_capacity = arch_scale_cpu_capacity(cpu);
+ capacity = mult_frac(max_capacity, throttled_freq, policy->cpuinfo.max_freq);
+
+ /* Don't pass boost capacity to scheduler */
+ if (capacity > max_capacity)
+ capacity = max_capacity;
+
+ arch_set_thermal_pressure(policy->cpus, max_capacity - capacity);
+
+ /*
+ * In the unlikely case policy is unregistered do not enable
+ * polling or h/w interrupt
+ */
+ mutex_lock(&data->throttle_lock);
+ if (data->cancel_throttle)
+ goto out;
+
+ /*
+ * If h/w throttled frequency is higher than what cpufreq has requested
+ * for, then stop polling and switch back to interrupt mechanism.
+ */
+ if (throttled_freq >= qcom_cpufreq_hw_get(cpu))
+ enable_irq(data->throttle_irq);
+ else
+ mod_delayed_work(system_highpri_wq, &data->throttle_work,
+ msecs_to_jiffies(10));
+
+out:
+ mutex_unlock(&data->throttle_lock);
+}
+
+static void qcom_lmh_dcvs_poll(struct work_struct *work)
+{
+ struct qcom_cpufreq_data *data;
+
+ data = container_of(work, struct qcom_cpufreq_data, throttle_work.work);
+ qcom_lmh_dcvs_notify(data);
+}
+
+static irqreturn_t qcom_lmh_dcvs_handle_irq(int irq, void *data)
+{
+ struct qcom_cpufreq_data *c_data = data;
+
+ /* Disable interrupt and enable polling */
+ disable_irq_nosync(c_data->throttle_irq);
+ qcom_lmh_dcvs_notify(c_data);
+
+ return 0;
+}
+
static const struct qcom_cpufreq_soc_data qcom_soc_data = {
.reg_enable = 0x0,
.reg_freq_lut = 0x110,
.reg_volt_lut = 0x114,
+ .reg_current_vote = 0x704,
.reg_perf_state = 0x920,
.lut_row_size = 32,
};
@@ -274,6 +371,51 @@ static const struct of_device_id qcom_cpufreq_hw_match[] = {
};
MODULE_DEVICE_TABLE(of, qcom_cpufreq_hw_match);
+static int qcom_cpufreq_hw_lmh_init(struct cpufreq_policy *policy, int index)
+{
+ struct qcom_cpufreq_data *data = policy->driver_data;
+ struct platform_device *pdev = cpufreq_get_driver_data();
+ char irq_name[15];
+ int ret;
+
+ /*
+ * Look for LMh interrupt. If no interrupt line is specified /
+ * if there is an error, allow cpufreq to be enabled as usual.
+ */
+ data->throttle_irq = platform_get_irq(pdev, index);
+ if (data->throttle_irq <= 0)
+ return data->throttle_irq == -EPROBE_DEFER ? -EPROBE_DEFER : 0;
+
+ data->cancel_throttle = false;
+ data->policy = policy;
+
+ mutex_init(&data->throttle_lock);
+ INIT_DEFERRABLE_WORK(&data->throttle_work, qcom_lmh_dcvs_poll);
+
+ snprintf(irq_name, sizeof(irq_name), "dcvsh-irq-%u", policy->cpu);
+ ret = request_threaded_irq(data->throttle_irq, NULL, qcom_lmh_dcvs_handle_irq,
+ IRQF_ONESHOT, irq_name, data);
+ if (ret) {
+ dev_err(&pdev->dev, "Error registering %s: %d\n", irq_name, ret);
+ return 0;
+ }
+
+ return 0;
+}
+
+static void qcom_cpufreq_hw_lmh_exit(struct qcom_cpufreq_data *data)
+{
+ if (data->throttle_irq <= 0)
+ return;
+
+ mutex_lock(&data->throttle_lock);
+ data->cancel_throttle = true;
+ mutex_unlock(&data->throttle_lock);
+
+ cancel_delayed_work_sync(&data->throttle_work);
+ free_irq(data->throttle_irq, data);
+}
+
static int qcom_cpufreq_hw_cpu_init(struct cpufreq_policy *policy)
{
struct platform_device *pdev = cpufreq_get_driver_data();
@@ -348,6 +490,7 @@ static int qcom_cpufreq_hw_cpu_init(struct cpufreq_policy *policy)
}
policy->driver_data = data;
+ policy->dvfs_possible_from_any_cpu = true;
ret = qcom_cpufreq_hw_read_lut(cpu_dev, policy);
if (ret) {
@@ -362,14 +505,16 @@ static int qcom_cpufreq_hw_cpu_init(struct cpufreq_policy *policy)
goto error;
}
- dev_pm_opp_of_register_em(cpu_dev, policy->cpus);
-
if (policy_has_boost_freq(policy)) {
ret = cpufreq_enable_boost_support();
if (ret)
dev_warn(cpu_dev, "failed to enable boost: %d\n", ret);
}
+ ret = qcom_cpufreq_hw_lmh_init(policy, index);
+ if (ret)
+ goto error;
+
return 0;
error:
kfree(data);
@@ -389,6 +534,7 @@ static int qcom_cpufreq_hw_cpu_exit(struct cpufreq_policy *policy)
dev_pm_opp_remove_all_dynamic(cpu_dev);
dev_pm_opp_of_cpumask_remove_table(policy->related_cpus);
+ qcom_cpufreq_hw_lmh_exit(data);
kfree(policy->freq_table);
kfree(data);
iounmap(base);
@@ -412,6 +558,7 @@ static struct cpufreq_driver cpufreq_qcom_hw_driver = {
.get = qcom_cpufreq_hw_get,
.init = qcom_cpufreq_hw_cpu_init,
.exit = qcom_cpufreq_hw_cpu_exit,
+ .register_em = cpufreq_register_em_with_opp,
.fast_switch = qcom_cpufreq_hw_fast_switch,
.name = "qcom-cpufreq-hw",
.attr = qcom_cpufreq_hw_attr,
diff --git a/drivers/cpufreq/scmi-cpufreq.c b/drivers/cpufreq/scmi-cpufreq.c
index 75f818d04b48..1e0cd4d165f0 100644
--- a/drivers/cpufreq/scmi-cpufreq.c
+++ b/drivers/cpufreq/scmi-cpufreq.c
@@ -22,7 +22,9 @@
struct scmi_data {
int domain_id;
+ int nr_opp;
struct device *cpu_dev;
+ cpumask_var_t opp_shared_cpus;
};
static struct scmi_protocol_handle *ph;
@@ -123,9 +125,6 @@ static int scmi_cpufreq_init(struct cpufreq_policy *policy)
struct device *cpu_dev;
struct scmi_data *priv;
struct cpufreq_frequency_table *freq_table;
- struct em_data_callback em_cb = EM_DATA_CB(scmi_get_cpu_power);
- cpumask_var_t opp_shared_cpus;
- bool power_scale_mw;
cpu_dev = get_cpu_device(policy->cpu);
if (!cpu_dev) {
@@ -133,9 +132,15 @@ static int scmi_cpufreq_init(struct cpufreq_policy *policy)
return -ENODEV;
}
- if (!zalloc_cpumask_var(&opp_shared_cpus, GFP_KERNEL))
+ priv = kzalloc(sizeof(*priv), GFP_KERNEL);
+ if (!priv)
return -ENOMEM;
+ if (!zalloc_cpumask_var(&priv->opp_shared_cpus, GFP_KERNEL)) {
+ ret = -ENOMEM;
+ goto out_free_priv;
+ }
+
/* Obtain CPUs that share SCMI performance controls */
ret = scmi_get_sharing_cpus(cpu_dev, policy->cpus);
if (ret) {
@@ -148,14 +153,14 @@ static int scmi_cpufreq_init(struct cpufreq_policy *policy)
* The OPP 'sharing cpus' info may come from DT through an empty opp
* table and opp-shared.
*/
- ret = dev_pm_opp_of_get_sharing_cpus(cpu_dev, opp_shared_cpus);
- if (ret || !cpumask_weight(opp_shared_cpus)) {
+ ret = dev_pm_opp_of_get_sharing_cpus(cpu_dev, priv->opp_shared_cpus);
+ if (ret || !cpumask_weight(priv->opp_shared_cpus)) {
/*
* Either opp-table is not set or no opp-shared was found.
* Use the CPU mask from SCMI to designate CPUs sharing an OPP
* table.
*/
- cpumask_copy(opp_shared_cpus, policy->cpus);
+ cpumask_copy(priv->opp_shared_cpus, policy->cpus);
}
/*
@@ -180,7 +185,7 @@ static int scmi_cpufreq_init(struct cpufreq_policy *policy)
goto out_free_opp;
}
- ret = dev_pm_opp_set_sharing_cpus(cpu_dev, opp_shared_cpus);
+ ret = dev_pm_opp_set_sharing_cpus(cpu_dev, priv->opp_shared_cpus);
if (ret) {
dev_err(cpu_dev, "%s: failed to mark OPPs as shared: %d\n",
__func__, ret);
@@ -188,21 +193,13 @@ static int scmi_cpufreq_init(struct cpufreq_policy *policy)
goto out_free_opp;
}
- power_scale_mw = perf_ops->power_scale_mw_get(ph);
- em_dev_register_perf_domain(cpu_dev, nr_opp, &em_cb,
- opp_shared_cpus, power_scale_mw);
- }
-
- priv = kzalloc(sizeof(*priv), GFP_KERNEL);
- if (!priv) {
- ret = -ENOMEM;
- goto out_free_opp;
+ priv->nr_opp = nr_opp;
}
ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
if (ret) {
dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
- goto out_free_priv;
+ goto out_free_opp;
}
priv->cpu_dev = cpu_dev;
@@ -223,17 +220,16 @@ static int scmi_cpufreq_init(struct cpufreq_policy *policy)
policy->fast_switch_possible =
perf_ops->fast_switch_possible(ph, cpu_dev);
- free_cpumask_var(opp_shared_cpus);
return 0;
-out_free_priv:
- kfree(priv);
-
out_free_opp:
dev_pm_opp_remove_all_dynamic(cpu_dev);
out_free_cpumask:
- free_cpumask_var(opp_shared_cpus);
+ free_cpumask_var(priv->opp_shared_cpus);
+
+out_free_priv:
+ kfree(priv);
return ret;
}
@@ -244,11 +240,33 @@ static int scmi_cpufreq_exit(struct cpufreq_policy *policy)
dev_pm_opp_free_cpufreq_table(priv->cpu_dev, &policy->freq_table);
dev_pm_opp_remove_all_dynamic(priv->cpu_dev);
+ free_cpumask_var(priv->opp_shared_cpus);
kfree(priv);
return 0;
}
+static void scmi_cpufreq_register_em(struct cpufreq_policy *policy)
+{
+ struct em_data_callback em_cb = EM_DATA_CB(scmi_get_cpu_power);
+ bool power_scale_mw = perf_ops->power_scale_mw_get(ph);
+ struct scmi_data *priv = policy->driver_data;
+
+ /*
+ * This callback will be called for each policy, but we don't need to
+ * register with EM every time. Despite not being part of the same
+ * policy, some CPUs may still share their perf-domains, and a CPU from
+ * another policy may already have registered with EM on behalf of CPUs
+ * of this policy.
+ */
+ if (!priv->nr_opp)
+ return;
+
+ em_dev_register_perf_domain(get_cpu_device(policy->cpu), priv->nr_opp,
+ &em_cb, priv->opp_shared_cpus,
+ power_scale_mw);
+}
+
static struct cpufreq_driver scmi_cpufreq_driver = {
.name = "scmi",
.flags = CPUFREQ_HAVE_GOVERNOR_PER_POLICY |
@@ -261,6 +279,7 @@ static struct cpufreq_driver scmi_cpufreq_driver = {
.get = scmi_cpufreq_get_rate,
.init = scmi_cpufreq_init,
.exit = scmi_cpufreq_exit,
+ .register_em = scmi_cpufreq_register_em,
};
static int scmi_cpufreq_probe(struct scmi_device *sdev)
diff --git a/drivers/cpufreq/scpi-cpufreq.c b/drivers/cpufreq/scpi-cpufreq.c
index d6a698a1b5d1..bda3e7d42964 100644
--- a/drivers/cpufreq/scpi-cpufreq.c
+++ b/drivers/cpufreq/scpi-cpufreq.c
@@ -163,8 +163,6 @@ static int scpi_cpufreq_init(struct cpufreq_policy *policy)
policy->fast_switch_possible = false;
- dev_pm_opp_of_register_em(cpu_dev, policy->cpus);
-
return 0;
out_free_cpufreq_table:
@@ -200,6 +198,7 @@ static struct cpufreq_driver scpi_cpufreq_driver = {
.init = scpi_cpufreq_init,
.exit = scpi_cpufreq_exit,
.target_index = scpi_cpufreq_set_target,
+ .register_em = cpufreq_register_em_with_opp,
};
static int scpi_cpufreq_probe(struct platform_device *pdev)
diff --git a/drivers/cpufreq/sh-cpufreq.c b/drivers/cpufreq/sh-cpufreq.c
index 1a251e635ebd..b8704232c27b 100644
--- a/drivers/cpufreq/sh-cpufreq.c
+++ b/drivers/cpufreq/sh-cpufreq.c
@@ -145,16 +145,6 @@ static int sh_cpufreq_cpu_exit(struct cpufreq_policy *policy)
return 0;
}
-static void sh_cpufreq_cpu_ready(struct cpufreq_policy *policy)
-{
- struct device *dev = get_cpu_device(policy->cpu);
-
- dev_info(dev, "CPU Frequencies - Minimum %u.%03u MHz, "
- "Maximum %u.%03u MHz.\n",
- policy->min / 1000, policy->min % 1000,
- policy->max / 1000, policy->max % 1000);
-}
-
static struct cpufreq_driver sh_cpufreq_driver = {
.name = "sh",
.flags = CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING,
@@ -163,7 +153,6 @@ static struct cpufreq_driver sh_cpufreq_driver = {
.verify = sh_cpufreq_verify,
.init = sh_cpufreq_cpu_init,
.exit = sh_cpufreq_cpu_exit,
- .ready = sh_cpufreq_cpu_ready,
.attr = cpufreq_generic_attr,
};
diff --git a/drivers/cpufreq/vexpress-spc-cpufreq.c b/drivers/cpufreq/vexpress-spc-cpufreq.c
index 51dfa9ae6cf5..284b6bd040b1 100644
--- a/drivers/cpufreq/vexpress-spc-cpufreq.c
+++ b/drivers/cpufreq/vexpress-spc-cpufreq.c
@@ -15,7 +15,6 @@
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/cpumask.h>
-#include <linux/cpu_cooling.h>
#include <linux/device.h>
#include <linux/module.h>
#include <linux/mutex.h>
@@ -47,7 +46,6 @@ static bool bL_switching_enabled;
#define ACTUAL_FREQ(cluster, freq) ((cluster == A7_CLUSTER) ? freq << 1 : freq)
#define VIRT_FREQ(cluster, freq) ((cluster == A7_CLUSTER) ? freq >> 1 : freq)
-static struct thermal_cooling_device *cdev[MAX_CLUSTERS];
static struct clk *clk[MAX_CLUSTERS];
static struct cpufreq_frequency_table *freq_table[MAX_CLUSTERS + 1];
static atomic_t cluster_usage[MAX_CLUSTERS + 1];
@@ -442,8 +440,6 @@ static int ve_spc_cpufreq_init(struct cpufreq_policy *policy)
policy->freq_table = freq_table[cur_cluster];
policy->cpuinfo.transition_latency = 1000000; /* 1 ms */
- dev_pm_opp_of_register_em(cpu_dev, policy->cpus);
-
if (is_bL_switching_enabled())
per_cpu(cpu_last_req_freq, policy->cpu) =
clk_get_cpu_rate(policy->cpu);
@@ -457,11 +453,6 @@ static int ve_spc_cpufreq_exit(struct cpufreq_policy *policy)
struct device *cpu_dev;
int cur_cluster = cpu_to_cluster(policy->cpu);
- if (cur_cluster < MAX_CLUSTERS) {
- cpufreq_cooling_unregister(cdev[cur_cluster]);
- cdev[cur_cluster] = NULL;
- }
-
cpu_dev = get_cpu_device(policy->cpu);
if (!cpu_dev) {
pr_err("%s: failed to get cpu%d device\n", __func__,
@@ -473,17 +464,6 @@ static int ve_spc_cpufreq_exit(struct cpufreq_policy *policy)
return 0;
}
-static void ve_spc_cpufreq_ready(struct cpufreq_policy *policy)
-{
- int cur_cluster = cpu_to_cluster(policy->cpu);
-
- /* Do not register a cpu_cooling device if we are in IKS mode */
- if (cur_cluster >= MAX_CLUSTERS)
- return;
-
- cdev[cur_cluster] = of_cpufreq_cooling_register(policy);
-}
-
static struct cpufreq_driver ve_spc_cpufreq_driver = {
.name = "vexpress-spc",
.flags = CPUFREQ_HAVE_GOVERNOR_PER_POLICY |
@@ -493,7 +473,7 @@ static struct cpufreq_driver ve_spc_cpufreq_driver = {
.get = ve_spc_cpufreq_get_rate,
.init = ve_spc_cpufreq_init,
.exit = ve_spc_cpufreq_exit,
- .ready = ve_spc_cpufreq_ready,
+ .register_em = cpufreq_register_em_with_opp,
.attr = cpufreq_generic_attr,
};
@@ -553,6 +533,9 @@ static int ve_spc_cpufreq_probe(struct platform_device *pdev)
for (i = 0; i < MAX_CLUSTERS; i++)
mutex_init(&cluster_lock[i]);
+ if (!is_bL_switching_enabled())
+ ve_spc_cpufreq_driver.flags |= CPUFREQ_IS_COOLING_DEV;
+
ret = cpufreq_register_driver(&ve_spc_cpufreq_driver);
if (ret) {
pr_info("%s: Failed registering platform driver: %s, err: %d\n",
diff --git a/include/linux/cpufreq.h b/include/linux/cpufreq.h
index 9fd719475fcd..ff88bb3e44fc 100644
--- a/include/linux/cpufreq.h
+++ b/include/linux/cpufreq.h
@@ -9,10 +9,14 @@
#define _LINUX_CPUFREQ_H
#include <linux/clk.h>
+#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/completion.h>
#include <linux/kobject.h>
#include <linux/notifier.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/pm_opp.h>
#include <linux/pm_qos.h>
#include <linux/spinlock.h>
#include <linux/sysfs.h>
@@ -365,14 +369,17 @@ struct cpufreq_driver {
int (*suspend)(struct cpufreq_policy *policy);
int (*resume)(struct cpufreq_policy *policy);
- /* Will be called after the driver is fully initialized */
- void (*ready)(struct cpufreq_policy *policy);
-
struct freq_attr **attr;
/* platform specific boost support code */
bool boost_enabled;
int (*set_boost)(struct cpufreq_policy *policy, int state);
+
+ /*
+ * Set by drivers that want to register with the energy model after the
+ * policy is properly initialized, but before the governor is started.
+ */
+ void (*register_em)(struct cpufreq_policy *policy);
};
/* flags */
@@ -995,6 +1002,55 @@ static inline int cpufreq_table_count_valid_entries(const struct cpufreq_policy
return count;
}
+
+static inline int parse_perf_domain(int cpu, const char *list_name,
+ const char *cell_name)
+{
+ struct device_node *cpu_np;
+ struct of_phandle_args args;
+ int ret;
+
+ cpu_np = of_cpu_device_node_get(cpu);
+ if (!cpu_np)
+ return -ENODEV;
+
+ ret = of_parse_phandle_with_args(cpu_np, list_name, cell_name, 0,
+ &args);
+ if (ret < 0)
+ return ret;
+
+ of_node_put(cpu_np);
+
+ return args.args[0];
+}
+
+static inline int of_perf_domain_get_sharing_cpumask(int pcpu, const char *list_name,
+ const char *cell_name, struct cpumask *cpumask)
+{
+ int target_idx;
+ int cpu, ret;
+
+ ret = parse_perf_domain(pcpu, list_name, cell_name);
+ if (ret < 0)
+ return ret;
+
+ target_idx = ret;
+ cpumask_set_cpu(pcpu, cpumask);
+
+ for_each_possible_cpu(cpu) {
+ if (cpu == pcpu)
+ continue;
+
+ ret = parse_perf_domain(pcpu, list_name, cell_name);
+ if (ret < 0)
+ continue;
+
+ if (target_idx == ret)
+ cpumask_set_cpu(cpu, cpumask);
+ }
+
+ return target_idx;
+}
#else
static inline int cpufreq_boost_trigger_state(int state)
{
@@ -1014,6 +1070,12 @@ static inline bool policy_has_boost_freq(struct cpufreq_policy *policy)
{
return false;
}
+
+static inline int of_perf_domain_get_sharing_cpumask(int pcpu, const char *list_name,
+ const char *cell_name, struct cpumask *cpumask)
+{
+ return -EOPNOTSUPP;
+}
#endif
#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
@@ -1035,7 +1097,6 @@ void arch_set_freq_scale(const struct cpumask *cpus,
{
}
#endif
-
/* the following are really really optional */
extern struct freq_attr cpufreq_freq_attr_scaling_available_freqs;
extern struct freq_attr cpufreq_freq_attr_scaling_boost_freqs;
@@ -1046,4 +1107,10 @@ unsigned int cpufreq_generic_get(unsigned int cpu);
void cpufreq_generic_init(struct cpufreq_policy *policy,
struct cpufreq_frequency_table *table,
unsigned int transition_latency);
+
+static inline void cpufreq_register_em_with_opp(struct cpufreq_policy *policy)
+{
+ dev_pm_opp_of_register_em(get_cpu_device(policy->cpu),
+ policy->related_cpus);
+}
#endif /* _LINUX_CPUFREQ_H */