diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2020-08-07 11:39:33 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2020-08-07 11:39:33 -0700 |
commit | 81e11336d97e7a4c25a65c302ef2bf9cd9808ed4 (patch) | |
tree | 44e069e0bb26068137a1bda7ca5125c5b068b4ab /mm | |
parent | 5631c5e0eb9035d92ceb20fcd9cdb7779a3f5cc7 (diff) | |
parent | 912c05720f00d039103d356a59c37dc7c3995e01 (diff) |
Merge branch 'akpm' (patches from Andrew)
Merge misc updates from Andrew Morton:
- a few MM hotfixes
- kthread, tools, scripts, ntfs and ocfs2
- some of MM
Subsystems affected by this patch series: kthread, tools, scripts, ntfs,
ocfs2 and mm (hofixes, pagealloc, slab-generic, slab, slub, kcsan,
debug, pagecache, gup, swap, shmem, memcg, pagemap, mremap, mincore,
sparsemem, vmalloc, kasan, pagealloc, hugetlb and vmscan).
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (162 commits)
mm: vmscan: consistent update to pgrefill
mm/vmscan.c: fix typo
khugepaged: khugepaged_test_exit() check mmget_still_valid()
khugepaged: retract_page_tables() remember to test exit
khugepaged: collapse_pte_mapped_thp() protect the pmd lock
khugepaged: collapse_pte_mapped_thp() flush the right range
mm/hugetlb: fix calculation of adjust_range_if_pmd_sharing_possible
mm: thp: replace HTTP links with HTTPS ones
mm/page_alloc: fix memalloc_nocma_{save/restore} APIs
mm/page_alloc.c: skip setting nodemask when we are in interrupt
mm/page_alloc: fallbacks at most has 3 elements
mm/page_alloc: silence a KASAN false positive
mm/page_alloc.c: remove unnecessary end_bitidx for [set|get]_pfnblock_flags_mask()
mm/page_alloc.c: simplify pageblock bitmap access
mm/page_alloc.c: extract the common part in pfn_to_bitidx()
mm/page_alloc.c: replace the definition of NR_MIGRATETYPE_BITS with PB_migratetype_bits
mm/shuffle: remove dynamic reconfiguration
mm/memory_hotplug: document why shuffle_zone() is relevant
mm/page_alloc: remove nr_free_pagecache_pages()
mm: remove vm_total_pages
...
Diffstat (limited to 'mm')
48 files changed, 2704 insertions, 2257 deletions
diff --git a/mm/Kconfig b/mm/Kconfig index d41f3fa7e923..6c974888f86f 100644 --- a/mm/Kconfig +++ b/mm/Kconfig @@ -88,13 +88,9 @@ config NEED_MULTIPLE_NODES def_bool y depends on DISCONTIGMEM || NUMA -config HAVE_MEMORY_PRESENT - def_bool y - depends on ARCH_HAVE_MEMORY_PRESENT || SPARSEMEM - # # SPARSEMEM_EXTREME (which is the default) does some bootmem -# allocations when memory_present() is called. If this cannot +# allocations when sparse_init() is called. If this cannot # be done on your architecture, select this option. However, # statically allocating the mem_section[] array can potentially # consume vast quantities of .bss, so be careful. diff --git a/mm/Makefile b/mm/Makefile index 6e9d46b2efc9..d5649f1c12c0 100644 --- a/mm/Makefile +++ b/mm/Makefile @@ -38,7 +38,7 @@ mmu-y := nommu.o mmu-$(CONFIG_MMU) := highmem.o memory.o mincore.o \ mlock.o mmap.o mmu_gather.o mprotect.o mremap.o \ msync.o page_vma_mapped.o pagewalk.o \ - pgtable-generic.o rmap.o vmalloc.o + pgtable-generic.o rmap.o vmalloc.o ioremap.o ifdef CONFIG_CROSS_MEMORY_ATTACH diff --git a/mm/debug.c b/mm/debug.c index 4f376514744d..ca8d1cacdecc 100644 --- a/mm/debug.c +++ b/mm/debug.c @@ -69,8 +69,19 @@ void __dump_page(struct page *page, const char *reason) } if (page < head || (page >= head + MAX_ORDER_NR_PAGES)) { - /* Corrupt page, cannot call page_mapping */ - mapping = page->mapping; + /* + * Corrupt page, so we cannot call page_mapping. Instead, do a + * safe subset of the steps that page_mapping() does. Caution: + * this will be misleading for tail pages, PageSwapCache pages, + * and potentially other situations. (See the page_mapping() + * implementation for what's missing here.) + */ + unsigned long tmp = (unsigned long)page->mapping; + + if (tmp & PAGE_MAPPING_ANON) + mapping = NULL; + else + mapping = (void *)(tmp & ~PAGE_MAPPING_FLAGS); head = page; compound = false; } else { @@ -84,86 +95,76 @@ void __dump_page(struct page *page, const char *reason) */ mapcount = PageSlab(head) ? 0 : page_mapcount(page); - if (compound) + pr_warn("page:%p refcount:%d mapcount:%d mapping:%p index:%#lx pfn:%#lx\n", + page, page_ref_count(head), mapcount, mapping, + page_to_pgoff(page), page_to_pfn(page)); + if (compound) { if (hpage_pincount_available(page)) { - pr_warn("page:%px refcount:%d mapcount:%d mapping:%p " - "index:%#lx head:%px order:%u " - "compound_mapcount:%d compound_pincount:%d\n", - page, page_ref_count(head), mapcount, - mapping, page_to_pgoff(page), head, - compound_order(head), compound_mapcount(page), - compound_pincount(page)); + pr_warn("head:%p order:%u compound_mapcount:%d compound_pincount:%d\n", + head, compound_order(head), + head_mapcount(head), + head_pincount(head)); } else { - pr_warn("page:%px refcount:%d mapcount:%d mapping:%p " - "index:%#lx head:%px order:%u " - "compound_mapcount:%d\n", - page, page_ref_count(head), mapcount, - mapping, page_to_pgoff(page), head, - compound_order(head), compound_mapcount(page)); + pr_warn("head:%p order:%u compound_mapcount:%d\n", + head, compound_order(head), + head_mapcount(head)); } - else - pr_warn("page:%px refcount:%d mapcount:%d mapping:%p index:%#lx\n", - page, page_ref_count(page), mapcount, - mapping, page_to_pgoff(page)); + } if (PageKsm(page)) type = "ksm "; else if (PageAnon(page)) type = "anon "; else if (mapping) { - const struct inode *host; + struct inode *host; const struct address_space_operations *a_ops; - const struct hlist_node *dentry_first; - const struct dentry *dentry_ptr; + struct hlist_node *dentry_first; + struct dentry *dentry_ptr; struct dentry dentry; /* * mapping can be invalid pointer and we don't want to crash * accessing it, so probe everything depending on it carefully */ - if (copy_from_kernel_nofault(&host, &mapping->host, - sizeof(struct inode *)) || - copy_from_kernel_nofault(&a_ops, &mapping->a_ops, - sizeof(struct address_space_operations *))) { - pr_warn("failed to read mapping->host or a_ops, mapping not a valid kernel address?\n"); + if (get_kernel_nofault(host, &mapping->host) || + get_kernel_nofault(a_ops, &mapping->a_ops)) { + pr_warn("failed to read mapping contents, not a valid kernel address?\n"); goto out_mapping; } if (!host) { - pr_warn("mapping->a_ops:%ps\n", a_ops); + pr_warn("aops:%ps\n", a_ops); goto out_mapping; } - if (copy_from_kernel_nofault(&dentry_first, - &host->i_dentry.first, sizeof(struct hlist_node *))) { - pr_warn("mapping->a_ops:%ps with invalid mapping->host inode address %px\n", - a_ops, host); + if (get_kernel_nofault(dentry_first, &host->i_dentry.first)) { + pr_warn("aops:%ps with invalid host inode %px\n", + a_ops, host); goto out_mapping; } if (!dentry_first) { - pr_warn("mapping->a_ops:%ps\n", a_ops); + pr_warn("aops:%ps ino:%lx\n", a_ops, host->i_ino); goto out_mapping; } dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias); - if (copy_from_kernel_nofault(&dentry, dentry_ptr, - sizeof(struct dentry))) { - pr_warn("mapping->aops:%ps with invalid mapping->host->i_dentry.first %px\n", - a_ops, dentry_ptr); + if (get_kernel_nofault(dentry, dentry_ptr)) { + pr_warn("aops:%ps with invalid dentry %px\n", a_ops, + dentry_ptr); } else { /* * if dentry is corrupted, the %pd handler may still * crash, but it's unlikely that we reach here with a * corrupted struct page */ - pr_warn("mapping->aops:%ps dentry name:\"%pd\"\n", - a_ops, &dentry); + pr_warn("aops:%ps ino:%lx dentry name:\"%pd\"\n", + a_ops, host->i_ino, &dentry); } } out_mapping: BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS + 1); - pr_warn("%sflags: %#lx(%pGp)%s\n", type, page->flags, &page->flags, + pr_warn("%sflags: %#lx(%pGp)%s\n", type, head->flags, &head->flags, page_cma ? " CMA" : ""); hex_only: diff --git a/mm/debug_vm_pgtable.c b/mm/debug_vm_pgtable.c index d315ff544f05..086309fb9b6f 100644 --- a/mm/debug_vm_pgtable.c +++ b/mm/debug_vm_pgtable.c @@ -8,7 +8,7 @@ * * Author: Anshuman Khandual <anshuman.khandual@arm.com> */ -#define pr_fmt(fmt) "debug_vm_pgtable: %s: " fmt, __func__ +#define pr_fmt(fmt) "debug_vm_pgtable: [%-25s]: " fmt, __func__ #include <linux/gfp.h> #include <linux/highmem.h> @@ -21,6 +21,7 @@ #include <linux/module.h> #include <linux/pfn_t.h> #include <linux/printk.h> +#include <linux/pgtable.h> #include <linux/random.h> #include <linux/spinlock.h> #include <linux/swap.h> @@ -28,6 +29,13 @@ #include <linux/start_kernel.h> #include <linux/sched/mm.h> #include <asm/pgalloc.h> +#include <asm/tlbflush.h> + +/* + * Please refer Documentation/vm/arch_pgtable_helpers.rst for the semantics + * expectations that are being validated here. All future changes in here + * or the documentation need to be in sync. + */ #define VMFLAGS (VM_READ|VM_WRITE|VM_EXEC) @@ -46,6 +54,7 @@ static void __init pte_basic_tests(unsigned long pfn, pgprot_t prot) { pte_t pte = pfn_pte(pfn, prot); + pr_debug("Validating PTE basic\n"); WARN_ON(!pte_same(pte, pte)); WARN_ON(!pte_young(pte_mkyoung(pte_mkold(pte)))); WARN_ON(!pte_dirty(pte_mkdirty(pte_mkclean(pte)))); @@ -55,6 +64,57 @@ static void __init pte_basic_tests(unsigned long pfn, pgprot_t prot) WARN_ON(pte_write(pte_wrprotect(pte_mkwrite(pte)))); } +static void __init pte_advanced_tests(struct mm_struct *mm, + struct vm_area_struct *vma, pte_t *ptep, + unsigned long pfn, unsigned long vaddr, + pgprot_t prot) +{ + pte_t pte = pfn_pte(pfn, prot); + + pr_debug("Validating PTE advanced\n"); + pte = pfn_pte(pfn, prot); + set_pte_at(mm, vaddr, ptep, pte); + ptep_set_wrprotect(mm, vaddr, ptep); + pte = ptep_get(ptep); + WARN_ON(pte_write(pte)); + + pte = pfn_pte(pfn, prot); + set_pte_at(mm, vaddr, ptep, pte); + ptep_get_and_clear(mm, vaddr, ptep); + pte = ptep_get(ptep); + WARN_ON(!pte_none(pte)); + + pte = pfn_pte(pfn, prot); + pte = pte_wrprotect(pte); + pte = pte_mkclean(pte); + set_pte_at(mm, vaddr, ptep, pte); + pte = pte_mkwrite(pte); + pte = pte_mkdirty(pte); + ptep_set_access_flags(vma, vaddr, ptep, pte, 1); + pte = ptep_get(ptep); + WARN_ON(!(pte_write(pte) && pte_dirty(pte))); + + pte = pfn_pte(pfn, prot); + set_pte_at(mm, vaddr, ptep, pte); + ptep_get_and_clear_full(mm, vaddr, ptep, 1); + pte = ptep_get(ptep); + WARN_ON(!pte_none(pte)); + + pte = pte_mkyoung(pte); + set_pte_at(mm, vaddr, ptep, pte); + ptep_test_and_clear_young(vma, vaddr, ptep); + pte = ptep_get(ptep); + WARN_ON(pte_young(pte)); +} + +static void __init pte_savedwrite_tests(unsigned long pfn, pgprot_t prot) +{ + pte_t pte = pfn_pte(pfn, prot); + + pr_debug("Validating PTE saved write\n"); + WARN_ON(!pte_savedwrite(pte_mk_savedwrite(pte_clear_savedwrite(pte)))); + WARN_ON(pte_savedwrite(pte_clear_savedwrite(pte_mk_savedwrite(pte)))); +} #ifdef CONFIG_TRANSPARENT_HUGEPAGE static void __init pmd_basic_tests(unsigned long pfn, pgprot_t prot) { @@ -63,6 +123,7 @@ static void __init pmd_basic_tests(unsigned long pfn, pgprot_t prot) if (!has_transparent_hugepage()) return; + pr_debug("Validating PMD basic\n"); WARN_ON(!pmd_same(pmd, pmd)); WARN_ON(!pmd_young(pmd_mkyoung(pmd_mkold(pmd)))); WARN_ON(!pmd_dirty(pmd_mkdirty(pmd_mkclean(pmd)))); @@ -77,6 +138,95 @@ static void __init pmd_basic_tests(unsigned long pfn, pgprot_t prot) WARN_ON(!pmd_bad(pmd_mkhuge(pmd))); } +static void __init pmd_advanced_tests(struct mm_struct *mm, + struct vm_area_struct *vma, pmd_t *pmdp, + unsigned long pfn, unsigned long vaddr, + pgprot_t prot) +{ + pmd_t pmd = pfn_pmd(pfn, prot); + + if (!has_transparent_hugepage()) + return; + + pr_debug("Validating PMD advanced\n"); + /* Align the address wrt HPAGE_PMD_SIZE */ + vaddr = (vaddr & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE; + + pmd = pfn_pmd(pfn, prot); + set_pmd_at(mm, vaddr, pmdp, pmd); + pmdp_set_wrprotect(mm, vaddr, pmdp); + pmd = READ_ONCE(*pmdp); + WARN_ON(pmd_write(pmd)); + + pmd = pfn_pmd(pfn, prot); + set_pmd_at(mm, vaddr, pmdp, pmd); + pmdp_huge_get_and_clear(mm, vaddr, pmdp); + pmd = READ_ONCE(*pmdp); + WARN_ON(!pmd_none(pmd)); + + pmd = pfn_pmd(pfn, prot); + pmd = pmd_wrprotect(pmd); + pmd = pmd_mkclean(pmd); + set_pmd_at(mm, vaddr, pmdp, pmd); + pmd = pmd_mkwrite(pmd); + pmd = pmd_mkdirty(pmd); + pmdp_set_access_flags(vma, vaddr, pmdp, pmd, 1); + pmd = READ_ONCE(*pmdp); + WARN_ON(!(pmd_write(pmd) && pmd_dirty(pmd))); + + pmd = pmd_mkhuge(pfn_pmd(pfn, prot)); + set_pmd_at(mm, vaddr, pmdp, pmd); + pmdp_huge_get_and_clear_full(vma, vaddr, pmdp, 1); + pmd = READ_ONCE(*pmdp); + WARN_ON(!pmd_none(pmd)); + + pmd = pmd_mkyoung(pmd); + set_pmd_at(mm, vaddr, pmdp, pmd); + pmdp_test_and_clear_young(vma, vaddr, pmdp); + pmd = READ_ONCE(*pmdp); + WARN_ON(pmd_young(pmd)); +} + +static void __init pmd_leaf_tests(unsigned long pfn, pgprot_t prot) +{ + pmd_t pmd = pfn_pmd(pfn, prot); + + pr_debug("Validating PMD leaf\n"); + /* + * PMD based THP is a leaf entry. + */ + pmd = pmd_mkhuge(pmd); + WARN_ON(!pmd_leaf(pmd)); +} + +static void __init pmd_huge_tests(pmd_t *pmdp, unsigned long pfn, pgprot_t prot) +{ + pmd_t pmd; + + if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMAP)) + return; + + pr_debug("Validating PMD huge\n"); + /* + * X86 defined pmd_set_huge() verifies that the given + * PMD is not a populated non-leaf entry. + */ + WRITE_ONCE(*pmdp, __pmd(0)); + WARN_ON(!pmd_set_huge(pmdp, __pfn_to_phys(pfn), prot)); + WARN_ON(!pmd_clear_huge(pmdp)); + pmd = READ_ONCE(*pmdp); + WARN_ON(!pmd_none(pmd)); +} + +static void __init pmd_savedwrite_tests(unsigned long pfn, pgprot_t prot) +{ + pmd_t pmd = pfn_pmd(pfn, prot); + + pr_debug("Validating PMD saved write\n"); + WARN_ON(!pmd_savedwrite(pmd_mk_savedwrite(pmd_clear_savedwrite(pmd)))); + WARN_ON(pmd_savedwrite(pmd_clear_savedwrite(pmd_mk_savedwrite(pmd)))); +} + #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD static void __init pud_basic_tests(unsigned long pfn, pgprot_t prot) { @@ -85,6 +235,7 @@ static void __init pud_basic_tests(unsigned long pfn, pgprot_t prot) if (!has_transparent_hugepage()) return; + pr_debug("Validating PUD basic\n"); WARN_ON(!pud_same(pud, pud)); WARN_ON(!pud_young(pud_mkyoung(pud_mkold(pud)))); WARN_ON(!pud_write(pud_mkwrite(pud_wrprotect(pud)))); @@ -100,18 +251,130 @@ static void __init pud_basic_tests(unsigned long pfn, pgprot_t prot) */ WARN_ON(!pud_bad(pud_mkhuge(pud))); } + +static void __init pud_advanced_tests(struct mm_struct *mm, + struct vm_area_struct *vma, pud_t *pudp, + unsigned long pfn, unsigned long vaddr, + pgprot_t prot) +{ + pud_t pud = pfn_pud(pfn, prot); + + if (!has_transparent_hugepage()) + return; + + pr_debug("Validating PUD advanced\n"); + /* Align the address wrt HPAGE_PUD_SIZE */ + vaddr = (vaddr & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE; + + set_pud_at(mm, vaddr, pudp, pud); + pudp_set_wrprotect(mm, vaddr, pudp); + pud = READ_ONCE(*pudp); + WARN_ON(pud_write(pud)); + +#ifndef __PAGETABLE_PMD_FOLDED + pud = pfn_pud(pfn, prot); + set_pud_at(mm, vaddr, pudp, pud); + pudp_huge_get_and_clear(mm, vaddr, pudp); + pud = READ_ONCE(*pudp); + WARN_ON(!pud_none(pud)); + + pud = pfn_pud(pfn, prot); + set_pud_at(mm, vaddr, pudp, pud); + pudp_huge_get_and_clear_full(mm, vaddr, pudp, 1); + pud = READ_ONCE(*pudp); + WARN_ON(!pud_none(pud)); +#endif /* __PAGETABLE_PMD_FOLDED */ + pud = pfn_pud(pfn, prot); + pud = pud_wrprotect(pud); + pud = pud_mkclean(pud); + set_pud_at(mm, vaddr, pudp, pud); + pud = pud_mkwrite(pud); + pud = pud_mkdirty(pud); + pudp_set_access_flags(vma, vaddr, pudp, pud, 1); + pud = READ_ONCE(*pudp); + WARN_ON(!(pud_write(pud) && pud_dirty(pud))); + + pud = pud_mkyoung(pud); + set_pud_at(mm, vaddr, pudp, pud); + pudp_test_and_clear_young(vma, vaddr, pudp); + pud = READ_ONCE(*pudp); + WARN_ON(pud_young(pud)); +} + +static void __init pud_leaf_tests(unsigned long pfn, pgprot_t prot) +{ + pud_t pud = pfn_pud(pfn, prot); + + pr_debug("Validating PUD leaf\n"); + /* + * PUD based THP is a leaf entry. + */ + pud = pud_mkhuge(pud); + WARN_ON(!pud_leaf(pud)); +} + +static void __init pud_huge_tests(pud_t *pudp, unsigned long pfn, pgprot_t prot) +{ + pud_t pud; + + if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMAP)) + return; + + pr_debug("Validating PUD huge\n"); + /* + * X86 defined pud_set_huge() verifies that the given + * PUD is not a populated non-leaf entry. + */ + WRITE_ONCE(*pudp, __pud(0)); + WARN_ON(!pud_set_huge(pudp, __pfn_to_phys(pfn), prot)); + WARN_ON(!pud_clear_huge(pudp)); + pud = READ_ONCE(*pudp); + WARN_ON(!pud_none(pud)); +} #else /* !CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ static void __init pud_basic_tests(unsigned long pfn, pgprot_t prot) { } +static void __init pud_advanced_tests(struct mm_struct *mm, + struct vm_area_struct *vma, pud_t *pudp, + unsigned long pfn, unsigned long vaddr, + pgprot_t prot) +{ +} +static void __init pud_leaf_tests(unsigned long pfn, pgprot_t prot) { } +static void __init pud_huge_tests(pud_t *pudp, unsigned long pfn, pgprot_t prot) +{ +} #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ static void __init pmd_basic_tests(unsigned long pfn, pgprot_t prot) { } static void __init pud_basic_tests(unsigned long pfn, pgprot_t prot) { } +static void __init pmd_advanced_tests(struct mm_struct *mm, + struct vm_area_struct *vma, pmd_t *pmdp, + unsigned long pfn, unsigned long vaddr, + pgprot_t prot) +{ +} +static void __init pud_advanced_tests(struct mm_struct *mm, + struct vm_area_struct *vma, pud_t *pudp, + unsigned long pfn, unsigned long vaddr, + pgprot_t prot) +{ +} +static void __init pmd_leaf_tests(unsigned long pfn, pgprot_t prot) { } +static void __init pud_leaf_tests(unsigned long pfn, pgprot_t prot) { } +static void __init pmd_huge_tests(pmd_t *pmdp, unsigned long pfn, pgprot_t prot) +{ +} +static void __init pud_huge_tests(pud_t *pudp, unsigned long pfn, pgprot_t prot) +{ +} +static void __init pmd_savedwrite_tests(unsigned long pfn, pgprot_t prot) { } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ static void __init p4d_basic_tests(unsigned long pfn, pgprot_t prot) { p4d_t p4d; + pr_debug("Validating P4D basic\n"); memset(&p4d, RANDOM_NZVALUE, sizeof(p4d_t)); WARN_ON(!p4d_same(p4d, p4d)); } @@ -120,6 +383,7 @@ static void __init pgd_basic_tests(unsigned long pfn, pgprot_t prot) { pgd_t pgd; + pr_debug("Validating PGD basic\n"); memset(&pgd, RANDOM_NZVALUE, sizeof(pgd_t)); WARN_ON(!pgd_same(pgd, pgd)); } @@ -132,6 +396,7 @@ static void __init pud_clear_tests(struct mm_struct *mm, pud_t *pudp) if (mm_pmd_folded(mm)) return; + pr_debug("Validating PUD clear\n"); pud = __pud(pud_val(pud) | RANDOM_ORVALUE); WRITE_ONCE(*pudp, pud); pud_clear(pudp); @@ -146,6 +411,8 @@ static void __init pud_populate_tests(struct mm_struct *mm, pud_t *pudp, if (mm_pmd_folded(mm)) return; + + pr_debug("Validating PUD populate\n"); /* * This entry points to next level page table page. * Hence this must not qualify as pud_bad(). @@ -172,6 +439,7 @@ static void __init p4d_clear_tests(struct mm_struct *mm, p4d_t *p4dp) if (mm_pud_folded(mm)) return; + pr_debug("Validating P4D clear\n"); p4d = __p4d(p4d_val(p4d) | RANDOM_ORVALUE); WRITE_ONCE(*p4dp, p4d); p4d_clear(p4dp); @@ -187,6 +455,7 @@ static void __init p4d_populate_tests(struct mm_struct *mm, p4d_t *p4dp, if (mm_pud_folded(mm)) return; + pr_debug("Validating P4D populate\n"); /* * This entry points to next level page table page. * Hence this must not qualify as p4d_bad(). @@ -205,6 +474,7 @@ static void __init pgd_clear_tests(struct mm_struct *mm, pgd_t *pgdp) if (mm_p4d_folded(mm)) return; + pr_debug("Validating PGD clear\n"); pgd = __pgd(pgd_val(pgd) | RANDOM_ORVALUE); WRITE_ONCE(*pgdp, pgd); pgd_clear(pgdp); @@ -220,6 +490,7 @@ static void __init pgd_populate_tests(struct mm_struct *mm, pgd_t *pgdp, if (mm_p4d_folded(mm)) return; + pr_debug("Validating PGD populate\n"); /* * This entry points to next level page table page. * Hence this must not qualify as pgd_bad(). @@ -248,6 +519,7 @@ static void __init pte_clear_tests(struct mm_struct *mm, pte_t *ptep, { pte_t pte = ptep_get(ptep); + pr_debug("Validating PTE clear\n"); pte = __pte(pte_val(pte) | RANDOM_ORVALUE); set_pte_at(mm, vaddr, ptep, pte); barrier(); @@ -260,6 +532,7 @@ static void __init pmd_clear_tests(struct mm_struct *mm, pmd_t *pmdp) { pmd_t pmd = READ_ONCE(*pmdp); + pr_debug("Validating PMD clear\n"); pmd = __pmd(pmd_val(pmd) | RANDOM_ORVALUE); WRITE_ONCE(*pmdp, pmd); pmd_clear(pmdp); @@ -272,6 +545,7 @@ static void __init pmd_populate_tests(struct mm_struct *mm, pmd_t *pmdp, { pmd_t pmd; + pr_debug("Validating PMD populate\n"); /* * This entry points to next level page table page. * Hence this must not qualify as pmd_bad(). @@ -282,6 +556,344 @@ static void __init pmd_populate_tests(struct mm_struct *mm, pmd_t *pmdp, WARN_ON(pmd_bad(pmd)); } +static void __init pte_special_tests(unsigned long pfn, pgprot_t prot) +{ + pte_t pte = pfn_pte(pfn, prot); + + if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) + return; + + pr_debug("Validating PTE special\n"); + WARN_ON(!pte_special(pte_mkspecial(pte))); +} + +static void __init pte_protnone_tests(unsigned long pfn, pgprot_t prot) +{ + pte_t pte = pfn_pte(pfn, prot); + + if (!IS_ENABLED(CONFIG_NUMA_BALANCING)) + return; + + pr_debug("Validating PTE protnone\n"); + WARN_ON(!pte_protnone(pte)); + WARN_ON(!pte_present(pte)); +} + +#ifdef CONFIG_TRANSPARENT_HUGEPAGE +static void __init pmd_protnone_tests(unsigned long pfn, pgprot_t prot) +{ + pmd_t pmd = pmd_mkhuge(pfn_pmd(pfn, prot)); + + if (!IS_ENABLED(CONFIG_NUMA_BALANCING)) + return; + + pr_debug("Validating PMD protnone\n"); + WARN_ON(!pmd_protnone(pmd)); + WARN_ON(!pmd_present(pmd)); +} +#else /* !CONFIG_TRANSPARENT_HUGEPAGE */ +static void __init pmd_protnone_tests(unsigned long pfn, pgprot_t prot) { } +#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ + +#ifdef CONFIG_ARCH_HAS_PTE_DEVMAP +static void __init pte_devmap_tests(unsigned long pfn, pgprot_t prot) +{ + pte_t pte = pfn_pte(pfn, prot); + + pr_debug("Validating PTE devmap\n"); + WARN_ON(!pte_devmap(pte_mkdevmap(pte))); +} + +#ifdef CONFIG_TRANSPARENT_HUGEPAGE +static void __init pmd_devmap_tests(unsigned long pfn, pgprot_t prot) +{ + pmd_t pmd = pfn_pmd(pfn, prot); + + pr_debug("Validating PMD devmap\n"); + WARN_ON(!pmd_devmap(pmd_mkdevmap(pmd))); +} + +#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD +static void __init pud_devmap_tests(unsigned long pfn, pgprot_t prot) +{ + pud_t pud = pfn_pud(pfn, prot); + + pr_debug("Validating PUD devmap\n"); + WARN_ON(!pud_devmap(pud_mkdevmap(pud))); +} +#else /* !CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ +static void __init pud_devmap_tests(unsigned long pfn, pgprot_t prot) { } +#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ +#else /* CONFIG_TRANSPARENT_HUGEPAGE */ +static void __init pmd_devmap_tests(unsigned long pfn, pgprot_t prot) { } +static void __init pud_devmap_tests(unsigned long pfn, pgprot_t prot) { } +#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ +#else +static void __init pte_devmap_tests(unsigned long pfn, pgprot_t prot) { } +static void __init pmd_devmap_tests(unsigned long pfn, pgprot_t prot) { } +static void __init pud_devmap_tests(unsigned long pfn, pgprot_t prot) { } +#endif /* CONFIG_ARCH_HAS_PTE_DEVMAP */ + +static void __init pte_soft_dirty_tests(unsigned long pfn, pgprot_t prot) +{ + pte_t pte = pfn_pte(pfn, prot); + + if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY)) + return; + + pr_debug("Validating PTE soft dirty\n"); + WARN_ON(!pte_soft_dirty(pte_mksoft_dirty(pte))); + WARN_ON(pte_soft_dirty(pte_clear_soft_dirty(pte))); +} + +static void __init pte_swap_soft_dirty_tests(unsigned long pfn, pgprot_t prot) +{ + pte_t pte = pfn_pte(pfn, prot); + + if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY)) + return; + + pr_debug("Validating PTE swap soft dirty\n"); + WARN_ON(!pte_swp_soft_dirty(pte_swp_mksoft_dirty(pte))); + WARN_ON(pte_swp_soft_dirty(pte_swp_clear_soft_dirty(pte))); +} + +#ifdef CONFIG_TRANSPARENT_HUGEPAGE +static void __init pmd_soft_dirty_tests(unsigned long pfn, pgprot_t prot) +{ + pmd_t pmd = pfn_pmd(pfn, prot); + + if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY)) + return; + + pr_debug("Validating PMD soft dirty\n"); + WARN_ON(!pmd_soft_dirty(pmd_mksoft_dirty(pmd))); + WARN_ON(pmd_soft_dirty(pmd_clear_soft_dirty(pmd))); +} + +static void __init pmd_swap_soft_dirty_tests(unsigned long pfn, pgprot_t prot) +{ + pmd_t pmd = pfn_pmd(pfn, prot); + + if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) || + !IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION)) + return; + + pr_debug("Validating PMD swap soft dirty\n"); + WARN_ON(!pmd_swp_soft_dirty(pmd_swp_mksoft_dirty(pmd))); + WARN_ON(pmd_swp_soft_dirty(pmd_swp_clear_soft_dirty(pmd))); +} +#else /* !CONFIG_ARCH_HAS_PTE_DEVMAP */ +static void __init pmd_soft_dirty_tests(unsigned long pfn, pgprot_t prot) { } +static void __init pmd_swap_soft_dirty_tests(unsigned long pfn, pgprot_t prot) +{ +} +#endif /* CONFIG_ARCH_HAS_PTE_DEVMAP */ + +static void __init pte_swap_tests(unsigned long pfn, pgprot_t prot) +{ + swp_entry_t swp; + pte_t pte; + + pr_debug("Validating PTE swap\n"); + pte = pfn_pte(pfn, prot); + swp = __pte_to_swp_entry(pte); + pte = __swp_entry_to_pte(swp); + WARN_ON(pfn != pte_pfn(pte)); +} + +#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION +static void __init pmd_swap_tests(unsigned long pfn, pgprot_t prot) +{ + swp_entry_t swp; + pmd_t pmd; + + pr_debug("Validating PMD swap\n"); + pmd = pfn_pmd(pfn, prot); + swp = __pmd_to_swp_entry(pmd); + pmd = __swp_entry_to_pmd(swp); + WARN_ON(pfn != pmd_pfn(pmd)); +} +#else /* !CONFIG_ARCH_ENABLE_THP_MIGRATION */ +static void __init pmd_swap_tests(unsigned long pfn, pgprot_t prot) { } +#endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */ + +static void __init swap_migration_tests(void) +{ + struct page *page; + swp_entry_t swp; + + if (!IS_ENABLED(CONFIG_MIGRATION)) + return; + + pr_debug("Validating swap migration\n"); + /* + * swap_migration_tests() requires a dedicated page as it needs to + * be locked before creating a migration entry from it. Locking the + * page that actually maps kernel text ('start_kernel') can be real + * problematic. Lets allocate a dedicated page explicitly for this + * purpose that will be freed subsequently. + */ + page = alloc_page(GFP_KERNEL); + if (!page) { + pr_err("page allocation failed\n"); + return; + } + + /* + * make_migration_entry() expects given page to be + * locked, otherwise it stumbles upon a BUG_ON(). + */ + __SetPageLocked(page); + swp = make_migration_entry(page, 1); + WARN_ON(!is_migration_entry(swp)); + WARN_ON(!is_write_migration_entry(swp)); + + make_migration_entry_read(&swp); + WARN_ON(!is_migration_entry(swp)); + WARN_ON(is_write_migration_entry(swp)); + + swp = make_migration_entry(page, 0); + WARN_ON(!is_migration_entry(swp)); + WARN_ON(is_write_migration_entry(swp)); + __ClearPageLocked(page); + __free_page(page); +} + +#ifdef CONFIG_HUGETLB_PAGE +static void __init hugetlb_basic_tests(unsigned long pfn, pgprot_t prot) +{ + struct page *page; + pte_t pte; + + pr_debug("Validating HugeTLB basic\n"); + /* + * Accessing the page associated with the pfn is safe here, + * as it was previously derived from a real kernel symbol. + */ + page = pfn_to_page(pfn); + pte = mk_huge_pte(page, prot); + + WARN_ON(!huge_pte_dirty(huge_pte_mkdirty(pte))); + WARN_ON(!huge_pte_write(huge_pte_mkwrite(huge_pte_wrprotect(pte)))); + WARN_ON(huge_pte_write(huge_pte_wrprotect(huge_pte_mkwrite(pte)))); + +#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB + pte = pfn_pte(pfn, prot); + + WARN_ON(!pte_huge(pte_mkhuge(pte))); +#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ +} + +static void __init hugetlb_advanced_tests(struct mm_struct *mm, + struct vm_area_struct *vma, + pte_t *ptep, unsigned long pfn, + unsigned long vaddr, pgprot_t prot) +{ + struct page *page = pfn_to_page(pfn); + pte_t pte = ptep_get(ptep); + unsigned long paddr = __pfn_to_phys(pfn) & PMD_MASK; + + pr_debug("Validating HugeTLB advanced\n"); + pte = pte_mkhuge(mk_pte(pfn_to_page(PHYS_PFN(paddr)), prot)); + set_huge_pte_at(mm, vaddr, ptep, pte); + barrier(); + WARN_ON(!pte_same(pte, huge_ptep_get(ptep))); + huge_pte_clear(mm, vaddr, ptep, PMD_SIZE); + pte = huge_ptep_get(ptep); + WARN_ON(!huge_pte_none(pte)); + + pte = mk_huge_pte(page, prot); + set_huge_pte_at(mm, vaddr, ptep, pte); + barrier(); + huge_ptep_set_wrprotect(mm, vaddr, ptep); + pte = huge_ptep_get(ptep); + WARN_ON(huge_pte_write(pte)); + + pte = mk_huge_pte(page, prot); + set_huge_pte_at(mm, vaddr, ptep, pte); + barrier(); + huge_ptep_get_and_clear(mm, vaddr, ptep); + pte = huge_ptep_get(ptep); + WARN_ON(!huge_pte_none(pte)); + + pte = mk_huge_pte(page, prot); + pte = huge_pte_wrprotect(pte); + set_huge_pte_at(mm, vaddr, ptep, pte); + barrier(); + pte = huge_pte_mkwrite(pte); + pte = huge_pte_mkdirty(pte); + huge_ptep_set_access_flags(vma, vaddr, ptep, pte, 1); + pte = huge_ptep_get(ptep); + WARN_ON(!(huge_pte_write(pte) && huge_pte_dirty(pte))); +} +#else /* !CONFIG_HUGETLB_PAGE */ +static void __init hugetlb_basic_tests(unsigned long pfn, pgprot_t prot) { } +static void __init hugetlb_advanced_tests(struct mm_struct *mm, + struct vm_area_struct *vma, + pte_t *ptep, unsigned long pfn, + unsigned long vaddr, pgprot_t prot) +{ +} +#endif /* CONFIG_HUGETLB_PAGE */ + +#ifdef CONFIG_TRANSPARENT_HUGEPAGE +static void __init pmd_thp_tests(unsigned long pfn, pgprot_t prot) +{ + pmd_t pmd; + + if (!has_transparent_hugepage()) + return; + + pr_debug("Validating PMD based THP\n"); + /* + * pmd_trans_huge() and pmd_present() must return positive after + * MMU invalidation with pmd_mkinvalid(). This behavior is an + * optimization for transparent huge page. pmd_trans_huge() must + * be true if pmd_page() returns a valid THP to avoid taking the + * pmd_lock when others walk over non transhuge pmds (i.e. there + * are no THP allocated). Especially when splitting a THP and + * removing the present bit from the pmd, pmd_trans_huge() still + * needs to return true. pmd_present() should be true whenever + * pmd_trans_huge() returns true. + */ + pmd = pfn_pmd(pfn, prot); + WARN_ON(!pmd_trans_huge(pmd_mkhuge(pmd))); + +#ifndef __HAVE_ARCH_PMDP_INVALIDATE + WARN_ON(!pmd_trans_huge(pmd_mkinvalid(pmd_mkhuge(pmd)))); + WARN_ON(!pmd_present(pmd_mkinvalid(pmd_mkhuge(pmd)))); +#endif /* __HAVE_ARCH_PMDP_INVALIDATE */ +} + +#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD +static void __init pud_thp_tests(unsigned long pfn, pgprot_t prot) +{ + pud_t pud; + + if (!has_transparent_hugepage()) + return; + + pr_debug("Validating PUD based THP\n"); + pud = pfn_pud(pfn, prot); + WARN_ON(!pud_trans_huge(pud_mkhuge(pud))); + + /* + * pud_mkinvalid() has been dropped for now. Enable back + * these tests when it comes back with a modified pud_present(). + * + * WARN_ON(!pud_trans_huge(pud_mkinvalid(pud_mkhuge(pud)))); + * WARN_ON(!pud_present(pud_mkinvalid(pud_mkhuge(pud)))); + */ +} +#else /* !CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ +static void __init pud_thp_tests(unsigned long pfn, pgprot_t prot) { } +#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ +#else /* !CONFIG_TRANSPARENT_HUGEPAGE */ +static void __init pmd_thp_tests(unsigned long pfn, pgprot_t prot) { } +static void __init pud_thp_tests(unsigned long pfn, pgprot_t prot) { } +#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ + static unsigned long __init get_random_vaddr(void) { unsigned long random_vaddr, random_pages, total_user_pages; @@ -296,6 +908,7 @@ static unsigned long __init get_random_vaddr(void) static int __init debug_vm_pgtable(void) { + struct vm_area_struct *vma; struct mm_struct *mm; pgd_t *pgdp; p4d_t *p4dp, *saved_p4dp; @@ -303,7 +916,7 @@ static int __init debug_vm_pgtable(void) pmd_t *pmdp, *saved_pmdp, pmd; pte_t *ptep; pgtable_t saved_ptep; - pgprot_t prot; + pgprot_t prot, protnone; phys_addr_t paddr; unsigned long vaddr, pte_aligned, pmd_aligned; unsigned long pud_aligned, p4d_aligned, pgd_aligned; @@ -319,6 +932,18 @@ static int __init debug_vm_pgtable(void) } /* + * __P000 (or even __S000) will help create page table entries with + * PROT_NONE permission as required for pxx_protnone_tests(). + */ + protnone = __P000; + + vma = vm_area_alloc(mm); + if (!vma) { + pr_err("vma allocation failed\n"); + return 1; + } + + /* * PFN for mapping at PTE level is determined from a standard kernel * text symbol. But pfns for higher page table levels are derived by * masking lower bits of this real pfn. These derived pfns might not @@ -366,6 +991,20 @@ static int __init debug_vm_pgtable(void) p4d_clear_tests(mm, p4dp); pgd_clear_tests(mm, pgdp); + pte_advanced_tests(mm, vma, ptep, pte_aligned, vaddr, prot); + pmd_advanced_tests(mm, vma, pmdp, pmd_aligned, vaddr, prot); + pud_advanced_tests(mm, vma, pudp, pud_aligned, vaddr, prot); + hugetlb_advanced_tests(mm, vma, ptep, pte_aligned, vaddr, prot); + + pmd_leaf_tests(pmd_aligned, prot); + pud_leaf_tests(pud_aligned, prot); + + pmd_huge_tests(pmdp, pmd_aligned, prot); + pud_huge_tests(pudp, pud_aligned, prot); + + pte_savedwrite_tests(pte_aligned, prot); + pmd_savedwrite_tests(pmd_aligned, prot); + pte_unmap_unlock(ptep, ptl); pmd_populate_tests(mm, pmdp, saved_ptep); @@ -373,11 +1012,34 @@ static int __init debug_vm_pgtable(void) p4d_populate_tests(mm, p4dp, saved_pudp); pgd_populate_tests(mm, pgdp, saved_p4dp); + pte_special_tests(pte_aligned, prot); + pte_protnone_tests(pte_aligned, protnone); + pmd_protnone_tests(pmd_aligned, protnone); + + pte_devmap_tests(pte_aligned, prot); + pmd_devmap_tests(pmd_aligned, prot); + pud_devmap_tests(pud_aligned, prot); + + pte_soft_dirty_tests(pte_aligned, prot); + pmd_soft_dirty_tests(pmd_aligned, prot); + pte_swap_soft_dirty_tests(pte_aligned, prot); + pmd_swap_soft_dirty_tests(pmd_aligned, prot); + + pte_swap_tests(pte_aligned, prot); + pmd_swap_tests(pmd_aligned, prot); + + swap_migration_tests(); + hugetlb_basic_tests(pte_aligned, prot); + + pmd_thp_tests(pmd_aligned, prot); + pud_thp_tests(pud_aligned, prot); + p4d_free(mm, saved_p4dp); pud_free(mm, saved_pudp); pmd_free(mm, saved_pmdp); pte_free(mm, saved_ptep); + vm_area_free(vma); mm_dec_nr_puds(mm); mm_dec_nr_pmds(mm); mm_dec_nr_ptes(mm); diff --git a/mm/filemap.c b/mm/filemap.c index 9f131f1cfde3..f2bb5ff0293d 100644 --- a/mm/filemap.c +++ b/mm/filemap.c @@ -41,6 +41,7 @@ #include <linux/delayacct.h> #include <linux/psi.h> #include <linux/ramfs.h> +#include <linux/page_idle.h> #include "internal.h" #define CREATE_TRACE_POINTS @@ -1648,6 +1649,9 @@ EXPORT_SYMBOL(find_lock_entry); * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the * page is already in cache. If the page was allocated, unlock it before * returning so the caller can do the same dance. + * * %FGP_WRITE - The page will be written + * * %FGP_NOFS - __GFP_FS will get cleared in gfp mask + * * %FGP_NOWAIT - Don't get blocked by page lock * * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even * if the %GFP flags specified for %FGP_CREAT are atomic. @@ -1689,6 +1693,11 @@ repeat: if (fgp_flags & FGP_ACCESSED) mark_page_accessed(page); + else if (fgp_flags & FGP_WRITE) { + /* Clear idle flag for buffer write */ + if (page_is_idle(page)) + clear_page_idle(page); + } no_page: if (!page && (fgp_flags & FGP_CREAT)) { @@ -1404,7 +1404,8 @@ retry: * * This takes care of mlocking the pages too if VM_LOCKED is set. * - * return 0 on success, negative error code on error. + * Return either number of pages pinned in the vma, or a negative error + * code on error. * * vma->vm_mm->mmap_lock must be held. * diff --git a/mm/huge_memory.c b/mm/huge_memory.c index 78c84bee7e29..206f52b36ffb 100644 --- a/mm/huge_memory.c +++ b/mm/huge_memory.c @@ -1722,19 +1722,13 @@ static pmd_t move_soft_dirty_pmd(pmd_t pmd) } bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr, - unsigned long new_addr, unsigned long old_end, - pmd_t *old_pmd, pmd_t *new_pmd) + unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd) { spinlock_t *old_ptl, *new_ptl; pmd_t pmd; struct mm_struct *mm = vma->vm_mm; bool force_flush = false; - if ((old_addr & ~HPAGE_PMD_MASK) || - (new_addr & ~HPAGE_PMD_MASK) || - old_end - old_addr < HPAGE_PMD_SIZE) - return false; - /* * The destination pmd shouldn't be established, free_pgtables() * should have release it. @@ -2069,8 +2063,8 @@ static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd, * free), userland could trigger a small page size TLB miss on the * small sized TLB while the hugepage TLB entry is still established in * the huge TLB. Some CPU doesn't like that. - * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum - * 383 on page 93. Intel should be safe but is also warns that it's + * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum + * 383 on page 105. Intel should be safe but is also warns that it's * only safe if the permission and cache attributes of the two entries * loaded in the two TLB is identical (which should be the case here). * But it is generally safer to never allow small and huge TLB entries diff --git a/mm/hugetlb.c b/mm/hugetlb.c index 590111ea6975..e52c878940bb 100644 --- a/mm/hugetlb.c +++ b/mm/hugetlb.c @@ -31,6 +31,7 @@ #include <linux/cma.h> #include <asm/page.h> +#include <asm/pgalloc.h> #include <asm/tlb.h> #include <linux/io.h> @@ -5313,25 +5314,21 @@ static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr) void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, unsigned long *start, unsigned long *end) { - unsigned long check_addr; + unsigned long a_start, a_end; if (!(vma->vm_flags & VM_MAYSHARE)) return; - for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) { - unsigned long a_start = check_addr & PUD_MASK; - unsigned long a_end = a_start + PUD_SIZE; + /* Extend the range to be PUD aligned for a worst case scenario */ + a_start = ALIGN_DOWN(*start, PUD_SIZE); + a_end = ALIGN(*end, PUD_SIZE); - /* - * If sharing is possible, adjust start/end if necessary. - */ - if (range_in_vma(vma, a_start, a_end)) { - if (a_start < *start) - *start = a_start; - if (a_end > *end) - *end = a_end; - } - } + /* + * Intersect the range with the vma range, since pmd sharing won't be + * across vma after all + */ + *start = max(vma->vm_start, a_start); + *end = min(vma->vm_end, a_end); } /* diff --git a/mm/ioremap.c b/mm/ioremap.c new file mode 100644 index 000000000000..5fa1ab41d152 --- /dev/null +++ b/mm/ioremap.c @@ -0,0 +1,289 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Re-map IO memory to kernel address space so that we can access it. + * This is needed for high PCI addresses that aren't mapped in the + * 640k-1MB IO memory area on PC's + * + * (C) Copyright 1995 1996 Linus Torvalds + */ +#include <linux/vmalloc.h> +#include <linux/mm.h> +#include <linux/sched.h> +#include <linux/io.h> +#include <linux/export.h> +#include <asm/cacheflush.h> + +#include "pgalloc-track.h" + +#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP +static int __read_mostly ioremap_p4d_capable; +static int __read_mostly ioremap_pud_capable; +static int __read_mostly ioremap_pmd_capable; +static int __read_mostly ioremap_huge_disabled; + +static int __init set_nohugeiomap(char *str) +{ + ioremap_huge_disabled = 1; + return 0; +} +early_param("nohugeiomap", set_nohugeiomap); + +void __init ioremap_huge_init(void) +{ + if (!ioremap_huge_disabled) { + if (arch_ioremap_p4d_supported()) + ioremap_p4d_capable = 1; + if (arch_ioremap_pud_supported()) + ioremap_pud_capable = 1; + if (arch_ioremap_pmd_supported()) + ioremap_pmd_capable = 1; + } +} + +static inline int ioremap_p4d_enabled(void) +{ + return ioremap_p4d_capable; +} + +static inline int ioremap_pud_enabled(void) +{ + return ioremap_pud_capable; +} + +static inline int ioremap_pmd_enabled(void) +{ + return ioremap_pmd_capable; +} + +#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */ +static inline int ioremap_p4d_enabled(void) { return 0; } +static inline int ioremap_pud_enabled(void) { return 0; } +static inline int ioremap_pmd_enabled(void) { return 0; } +#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ + +static int ioremap_pte_range(pmd_t *pmd, unsigned long addr, + unsigned long end, phys_addr_t phys_addr, pgprot_t prot, + pgtbl_mod_mask *mask) +{ + pte_t *pte; + u64 pfn; + + pfn = phys_addr >> PAGE_SHIFT; + pte = pte_alloc_kernel_track(pmd, addr, mask); + if (!pte) + return -ENOMEM; + do { + BUG_ON(!pte_none(*pte)); + set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot)); + pfn++; + } while (pte++, addr += PAGE_SIZE, addr != end); + *mask |= PGTBL_PTE_MODIFIED; + return 0; +} + +static int ioremap_try_huge_pmd(pmd_t *pmd, unsigned long addr, + unsigned long end, phys_addr_t phys_addr, + pgprot_t prot) +{ + if (!ioremap_pmd_enabled()) + return 0; + + if ((end - addr) != PMD_SIZE) + return 0; + + if (!IS_ALIGNED(addr, PMD_SIZE)) + return 0; + + if (!IS_ALIGNED(phys_addr, PMD_SIZE)) + return 0; + + if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr)) + return 0; + + return pmd_set_huge(pmd, phys_addr, prot); +} + +static inline int ioremap_pmd_range(pud_t *pud, unsigned long addr, + unsigned long end, phys_addr_t phys_addr, pgprot_t prot, + pgtbl_mod_mask *mask) +{ + pmd_t *pmd; + unsigned long next; + + pmd = pmd_alloc_track(&init_mm, pud, addr, mask); + if (!pmd) + return -ENOMEM; + do { + next = pmd_addr_end(addr, end); + + if (ioremap_try_huge_pmd(pmd, addr, next, phys_addr, prot)) { + *mask |= PGTBL_PMD_MODIFIED; + continue; + } + + if (ioremap_pte_range(pmd, addr, next, phys_addr, prot, mask)) + return -ENOMEM; + } while (pmd++, phys_addr += (next - addr), addr = next, addr != end); + return 0; +} + +static int ioremap_try_huge_pud(pud_t *pud, unsigned long addr, + unsigned long end, phys_addr_t phys_addr, + pgprot_t prot) +{ + if (!ioremap_pud_enabled()) + return 0; + + if ((end - addr) != PUD_SIZE) + return 0; + + if (!IS_ALIGNED(addr, PUD_SIZE)) + return 0; + + if (!IS_ALIGNED(phys_addr, PUD_SIZE)) + return 0; + + if (pud_present(*pud) && !pud_free_pmd_page(pud, addr)) + return 0; + + return pud_set_huge(pud, phys_addr, prot); +} + +static inline int ioremap_pud_range(p4d_t *p4d, unsigned long addr, + unsigned long end, phys_addr_t phys_addr, pgprot_t prot, + pgtbl_mod_mask *mask) +{ + pud_t *pud; + unsigned long next; + + pud = pud_alloc_track(&init_mm, p4d, addr, mask); + if (!pud) + return -ENOMEM; + do { + next = pud_addr_end(addr, end); + + if (ioremap_try_huge_pud(pud, addr, next, phys_addr, prot)) { + *mask |= PGTBL_PUD_MODIFIED; + continue; + } + + if (ioremap_pmd_range(pud, addr, next, phys_addr, prot, mask)) + return -ENOMEM; + } while (pud++, phys_addr += (next - addr), addr = next, addr != end); + return 0; +} + +static int ioremap_try_huge_p4d(p4d_t *p4d, unsigned long addr, + unsigned long end, phys_addr_t phys_addr, + pgprot_t prot) +{ + if (!ioremap_p4d_enabled()) + return 0; + + if ((end - addr) != P4D_SIZE) + return 0; + + if (!IS_ALIGNED(addr, P4D_SIZE)) + return 0; + + if (!IS_ALIGNED(phys_addr, P4D_SIZE)) + return 0; + + if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr)) + return 0; + + return p4d_set_huge(p4d, phys_addr, prot); +} + +static inline int ioremap_p4d_range(pgd_t *pgd, unsigned long addr, + unsigned long end, phys_addr_t phys_addr, pgprot_t prot, + pgtbl_mod_mask *mask) +{ + p4d_t *p4d; + unsigned long next; + + p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); + if (!p4d) + return -ENOMEM; + do { + next = p4d_addr_end(addr, end); + + if (ioremap_try_huge_p4d(p4d, addr, next, phys_addr, prot)) { + *mask |= PGTBL_P4D_MODIFIED; + continue; + } + + if (ioremap_pud_range(p4d, addr, next, phys_addr, prot, mask)) + return -ENOMEM; + } while (p4d++, phys_addr += (next - addr), addr = next, addr != end); + return 0; +} + +int ioremap_page_range(unsigned long addr, + unsigned long end, phys_addr_t phys_addr, pgprot_t prot) +{ + pgd_t *pgd; + unsigned long start; + unsigned long next; + int err; + pgtbl_mod_mask mask = 0; + + might_sleep(); + BUG_ON(addr >= end); + + start = addr; + pgd = pgd_offset_k(addr); + do { + next = pgd_addr_end(addr, end); + err = ioremap_p4d_range(pgd, addr, next, phys_addr, prot, + &mask); + if (err) + break; + } while (pgd++, phys_addr += (next - addr), addr = next, addr != end); + + flush_cache_vmap(start, end); + + if (mask & ARCH_PAGE_TABLE_SYNC_MASK) + arch_sync_kernel_mappings(start, end); + + return err; +} + +#ifdef CONFIG_GENERIC_IOREMAP +void __iomem *ioremap_prot(phys_addr_t addr, size_t size, unsigned long prot) +{ + unsigned long offset, vaddr; + phys_addr_t last_addr; + struct vm_struct *area; + + /* Disallow wrap-around or zero size */ + last_addr = addr + size - 1; + if (!size || last_addr < addr) + return NULL; + + /* Page-align mappings */ + offset = addr & (~PAGE_MASK); + addr -= offset; + size = PAGE_ALIGN(size + offset); + + area = get_vm_area_caller(size, VM_IOREMAP, + __builtin_return_address(0)); + if (!area) + return NULL; + vaddr = (unsigned long)area->addr; + + if (ioremap_page_range(vaddr, vaddr + size, addr, __pgprot(prot))) { + free_vm_area(area); + return NULL; + } + + return (void __iomem *)(vaddr + offset); +} +EXPORT_SYMBOL(ioremap_prot); + +void iounmap(volatile void __iomem *addr) +{ + vunmap((void *)((unsigned long)addr & PAGE_MASK)); +} +EXPORT_SYMBOL(iounmap); +#endif /* CONFIG_GENERIC_IOREMAP */ diff --git a/mm/kasan/common.c b/mm/kasan/common.c index 757d4074fe28..950fd372a07e 100644 --- a/mm/kasan/common.c +++ b/mm/kasan/common.c @@ -40,7 +40,7 @@ #include "kasan.h" #include "../slab.h" -static inline depot_stack_handle_t save_stack(gfp_t flags) +depot_stack_handle_t kasan_save_stack(gfp_t flags) { unsigned long entries[KASAN_STACK_DEPTH]; unsigned int nr_entries; @@ -50,10 +50,10 @@ static inline depot_stack_handle_t save_stack(gfp_t flags) return stack_depot_save(entries, nr_entries, flags); } -static inline void set_track(struct kasan_track *track, gfp_t flags) +void kasan_set_track(struct kasan_track *track, gfp_t flags) { track->pid = current->pid; - track->stack = save_stack(flags); + track->stack = kasan_save_stack(flags); } void kasan_enable_current(void) @@ -180,21 +180,6 @@ asmlinkage void kasan_unpoison_task_stack_below(const void *watermark) kasan_unpoison_shadow(base, watermark - base); } -/* - * Clear all poison for the region between the current SP and a provided - * watermark value, as is sometimes required prior to hand-crafted asm function - * returns in the middle of functions. - */ -void kasan_unpoison_stack_above_sp_to(const void *watermark) -{ - const void *sp = __builtin_frame_address(0); - size_t size = watermark - sp; - - if (WARN_ON(sp > watermark)) - return; - kasan_unpoison_shadow(sp, size); -} - void kasan_alloc_pages(struct page *page, unsigned int order) { u8 tag; @@ -298,24 +283,6 @@ struct kasan_free_meta *get_free_info(struct kmem_cache *cache, return (void *)object + cache->kasan_info.free_meta_offset; } - -static void kasan_set_free_info(struct kmem_cache *cache, - void *object, u8 tag) -{ - struct kasan_alloc_meta *alloc_meta; - u8 idx = 0; - - alloc_meta = get_alloc_info(cache, object); - -#ifdef CONFIG_KASAN_SW_TAGS_IDENTIFY - idx = alloc_meta->free_track_idx; - alloc_meta->free_pointer_tag[idx] = tag; - alloc_meta->free_track_idx = (idx + 1) % KASAN_NR_FREE_STACKS; -#endif - - set_track(&alloc_meta->free_track[idx], GFP_NOWAIT); -} - void kasan_poison_slab(struct page *page) { unsigned long i; @@ -491,7 +458,7 @@ static void *__kasan_kmalloc(struct kmem_cache *cache, const void *object, KASAN_KMALLOC_REDZONE); if (cache->flags & SLAB_KASAN) - set_track(&get_alloc_info(cache, object)->alloc_track, flags); + kasan_set_track(&get_alloc_info(cache, object)->alloc_track, flags); return set_tag(object, tag); } diff --git a/mm/kasan/generic.c b/mm/kasan/generic.c index 098a7dbaced6..248264b9cb76 100644 --- a/mm/kasan/generic.c +++ b/mm/kasan/generic.c @@ -324,3 +324,46 @@ DEFINE_ASAN_SET_SHADOW(f2); DEFINE_ASAN_SET_SHADOW(f3); DEFINE_ASAN_SET_SHADOW(f5); DEFINE_ASAN_SET_SHADOW(f8); + +void kasan_record_aux_stack(void *addr) +{ + struct page *page = kasan_addr_to_page(addr); + struct kmem_cache *cache; + struct kasan_alloc_meta *alloc_info; + void *object; + + if (!(page && PageSlab(page))) + return; + + cache = page->slab_cache; + object = nearest_obj(cache, page, addr); + alloc_info = get_alloc_info(cache, object); + + /* + * record the last two call_rcu() call stacks. + */ + alloc_info->aux_stack[1] = alloc_info->aux_stack[0]; + alloc_info->aux_stack[0] = kasan_save_stack(GFP_NOWAIT); +} + +void kasan_set_free_info(struct kmem_cache *cache, + void *object, u8 tag) +{ + struct kasan_free_meta *free_meta; + + free_meta = get_free_info(cache, object); + kasan_set_track(&free_meta->free_track, GFP_NOWAIT); + + /* + * the object was freed and has free track set + */ + *(u8 *)kasan_mem_to_shadow(object) = KASAN_KMALLOC_FREETRACK; +} + +struct kasan_track *kasan_get_free_track(struct kmem_cache *cache, + void *object, u8 tag) +{ + if (*(u8 *)kasan_mem_to_shadow(object) != KASAN_KMALLOC_FREETRACK) + return NULL; + return &get_free_info(cache, object)->free_track; +} diff --git a/mm/kasan/generic_report.c b/mm/kasan/generic_report.c index e200acb2d292..a38c7a9e192a 100644 --- a/mm/kasan/generic_report.c +++ b/mm/kasan/generic_report.c @@ -80,6 +80,7 @@ static const char *get_shadow_bug_type(struct kasan_access_info *info) break; case KASAN_FREE_PAGE: case KASAN_KMALLOC_FREE: + case KASAN_KMALLOC_FREETRACK: bug_type = "use-after-free"; break; case KASAN_ALLOCA_LEFT: diff --git a/mm/kasan/kasan.h b/mm/kasan/kasan.h index cfade6413528..ac499456740f 100644 --- a/mm/kasan/kasan.h +++ b/mm/kasan/kasan.h @@ -17,15 +17,17 @@ #define KASAN_PAGE_REDZONE 0xFE /* redzone for kmalloc_large allocations */ #define KASAN_KMALLOC_REDZONE 0xFC /* redzone inside slub object */ #define KASAN_KMALLOC_FREE 0xFB /* object was freed (kmem_cache_free/kfree) */ +#define KASAN_KMALLOC_FREETRACK 0xFA /* object was freed and has free track set */ #else #define KASAN_FREE_PAGE KASAN_TAG_INVALID #define KASAN_PAGE_REDZONE KASAN_TAG_INVALID #define KASAN_KMALLOC_REDZONE KASAN_TAG_INVALID #define KASAN_KMALLOC_FREE KASAN_TAG_INVALID +#define KASAN_KMALLOC_FREETRACK KASAN_TAG_INVALID #endif -#define KASAN_GLOBAL_REDZONE 0xFA /* redzone for global variable */ -#define KASAN_VMALLOC_INVALID 0xF9 /* unallocated space in vmapped page */ +#define KASAN_GLOBAL_REDZONE 0xF9 /* redzone for global variable */ +#define KASAN_VMALLOC_INVALID 0xF8 /* unallocated space in vmapped page */ /* * Stack redzone shadow values @@ -104,7 +106,15 @@ struct kasan_track { struct kasan_alloc_meta { struct kasan_track alloc_track; +#ifdef CONFIG_KASAN_GENERIC + /* + * call_rcu() call stack is stored into struct kasan_alloc_meta. + * The free stack is stored into struct kasan_free_meta. + */ + depot_stack_handle_t aux_stack[2]; +#else struct kasan_track free_track[KASAN_NR_FREE_STACKS]; +#endif #ifdef CONFIG_KASAN_SW_TAGS_IDENTIFY u8 free_pointer_tag[KASAN_NR_FREE_STACKS]; u8 free_track_idx; @@ -119,6 +129,9 @@ struct kasan_free_meta { * Otherwise it might be used for the allocator freelist. */ struct qlist_node quarantine_link; +#ifdef CONFIG_KASAN_GENERIC + struct kasan_track free_track; +#endif }; struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache, @@ -159,6 +172,12 @@ void kasan_report_invalid_free(void *object, unsigned long ip); struct page *kasan_addr_to_page(const void *addr); +depot_stack_handle_t kasan_save_stack(gfp_t flags); +void kasan_set_track(struct kasan_track *track, gfp_t flags); +void kasan_set_free_info(struct kmem_cache *cache, void *object, u8 tag); +struct kasan_track *kasan_get_free_track(struct kmem_cache *cache, + void *object, u8 tag); + #if defined(CONFIG_KASAN_GENERIC) && \ (defined(CONFIG_SLAB) || defined(CONFIG_SLUB)) void quarantine_put(struct kasan_free_meta *info, struct kmem_cache *cache); diff --git a/mm/kasan/quarantine.c b/mm/kasan/quarantine.c index 978bc4a3eb51..4c5375810449 100644 --- a/mm/kasan/quarantine.c +++ b/mm/kasan/quarantine.c @@ -145,6 +145,7 @@ static void qlink_free(struct qlist_node *qlink, struct kmem_cache *cache) if (IS_ENABLED(CONFIG_SLAB)) local_irq_save(flags); + *(u8 *)kasan_mem_to_shadow(object) = KASAN_KMALLOC_FREE; ___cache_free(cache, object, _THIS_IP_); if (IS_ENABLED(CONFIG_SLAB)) diff --git a/mm/kasan/report.c b/mm/kasan/report.c index 51ec45407a0b..4f49fa6cd1aa 100644 --- a/mm/kasan/report.c +++ b/mm/kasan/report.c @@ -106,15 +106,20 @@ static void end_report(unsigned long *flags) kasan_enable_current(); } +static void print_stack(depot_stack_handle_t stack) +{ + unsigned long *entries; + unsigned int nr_entries; + + nr_entries = stack_depot_fetch(stack, &entries); + stack_trace_print(entries, nr_entries, 0); +} + static void print_track(struct kasan_track *track, const char *prefix) { pr_err("%s by task %u:\n", prefix, track->pid); if (track->stack) { - unsigned long *entries; - unsigned int nr_entries; - - nr_entries = stack_depot_fetch(track->stack, &entries); - stack_trace_print(entries, nr_entries, 0); + print_stack(track->stack); } else { pr_err("(stack is not available)\n"); } @@ -160,26 +165,6 @@ static void describe_object_addr(struct kmem_cache *cache, void *object, (void *)(object_addr + cache->object_size)); } -static struct kasan_track *kasan_get_free_track(struct kmem_cache *cache, - void *object, u8 tag) -{ - struct kasan_alloc_meta *alloc_meta; - int i = 0; - - alloc_meta = get_alloc_info(cache, object); - -#ifdef CONFIG_KASAN_SW_TAGS_IDENTIFY - for (i = 0; i < KASAN_NR_FREE_STACKS; i++) { - if (alloc_meta->free_pointer_tag[i] == tag) - break; - } - if (i == KASAN_NR_FREE_STACKS) - i = alloc_meta->free_track_idx; -#endif - - return &alloc_meta->free_track[i]; -} - static void describe_object(struct kmem_cache *cache, void *object, const void *addr, u8 tag) { @@ -191,8 +176,23 @@ static void describe_object(struct kmem_cache *cache, void *object, print_track(&alloc_info->alloc_track, "Allocated"); pr_err("\n"); free_track = kasan_get_free_track(cache, object, tag); - print_track(free_track, "Freed"); - pr_err("\n"); + if (free_track) { + print_track(free_track, "Freed"); + pr_err("\n"); + } + +#ifdef CONFIG_KASAN_GENERIC + if (alloc_info->aux_stack[0]) { + pr_err("Last call_rcu():\n"); + print_stack(alloc_info->aux_stack[0]); + pr_err("\n"); + } + if (alloc_info->aux_stack[1]) { + pr_err("Second to last call_rcu():\n"); + print_stack(alloc_info->aux_stack[1]); + pr_err("\n"); + } +#endif } describe_object_addr(cache, object, addr); diff --git a/mm/kasan/tags.c b/mm/kasan/tags.c index 8a959fdd30e3..e02a36a51f42 100644 --- a/mm/kasan/tags.c +++ b/mm/kasan/tags.c @@ -161,3 +161,40 @@ void __hwasan_tag_memory(unsigned long addr, u8 tag, unsigned long size) kasan_poison_shadow((void *)addr, size, tag); } EXPORT_SYMBOL(__hwasan_tag_memory); + +void kasan_set_free_info(struct kmem_cache *cache, + void *object, u8 tag) +{ + struct kasan_alloc_meta *alloc_meta; + u8 idx = 0; + + alloc_meta = get_alloc_info(cache, object); + +#ifdef CONFIG_KASAN_SW_TAGS_IDENTIFY + idx = alloc_meta->free_track_idx; + alloc_meta->free_pointer_tag[idx] = tag; + alloc_meta->free_track_idx = (idx + 1) % KASAN_NR_FREE_STACKS; +#endif + + kasan_set_track(&alloc_meta->free_track[idx], GFP_NOWAIT); +} + +struct kasan_track *kasan_get_free_track(struct kmem_cache *cache, + void *object, u8 tag) +{ + struct kasan_alloc_meta *alloc_meta; + int i = 0; + + alloc_meta = get_alloc_info(cache, object); + +#ifdef CONFIG_KASAN_SW_TAGS_IDENTIFY + for (i = 0; i < KASAN_NR_FREE_STACKS; i++) { + if (alloc_meta->free_pointer_tag[i] == tag) + break; + } + if (i == KASAN_NR_FREE_STACKS) + i = alloc_meta->free_track_idx; +#endif + + return &alloc_meta->free_track[i]; +} diff --git a/mm/khugepaged.c b/mm/khugepaged.c index 700f5160f3e4..b52bd46ad146 100644 --- a/mm/khugepaged.c +++ b/mm/khugepaged.c @@ -431,7 +431,7 @@ static void insert_to_mm_slots_hash(struct mm_struct *mm, static inline int khugepaged_test_exit(struct mm_struct *mm) { - return atomic_read(&mm->mm_users) == 0; + return atomic_read(&mm->mm_users) == 0 || !mmget_still_valid(mm); } static bool hugepage_vma_check(struct vm_area_struct *vma, @@ -1100,9 +1100,6 @@ static void collapse_huge_page(struct mm_struct *mm, * handled by the anon_vma lock + PG_lock. */ mmap_write_lock(mm); - result = SCAN_ANY_PROCESS; - if (!mmget_still_valid(mm)) - goto out; result = hugepage_vma_revalidate(mm, address, &vma); if (result) goto out; @@ -1412,7 +1409,7 @@ void collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr) { unsigned long haddr = addr & HPAGE_PMD_MASK; struct vm_area_struct *vma = find_vma(mm, haddr); - struct page *hpage = NULL; + struct page *hpage; pte_t *start_pte, *pte; pmd_t *pmd, _pmd; spinlock_t *ptl; @@ -1432,9 +1429,17 @@ void collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr) if (!hugepage_vma_check(vma, vma->vm_flags | VM_HUGEPAGE)) return; + hpage = find_lock_page(vma->vm_file->f_mapping, + linear_page_index(vma, haddr)); + if (!hpage) + return; + + if (!PageHead(hpage)) + goto drop_hpage; + pmd = mm_find_pmd(mm, haddr); if (!pmd) - return; + goto drop_hpage; start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl); @@ -1453,30 +1458,11 @@ void collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr) page = vm_normal_page(vma, addr, *pte); - if (!page || !PageCompound(page)) - goto abort; - - if (!hpage) { - hpage = compound_head(page); - /* - * The mapping of the THP should not change. - * - * Note that uprobe, debugger, or MAP_PRIVATE may - * change the page table, but the new page will - * not pass PageCompound() check. - */ - if (WARN_ON(hpage->mapping != vma->vm_file->f_mapping)) - goto abort; - } - /* - * Confirm the page maps to the correct subpage. - * - * Note that uprobe, debugger, or MAP_PRIVATE may change - * the page table, but the new page will not pass - * PageCompound() check. + * Note that uprobe, debugger, or MAP_PRIVATE may change the + * page table, but the new page will not be a subpage of hpage. */ - if (WARN_ON(hpage + i != page)) + if (hpage + i != page) goto abort; count++; } @@ -1495,21 +1481,26 @@ void collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr) pte_unmap_unlock(start_pte, ptl); /* step 3: set proper refcount and mm_counters. */ - if (hpage) { + if (count) { page_ref_sub(hpage, count); add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count); } /* step 4: collapse pmd */ ptl = pmd_lock(vma->vm_mm, pmd); - _pmd = pmdp_collapse_flush(vma, addr, pmd); + _pmd = pmdp_collapse_flush(vma, haddr, pmd); spin_unlock(ptl); mm_dec_nr_ptes(mm); pte_free(mm, pmd_pgtable(_pmd)); + +drop_hpage: + unlock_page(hpage); + put_page(hpage); return; abort: pte_unmap_unlock(start_pte, ptl); + goto drop_hpage; } static int khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot) @@ -1538,6 +1529,7 @@ out: static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff) { struct vm_area_struct *vma; + struct mm_struct *mm; unsigned long addr; pmd_t *pmd, _pmd; @@ -1566,7 +1558,8 @@ static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff) continue; if (vma->vm_end < addr + HPAGE_PMD_SIZE) continue; - pmd = mm_find_pmd(vma->vm_mm, addr); + mm = vma->vm_mm; + pmd = mm_find_pmd(mm, addr); if (!pmd) continue; /* @@ -1576,17 +1569,19 @@ static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff) * mmap_lock while holding page lock. Fault path does it in * reverse order. Trylock is a way to avoid deadlock. */ - if (mmap_write_trylock(vma->vm_mm)) { - spinlock_t *ptl = pmd_lock(vma->vm_mm, pmd); - /* assume page table is clear */ - _pmd = pmdp_collapse_flush(vma, addr, pmd); - spin_unlock(ptl); - mmap_write_unlock(vma->vm_mm); - mm_dec_nr_ptes(vma->vm_mm); - pte_free(vma->vm_mm, pmd_pgtable(_pmd)); + if (mmap_write_trylock(mm)) { + if (!khugepaged_test_exit(mm)) { + spinlock_t *ptl = pmd_lock(mm, pmd); + /* assume page table is clear */ + _pmd = pmdp_collapse_flush(vma, addr, pmd); + spin_unlock(ptl); + mm_dec_nr_ptes(mm); + pte_free(mm, pmd_pgtable(_pmd)); + } + mmap_write_unlock(mm); } else { /* Try again later */ - khugepaged_add_pte_mapped_thp(vma->vm_mm, addr); + khugepaged_add_pte_mapped_thp(mm, addr); } } i_mmap_unlock_write(mapping); diff --git a/mm/memcontrol.c b/mm/memcontrol.c index 8cc617ede7e2..8d9ceea7fe4d 100644 --- a/mm/memcontrol.c +++ b/mm/memcontrol.c @@ -73,8 +73,6 @@ EXPORT_SYMBOL(memory_cgrp_subsys); struct mem_cgroup *root_mem_cgroup __read_mostly; -#define MEM_CGROUP_RECLAIM_RETRIES 5 - /* Socket memory accounting disabled? */ static bool cgroup_memory_nosocket; @@ -257,8 +255,100 @@ struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) } #ifdef CONFIG_MEMCG_KMEM +extern spinlock_t css_set_lock; + +static void obj_cgroup_release(struct percpu_ref *ref) +{ + struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); + struct mem_cgroup *memcg; + unsigned int nr_bytes; + unsigned int nr_pages; + unsigned long flags; + + /* + * At this point all allocated objects are freed, and + * objcg->nr_charged_bytes can't have an arbitrary byte value. + * However, it can be PAGE_SIZE or (x * PAGE_SIZE). + * + * The following sequence can lead to it: + * 1) CPU0: objcg == stock->cached_objcg + * 2) CPU1: we do a small allocation (e.g. 92 bytes), + * PAGE_SIZE bytes are charged + * 3) CPU1: a process from another memcg is allocating something, + * the stock if flushed, + * objcg->nr_charged_bytes = PAGE_SIZE - 92 + * 5) CPU0: we do release this object, + * 92 bytes are added to stock->nr_bytes + * 6) CPU0: stock is flushed, + * 92 bytes are added to objcg->nr_charged_bytes + * + * In the result, nr_charged_bytes == PAGE_SIZE. + * This page will be uncharged in obj_cgroup_release(). + */ + nr_bytes = atomic_read(&objcg->nr_charged_bytes); + WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); + nr_pages = nr_bytes >> PAGE_SHIFT; + + spin_lock_irqsave(&css_set_lock, flags); + memcg = obj_cgroup_memcg(objcg); + if (nr_pages) + __memcg_kmem_uncharge(memcg, nr_pages); + list_del(&objcg->list); + mem_cgroup_put(memcg); + spin_unlock_irqrestore(&css_set_lock, flags); + + percpu_ref_exit(ref); + kfree_rcu(objcg, rcu); +} + +static struct obj_cgroup *obj_cgroup_alloc(void) +{ + struct obj_cgroup *objcg; + int ret; + + objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL); + if (!objcg) + return NULL; + + ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0, + GFP_KERNEL); + if (ret) { + kfree(objcg); + return NULL; + } + INIT_LIST_HEAD(&objcg->list); + return objcg; +} + +static void memcg_reparent_objcgs(struct mem_cgroup *memcg, + struct mem_cgroup *parent) +{ + struct obj_cgroup *objcg, *iter; + + objcg = rcu_replace_pointer(memcg->objcg, NULL, true); + + spin_lock_irq(&css_set_lock); + + /* Move active objcg to the parent's list */ + xchg(&objcg->memcg, parent); + css_get(&parent->css); + list_add(&objcg->list, &parent->objcg_list); + + /* Move already reparented objcgs to the parent's list */ + list_for_each_entry(iter, &memcg->objcg_list, list) { + css_get(&parent->css); + xchg(&iter->memcg, parent); + css_put(&memcg->css); + } + list_splice(&memcg->objcg_list, &parent->objcg_list); + + spin_unlock_irq(&css_set_lock); + + percpu_ref_kill(&objcg->refcnt); +} + /* - * This will be the memcg's index in each cache's ->memcg_params.memcg_caches. + * This will be used as a shrinker list's index. * The main reason for not using cgroup id for this: * this works better in sparse environments, where we have a lot of memcgs, * but only a few kmem-limited. Or also, if we have, for instance, 200 @@ -301,14 +391,12 @@ void memcg_put_cache_ids(void) /* * A lot of the calls to the cache allocation functions are expected to be - * inlined by the compiler. Since the calls to memcg_kmem_get_cache are + * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are * conditional to this static branch, we'll have to allow modules that does * kmem_cache_alloc and the such to see this symbol as well */ DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); EXPORT_SYMBOL(memcg_kmem_enabled_key); - -struct workqueue_struct *memcg_kmem_cache_wq; #endif static int memcg_shrinker_map_size; @@ -477,10 +565,17 @@ ino_t page_cgroup_ino(struct page *page) unsigned long ino = 0; rcu_read_lock(); - if (PageSlab(page) && !PageTail(page)) - memcg = memcg_from_slab_page(page); - else - memcg = READ_ONCE(page->mem_cgroup); + memcg = page->mem_cgroup; + + /* + * The lowest bit set means that memcg isn't a valid + * memcg pointer, but a obj_cgroups pointer. + * In this case the page is shared and doesn't belong + * to any specific memory cgroup. + */ + if ((unsigned long) memcg & 0x1UL) + memcg = NULL; + while (memcg && !(memcg->css.flags & CSS_ONLINE)) memcg = parent_mem_cgroup(memcg); if (memcg) @@ -681,13 +776,16 @@ mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) */ void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) { - long x; + long x, threshold = MEMCG_CHARGE_BATCH; if (mem_cgroup_disabled()) return; + if (vmstat_item_in_bytes(idx)) + threshold <<= PAGE_SHIFT; + x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]); - if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) { + if (unlikely(abs(x) > threshold)) { struct mem_cgroup *mi; /* @@ -713,29 +811,12 @@ parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid) return mem_cgroup_nodeinfo(parent, nid); } -/** - * __mod_lruvec_state - update lruvec memory statistics - * @lruvec: the lruvec - * @idx: the stat item - * @val: delta to add to the counter, can be negative - * - * The lruvec is the intersection of the NUMA node and a cgroup. This - * function updates the all three counters that are affected by a - * change of state at this level: per-node, per-cgroup, per-lruvec. - */ -void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, - int val) +void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, + int val) { - pg_data_t *pgdat = lruvec_pgdat(lruvec); struct mem_cgroup_per_node *pn; struct mem_cgroup *memcg; - long x; - - /* Update node */ - __mod_node_page_state(pgdat, idx, val); - - if (mem_cgroup_disabled()) - return; + long x, threshold = MEMCG_CHARGE_BATCH; pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); memcg = pn->memcg; @@ -746,8 +827,12 @@ void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, /* Update lruvec */ __this_cpu_add(pn->lruvec_stat_local->count[idx], val); + if (vmstat_item_in_bytes(idx)) + threshold <<= PAGE_SHIFT; + x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]); - if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) { + if (unlikely(abs(x) > threshold)) { + pg_data_t *pgdat = lruvec_pgdat(lruvec); struct mem_cgroup_per_node *pi; for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id)) @@ -757,6 +842,27 @@ void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x); } +/** + * __mod_lruvec_state - update lruvec memory statistics + * @lruvec: the lruvec + * @idx: the stat item + * @val: delta to add to the counter, can be negative + * + * The lruvec is the intersection of the NUMA node and a cgroup. This + * function updates the all three counters that are affected by a + * change of state at this level: per-node, per-cgroup, per-lruvec. + */ +void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, + int val) +{ + /* Update node */ + __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); + + /* Update memcg and lruvec */ + if (!mem_cgroup_disabled()) + __mod_memcg_lruvec_state(lruvec, idx, val); +} + void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val) { pg_data_t *pgdat = page_pgdat(virt_to_page(p)); @@ -1377,12 +1483,11 @@ static char *memory_stat_format(struct mem_cgroup *memcg) (u64)memcg_page_state(memcg, NR_FILE_PAGES) * PAGE_SIZE); seq_buf_printf(&s, "kernel_stack %llu\n", - (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) * + (u64)memcg_page_state(memcg, NR_KERNEL_STACK_KB) * 1024); seq_buf_printf(&s, "slab %llu\n", - (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) + - memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) * - PAGE_SIZE); + (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) + + memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B))); seq_buf_printf(&s, "sock %llu\n", (u64)memcg_page_state(memcg, MEMCG_SOCK) * PAGE_SIZE); @@ -1412,11 +1517,9 @@ static char *memory_stat_format(struct mem_cgroup *memcg) PAGE_SIZE); seq_buf_printf(&s, "slab_reclaimable %llu\n", - (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) * - PAGE_SIZE); + (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B)); seq_buf_printf(&s, "slab_unreclaimable %llu\n", - (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) * - PAGE_SIZE); + (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B)); /* Accumulated memory events */ @@ -1560,15 +1663,21 @@ static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, .gfp_mask = gfp_mask, .order = order, }; - bool ret; + bool ret = true; if (mutex_lock_killable(&oom_lock)) return true; + + if (mem_cgroup_margin(memcg) >= (1 << order)) + goto unlock; + /* * A few threads which were not waiting at mutex_lock_killable() can * fail to bail out. Therefore, check again after holding oom_lock. */ ret = should_force_charge() || out_of_memory(&oc); + +unlock: mutex_unlock(&oom_lock); return ret; } @@ -2039,6 +2148,12 @@ EXPORT_SYMBOL(unlock_page_memcg); struct memcg_stock_pcp { struct mem_cgroup *cached; /* this never be root cgroup */ unsigned int nr_pages; + +#ifdef CONFIG_MEMCG_KMEM + struct obj_cgroup *cached_objcg; + unsigned int nr_bytes; +#endif + struct work_struct work; unsigned long flags; #define FLUSHING_CACHED_CHARGE 0 @@ -2046,6 +2161,22 @@ struct memcg_stock_pcp { static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); static DEFINE_MUTEX(percpu_charge_mutex); +#ifdef CONFIG_MEMCG_KMEM +static void drain_obj_stock(struct memcg_stock_pcp *stock); +static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, + struct mem_cgroup *root_memcg); + +#else +static inline void drain_obj_stock(struct memcg_stock_pcp *stock) +{ +} +static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, + struct mem_cgroup *root_memcg) +{ + return false; +} +#endif + /** * consume_stock: Try to consume stocked charge on this cpu. * @memcg: memcg to consume from. @@ -2086,13 +2217,17 @@ static void drain_stock(struct memcg_stock_pcp *stock) { struct mem_cgroup *old = stock->cached; + if (!old) + return; + if (stock->nr_pages) { page_counter_uncharge(&old->memory, stock->nr_pages); if (do_memsw_account()) page_counter_uncharge(&old->memsw, stock->nr_pages); - css_put_many(&old->css, stock->nr_pages); stock->nr_pages = 0; } + + css_put(&old->css); stock->cached = NULL; } @@ -2108,6 +2243,7 @@ static void drain_local_stock(struct work_struct *dummy) local_irq_save(flags); stock = this_cpu_ptr(&memcg_stock); + drain_obj_stock(stock); drain_stock(stock); clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); @@ -2128,6 +2264,7 @@ static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) stock = this_cpu_ptr(&memcg_stock); if (stock->cached != memcg) { /* reset if necessary */ drain_stock(stock); + css_get(&memcg->css); stock->cached = memcg; } stock->nr_pages += nr_pages; @@ -2166,6 +2303,8 @@ static void drain_all_stock(struct mem_cgroup *root_memcg) if (memcg && stock->nr_pages && mem_cgroup_is_descendant(memcg, root_memcg)) flush = true; + if (obj_stock_flush_required(stock, root_memcg)) + flush = true; rcu_read_unlock(); if (flush && @@ -2228,18 +2367,29 @@ static int memcg_hotplug_cpu_dead(unsigned int cpu) return 0; } -static void reclaim_high(struct mem_cgroup *memcg, - unsigned int nr_pages, - gfp_t gfp_mask) +static unsigned long reclaim_high(struct mem_cgroup *memcg, + unsigned int nr_pages, + gfp_t gfp_mask) { + unsigned long nr_reclaimed = 0; + do { + unsigned long pflags; + if (page_counter_read(&memcg->memory) <= READ_ONCE(memcg->memory.high)) continue; + memcg_memory_event(memcg, MEMCG_HIGH); - try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true); + + psi_memstall_enter(&pflags); + nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, + gfp_mask, true); + psi_memstall_leave(&pflags); } while ((memcg = parent_mem_cgroup(memcg)) && !mem_cgroup_is_root(memcg)); + + return nr_reclaimed; } static void high_work_func(struct work_struct *work) @@ -2395,16 +2545,32 @@ void mem_cgroup_handle_over_high(void) { unsigned long penalty_jiffies; unsigned long pflags; + unsigned long nr_reclaimed; unsigned int nr_pages = current->memcg_nr_pages_over_high; + int nr_retries = MAX_RECLAIM_RETRIES; struct mem_cgroup *memcg; + bool in_retry = false; if (likely(!nr_pages)) return; memcg = get_mem_cgroup_from_mm(current->mm); - reclaim_high(memcg, nr_pages, GFP_KERNEL); current->memcg_nr_pages_over_high = 0; +retry_reclaim: + /* + * The allocating task should reclaim at least the batch size, but for + * subsequent retries we only want to do what's necessary to prevent oom + * or breaching resource isolation. + * + * This is distinct from memory.max or page allocator behaviour because + * memory.high is currently batched, whereas memory.max and the page + * allocator run every time an allocation is made. + */ + nr_reclaimed = reclaim_high(memcg, + in_retry ? SWAP_CLUSTER_MAX : nr_pages, + GFP_KERNEL); + /* * memory.high is breached and reclaim is unable to keep up. Throttle * allocators proactively to slow down excessive growth. @@ -2432,6 +2598,16 @@ void mem_cgroup_handle_over_high(void) goto out; /* + * If reclaim is making forward progress but we're still over + * memory.high, we want to encourage that rather than doing allocator + * throttling. + */ + if (nr_reclaimed || nr_retries--) { + in_retry = true; + goto retry_reclaim; + } + + /* * If we exit early, we're guaranteed to die (since * schedule_timeout_killable sets TASK_KILLABLE). This means we don't * need to account for any ill-begotten jiffies to pay them off later. @@ -2448,13 +2624,14 @@ static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, unsigned int nr_pages) { unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); - int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; + int nr_retries = MAX_RECLAIM_RETRIES; struct mem_cgroup *mem_over_limit; struct page_counter *counter; + enum oom_status oom_status; unsigned long nr_reclaimed; bool may_swap = true; bool drained = false; - enum oom_status oom_status; + unsigned long pflags; if (mem_cgroup_is_root(memcg)) return 0; @@ -2514,8 +2691,10 @@ retry: memcg_memory_event(mem_over_limit, MEMCG_MAX); + psi_memstall_enter(&pflags); nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, gfp_mask, may_swap); + psi_memstall_leave(&pflags); if (mem_cgroup_margin(mem_over_limit) >= nr_pages) goto retry; @@ -2567,7 +2746,7 @@ retry: get_order(nr_pages * PAGE_SIZE)); switch (oom_status) { case OOM_SUCCESS: - nr_retries = MEM_CGROUP_RECLAIM_RETRIES; + nr_retries = MAX_RECLAIM_RETRIES; goto retry; case OOM_FAILED: goto force; @@ -2586,12 +2765,10 @@ force: page_counter_charge(&memcg->memory, nr_pages); if (do_memsw_account()) page_counter_charge(&memcg->memsw, nr_pages); - css_get_many(&memcg->css, nr_pages); return 0; done_restock: - css_get_many(&memcg->css, batch); if (batch > nr_pages) refill_stock(memcg, batch - nr_pages); @@ -2649,8 +2826,6 @@ static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) page_counter_uncharge(&memcg->memory, nr_pages); if (do_memsw_account()) page_counter_uncharge(&memcg->memsw, nr_pages); - - css_put_many(&memcg->css, nr_pages); } #endif @@ -2669,6 +2844,26 @@ static void commit_charge(struct page *page, struct mem_cgroup *memcg) } #ifdef CONFIG_MEMCG_KMEM +int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s, + gfp_t gfp) +{ + unsigned int objects = objs_per_slab_page(s, page); + void *vec; + + vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp, + page_to_nid(page)); + if (!vec) + return -ENOMEM; + + if (cmpxchg(&page->obj_cgroups, NULL, + (struct obj_cgroup **) ((unsigned long)vec | 0x1UL))) + kfree(vec); + else + kmemleak_not_leak(vec); + + return 0; +} + /* * Returns a pointer to the memory cgroup to which the kernel object is charged. * @@ -2685,17 +2880,50 @@ struct mem_cgroup *mem_cgroup_from_obj(void *p) page = virt_to_head_page(p); /* - * Slab pages don't have page->mem_cgroup set because corresponding - * kmem caches can be reparented during the lifetime. That's why - * memcg_from_slab_page() should be used instead. + * Slab objects are accounted individually, not per-page. + * Memcg membership data for each individual object is saved in + * the page->obj_cgroups. */ - if (PageSlab(page)) - return memcg_from_slab_page(page); + if (page_has_obj_cgroups(page)) { + struct obj_cgroup *objcg; + unsigned int off; + + off = obj_to_index(page->slab_cache, page, p); + objcg = page_obj_cgroups(page)[off]; + if (objcg) + return obj_cgroup_memcg(objcg); + + return NULL; + } /* All other pages use page->mem_cgroup */ return page->mem_cgroup; } +__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void) +{ + struct obj_cgroup *objcg = NULL; + struct mem_cgroup *memcg; + + if (unlikely(!current->mm && !current->active_memcg)) + return NULL; + + rcu_read_lock(); + if (unlikely(current->active_memcg)) + memcg = rcu_dereference(current->active_memcg); + else + memcg = mem_cgroup_from_task(current); + + for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) { + objcg = rcu_dereference(memcg->objcg); + if (objcg && obj_cgroup_tryget(objcg)) + break; + } + rcu_read_unlock(); + + return objcg; +} + static int memcg_alloc_cache_id(void) { int id, size; @@ -2721,9 +2949,7 @@ static int memcg_alloc_cache_id(void) else if (size > MEMCG_CACHES_MAX_SIZE) size = MEMCG_CACHES_MAX_SIZE; - err = memcg_update_all_caches(size); - if (!err) - err = memcg_update_all_list_lrus(size); + err = memcg_update_all_list_lrus(size); if (!err) memcg_nr_cache_ids = size; @@ -2741,150 +2967,6 @@ static void memcg_free_cache_id(int id) ida_simple_remove(&memcg_cache_ida, id); } -struct memcg_kmem_cache_create_work { - struct mem_cgroup *memcg; - struct kmem_cache *cachep; - struct work_struct work; -}; - -static void memcg_kmem_cache_create_func(struct work_struct *w) -{ - struct memcg_kmem_cache_create_work *cw = - container_of(w, struct memcg_kmem_cache_create_work, work); - struct mem_cgroup *memcg = cw->memcg; - struct kmem_cache *cachep = cw->cachep; - - memcg_create_kmem_cache(memcg, cachep); - - css_put(&memcg->css); - kfree(cw); -} - -/* - * Enqueue the creation of a per-memcg kmem_cache. - */ -static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, - struct kmem_cache *cachep) -{ - struct memcg_kmem_cache_create_work *cw; - - if (!css_tryget_online(&memcg->css)) - return; - - cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN); - if (!cw) { - css_put(&memcg->css); - return; - } - - cw->memcg = memcg; - cw->cachep = cachep; - INIT_WORK(&cw->work, memcg_kmem_cache_create_func); - - queue_work(memcg_kmem_cache_wq, &cw->work); -} - -static inline bool memcg_kmem_bypass(void) -{ - if (in_interrupt()) - return true; - - /* Allow remote memcg charging in kthread contexts. */ - if ((!current->mm || (current->flags & PF_KTHREAD)) && - !current->active_memcg) - return true; - return false; -} - -/** - * memcg_kmem_get_cache: select the correct per-memcg cache for allocation - * @cachep: the original global kmem cache - * - * Return the kmem_cache we're supposed to use for a slab allocation. - * We try to use the current memcg's version of the cache. - * - * If the cache does not exist yet, if we are the first user of it, we - * create it asynchronously in a workqueue and let the current allocation - * go through with the original cache. - * - * This function takes a reference to the cache it returns to assure it - * won't get destroyed while we are working with it. Once the caller is - * done with it, memcg_kmem_put_cache() must be called to release the - * reference. - */ -struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep) -{ - struct mem_cgroup *memcg; - struct kmem_cache *memcg_cachep; - struct memcg_cache_array *arr; - int kmemcg_id; - - VM_BUG_ON(!is_root_cache(cachep)); - - if (memcg_kmem_bypass()) - return cachep; - - rcu_read_lock(); - - if (unlikely(current->active_memcg)) - memcg = current->active_memcg; - else - memcg = mem_cgroup_from_task(current); - - if (!memcg || memcg == root_mem_cgroup) - goto out_unlock; - - kmemcg_id = READ_ONCE(memcg->kmemcg_id); - if (kmemcg_id < 0) - goto out_unlock; - - arr = rcu_dereference(cachep->memcg_params.memcg_caches); - - /* - * Make sure we will access the up-to-date value. The code updating - * memcg_caches issues a write barrier to match the data dependency - * barrier inside READ_ONCE() (see memcg_create_kmem_cache()). - */ - memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]); - - /* - * If we are in a safe context (can wait, and not in interrupt - * context), we could be be predictable and return right away. - * This would guarantee that the allocation being performed - * already belongs in the new cache. - * - * However, there are some clashes that can arrive from locking. - * For instance, because we acquire the slab_mutex while doing - * memcg_create_kmem_cache, this means no further allocation - * could happen with the slab_mutex held. So it's better to - * defer everything. - * - * If the memcg is dying or memcg_cache is about to be released, - * don't bother creating new kmem_caches. Because memcg_cachep - * is ZEROed as the fist step of kmem offlining, we don't need - * percpu_ref_tryget_live() here. css_tryget_online() check in - * memcg_schedule_kmem_cache_create() will prevent us from - * creation of a new kmem_cache. - */ - if (unlikely(!memcg_cachep)) - memcg_schedule_kmem_cache_create(memcg, cachep); - else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt)) - cachep = memcg_cachep; -out_unlock: - rcu_read_unlock(); - return cachep; -} - -/** - * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache - * @cachep: the cache returned by memcg_kmem_get_cache - */ -void memcg_kmem_put_cache(struct kmem_cache *cachep) -{ - if (!is_root_cache(cachep)) - percpu_ref_put(&cachep->memcg_params.refcnt); -} - /** * __memcg_kmem_charge: charge a number of kernel pages to a memcg * @memcg: memory cgroup to charge @@ -2958,6 +3040,7 @@ int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) if (!ret) { page->mem_cgroup = memcg; __SetPageKmemcg(page); + return 0; } } css_put(&memcg->css); @@ -2980,13 +3063,146 @@ void __memcg_kmem_uncharge_page(struct page *page, int order) VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); __memcg_kmem_uncharge(memcg, nr_pages); page->mem_cgroup = NULL; + css_put(&memcg->css); /* slab pages do not have PageKmemcg flag set */ if (PageKmemcg(page)) __ClearPageKmemcg(page); +} + +static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes) +{ + struct memcg_stock_pcp *stock; + unsigned long flags; + bool ret = false; + + local_irq_save(flags); + + stock = this_cpu_ptr(&memcg_stock); + if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) { + stock->nr_bytes -= nr_bytes; + ret = true; + } + + local_irq_restore(flags); + + return ret; +} + +static void drain_obj_stock(struct memcg_stock_pcp *stock) +{ + struct obj_cgroup *old = stock->cached_objcg; + + if (!old) + return; + + if (stock->nr_bytes) { + unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; + unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); + + if (nr_pages) { + rcu_read_lock(); + __memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages); + rcu_read_unlock(); + } + + /* + * The leftover is flushed to the centralized per-memcg value. + * On the next attempt to refill obj stock it will be moved + * to a per-cpu stock (probably, on an other CPU), see + * refill_obj_stock(). + * + * How often it's flushed is a trade-off between the memory + * limit enforcement accuracy and potential CPU contention, + * so it might be changed in the future. + */ + atomic_add(nr_bytes, &old->nr_charged_bytes); + stock->nr_bytes = 0; + } + + obj_cgroup_put(old); + stock->cached_objcg = NULL; +} + +static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, + struct mem_cgroup *root_memcg) +{ + struct mem_cgroup *memcg; + + if (stock->cached_objcg) { + memcg = obj_cgroup_memcg(stock->cached_objcg); + if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) + return true; + } + + return false; +} + +static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes) +{ + struct memcg_stock_pcp *stock; + unsigned long flags; + + local_irq_save(flags); + + stock = this_cpu_ptr(&memcg_stock); + if (stock->cached_objcg != objcg) { /* reset if necessary */ + drain_obj_stock(stock); + obj_cgroup_get(objcg); + stock->cached_objcg = objcg; + stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0); + } + stock->nr_bytes += nr_bytes; + + if (stock->nr_bytes > PAGE_SIZE) + drain_obj_stock(stock); + + local_irq_restore(flags); +} + +int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) +{ + struct mem_cgroup *memcg; + unsigned int nr_pages, nr_bytes; + int ret; + + if (consume_obj_stock(objcg, size)) + return 0; + + /* + * In theory, memcg->nr_charged_bytes can have enough + * pre-charged bytes to satisfy the allocation. However, + * flushing memcg->nr_charged_bytes requires two atomic + * operations, and memcg->nr_charged_bytes can't be big, + * so it's better to ignore it and try grab some new pages. + * memcg->nr_charged_bytes will be flushed in + * refill_obj_stock(), called from this function or + * independently later. + */ + rcu_read_lock(); + memcg = obj_cgroup_memcg(objcg); + css_get(&memcg->css); + rcu_read_unlock(); + + nr_pages = size >> PAGE_SHIFT; + nr_bytes = size & (PAGE_SIZE - 1); + + if (nr_bytes) + nr_pages += 1; - css_put_many(&memcg->css, nr_pages); + ret = __memcg_kmem_charge(memcg, gfp, nr_pages); + if (!ret && nr_bytes) + refill_obj_stock(objcg, PAGE_SIZE - nr_bytes); + + css_put(&memcg->css); + return ret; } + +void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) +{ + refill_obj_stock(objcg, size); +} + #endif /* CONFIG_MEMCG_KMEM */ #ifdef CONFIG_TRANSPARENT_HUGEPAGE @@ -2997,13 +3213,16 @@ void __memcg_kmem_uncharge_page(struct page *page, int order) */ void mem_cgroup_split_huge_fixup(struct page *head) { + struct mem_cgroup *memcg = head->mem_cgroup; int i; if (mem_cgroup_disabled()) return; - for (i = 1; i < HPAGE_PMD_NR; i++) - head[i].mem_cgroup = head->mem_cgroup; + for (i = 1; i < HPAGE_PMD_NR; i++) { + css_get(&memcg->css); + head[i].mem_cgroup = memcg; + } } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ @@ -3207,7 +3426,7 @@ static inline bool memcg_has_children(struct mem_cgroup *memcg) */ static int mem_cgroup_force_empty(struct mem_cgroup *memcg) { - int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; + int nr_retries = MAX_RECLAIM_RETRIES; /* we call try-to-free pages for make this cgroup empty */ lru_add_drain_all(); @@ -3404,6 +3623,7 @@ static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg) #ifdef CONFIG_MEMCG_KMEM static int memcg_online_kmem(struct mem_cgroup *memcg) { + struct obj_cgroup *objcg; int memcg_id; if (cgroup_memory_nokmem) @@ -3416,7 +3636,16 @@ static int memcg_online_kmem(struct mem_cgroup *memcg) if (memcg_id < 0) return memcg_id; - static_branch_inc(&memcg_kmem_enabled_key); + objcg = obj_cgroup_alloc(); + if (!objcg) { + memcg_free_cache_id(memcg_id); + return -ENOMEM; + } + objcg->memcg = memcg; + rcu_assign_pointer(memcg->objcg, objcg); + + static_branch_enable(&memcg_kmem_enabled_key); + /* * A memory cgroup is considered kmem-online as soon as it gets * kmemcg_id. Setting the id after enabling static branching will @@ -3425,7 +3654,6 @@ static int memcg_online_kmem(struct mem_cgroup *memcg) */ memcg->kmemcg_id = memcg_id; memcg->kmem_state = KMEM_ONLINE; - INIT_LIST_HEAD(&memcg->kmem_caches); return 0; } @@ -3438,22 +3666,14 @@ static void memcg_offline_kmem(struct mem_cgroup *memcg) if (memcg->kmem_state != KMEM_ONLINE) return; - /* - * Clear the online state before clearing memcg_caches array - * entries. The slab_mutex in memcg_deactivate_kmem_caches() - * guarantees that no cache will be created for this cgroup - * after we are done (see memcg_create_kmem_cache()). - */ + memcg->kmem_state = KMEM_ALLOCATED; parent = parent_mem_cgroup(memcg); if (!parent) parent = root_mem_cgroup; - /* - * Deactivate and reparent kmem_caches. - */ - memcg_deactivate_kmem_caches(memcg, parent); + memcg_reparent_objcgs(memcg, parent); kmemcg_id = memcg->kmemcg_id; BUG_ON(kmemcg_id < 0); @@ -3486,11 +3706,6 @@ static void memcg_free_kmem(struct mem_cgroup *memcg) /* css_alloc() failed, offlining didn't happen */ if (unlikely(memcg->kmem_state == KMEM_ONLINE)) memcg_offline_kmem(memcg); - - if (memcg->kmem_state == KMEM_ALLOCATED) { - WARN_ON(!list_empty(&memcg->kmem_caches)); - static_branch_dec(&memcg_kmem_enabled_key); - } } #else static int memcg_online_kmem(struct mem_cgroup *memcg) @@ -4800,9 +5015,6 @@ static struct cftype mem_cgroup_legacy_files[] = { (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)) { .name = "kmem.slabinfo", - .seq_start = memcg_slab_start, - .seq_next = memcg_slab_next, - .seq_stop = memcg_slab_stop, .seq_show = memcg_slab_show, }, #endif @@ -5022,6 +5234,7 @@ static struct mem_cgroup *mem_cgroup_alloc(void) memcg->socket_pressure = jiffies; #ifdef CONFIG_MEMCG_KMEM memcg->kmemcg_id = -1; + INIT_LIST_HEAD(&memcg->objcg_list); #endif #ifdef CONFIG_CGROUP_WRITEBACK INIT_LIST_HEAD(&memcg->cgwb_list); @@ -5084,9 +5297,6 @@ mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) /* The following stuff does not apply to the root */ if (!parent) { -#ifdef CONFIG_MEMCG_KMEM - INIT_LIST_HEAD(&memcg->kmem_caches); -#endif root_mem_cgroup = memcg; return &memcg->css; } @@ -5448,7 +5658,10 @@ static int mem_cgroup_move_account(struct page *page, */ smp_mb(); - page->mem_cgroup = to; /* caller should have done css_get */ + css_get(&to->css); + css_put(&from->css); + + page->mem_cgroup = to; __unlock_page_memcg(from); @@ -5669,8 +5882,6 @@ static void __mem_cgroup_clear_mc(void) if (!mem_cgroup_is_root(mc.to)) page_counter_uncharge(&mc.to->memory, mc.moved_swap); - css_put_many(&mc.to->css, mc.moved_swap); - mc.moved_swap = 0; } memcg_oom_recover(from); @@ -6036,7 +6247,7 @@ static ssize_t memory_high_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); - unsigned int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; + unsigned int nr_retries = MAX_RECLAIM_RETRIES; bool drained = false; unsigned long high; int err; @@ -6046,8 +6257,6 @@ static ssize_t memory_high_write(struct kernfs_open_file *of, if (err) return err; - page_counter_set_high(&memcg->memory, high); - for (;;) { unsigned long nr_pages = page_counter_read(&memcg->memory); unsigned long reclaimed; @@ -6071,6 +6280,10 @@ static ssize_t memory_high_write(struct kernfs_open_file *of, break; } + page_counter_set_high(&memcg->memory, high); + + memcg_wb_domain_size_changed(memcg); + return nbytes; } @@ -6084,7 +6297,7 @@ static ssize_t memory_max_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); - unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES; + unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; bool drained = false; unsigned long max; int err; @@ -6391,40 +6604,42 @@ static unsigned long effective_protection(unsigned long usage, * * WARNING: This function is not stateless! It can only be used as part * of a top-down tree iteration, not for isolated queries. - * - * Returns one of the following: - * MEMCG_PROT_NONE: cgroup memory is not protected - * MEMCG_PROT_LOW: cgroup memory is protected as long there is - * an unprotected supply of reclaimable memory from other cgroups. - * MEMCG_PROT_MIN: cgroup memory is protected */ -enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root, - struct mem_cgroup *memcg) +void mem_cgroup_calculate_protection(struct mem_cgroup *root, + struct mem_cgroup *memcg) { unsigned long usage, parent_usage; struct mem_cgroup *parent; if (mem_cgroup_disabled()) - return MEMCG_PROT_NONE; + return; if (!root) root = root_mem_cgroup; + + /* + * Effective values of the reclaim targets are ignored so they + * can be stale. Have a look at mem_cgroup_protection for more + * details. + * TODO: calculation should be more robust so that we do not need + * that special casing. + */ if (memcg == root) - return MEMCG_PROT_NONE; + return; usage = page_counter_read(&memcg->memory); if (!usage) - return MEMCG_PROT_NONE; + return; parent = parent_mem_cgroup(memcg); /* No parent means a non-hierarchical mode on v1 memcg */ if (!parent) - return MEMCG_PROT_NONE; + return; if (parent == root) { memcg->memory.emin = READ_ONCE(memcg->memory.min); memcg->memory.elow = READ_ONCE(memcg->memory.low); - goto out; + return; } parent_usage = page_counter_read(&parent->memory); @@ -6438,14 +6653,6 @@ enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root, READ_ONCE(memcg->memory.low), READ_ONCE(parent->memory.elow), atomic_long_read(&parent->memory.children_low_usage))); - -out: - if (usage <= memcg->memory.emin) - return MEMCG_PROT_MIN; - else if (usage <= memcg->memory.elow) - return MEMCG_PROT_LOW; - else - return MEMCG_PROT_NONE; } /** @@ -6498,6 +6705,7 @@ int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask) if (ret) goto out_put; + css_get(&memcg->css); commit_charge(page, memcg); local_irq_disable(); @@ -6552,9 +6760,6 @@ static void uncharge_batch(const struct uncharge_gather *ug) __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages); memcg_check_events(ug->memcg, ug->dummy_page); local_irq_restore(flags); - - if (!mem_cgroup_is_root(ug->memcg)) - css_put_many(&ug->memcg->css, ug->nr_pages); } static void uncharge_page(struct page *page, struct uncharge_gather *ug) @@ -6592,6 +6797,7 @@ static void uncharge_page(struct page *page, struct uncharge_gather *ug) ug->dummy_page = page; page->mem_cgroup = NULL; + css_put(&ug->memcg->css); } static void uncharge_list(struct list_head *page_list) @@ -6697,8 +6903,8 @@ void mem_cgroup_migrate(struct page *oldpage, struct page *newpage) page_counter_charge(&memcg->memory, nr_pages); if (do_memsw_account()) page_counter_charge(&memcg->memsw, nr_pages); - css_get_many(&memcg->css, nr_pages); + css_get(&memcg->css); commit_charge(newpage, memcg); local_irq_save(flags); @@ -6821,17 +7027,6 @@ static int __init mem_cgroup_init(void) { int cpu, node; -#ifdef CONFIG_MEMCG_KMEM - /* - * Kmem cache creation is mostly done with the slab_mutex held, - * so use a workqueue with limited concurrency to avoid stalling - * all worker threads in case lots of cgroups are created and - * destroyed simultaneously. - */ - memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1); - BUG_ON(!memcg_kmem_cache_wq); -#endif - cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, memcg_hotplug_cpu_dead); @@ -6935,8 +7130,7 @@ void mem_cgroup_swapout(struct page *page, swp_entry_t entry) mem_cgroup_charge_statistics(memcg, page, -nr_entries); memcg_check_events(memcg, page); - if (!mem_cgroup_is_root(memcg)) - css_put_many(&memcg->css, nr_entries); + css_put(&memcg->css); } /** diff --git a/mm/memory.c b/mm/memory.c index 0da48f6586f8..c39a13b09602 100644 --- a/mm/memory.c +++ b/mm/memory.c @@ -1098,7 +1098,7 @@ again: } entry = pte_to_swp_entry(ptent); - if (non_swap_entry(entry) && is_device_private_entry(entry)) { + if (is_device_private_entry(entry)) { struct page *page = device_private_entry_to_page(entry); if (unlikely(details && details->check_mapping)) { @@ -2082,7 +2082,7 @@ static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, /** * remap_pfn_range - remap kernel memory to userspace * @vma: user vma to map to - * @addr: target user address to start at + * @addr: target page aligned user address to start at * @pfn: page frame number of kernel physical memory address * @size: size of mapping area * @prot: page protection flags for this mapping @@ -2101,6 +2101,9 @@ int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, unsigned long remap_pfn = pfn; int err; + if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) + return -EINVAL; + /* * Physically remapped pages are special. Tell the * rest of the world about it: diff --git a/mm/memory_hotplug.c b/mm/memory_hotplug.c index da374cd3d45b..ac6961abaa10 100644 --- a/mm/memory_hotplug.c +++ b/mm/memory_hotplug.c @@ -831,6 +831,14 @@ int __ref online_pages(unsigned long pfn, unsigned long nr_pages, zone->zone_pgdat->node_present_pages += onlined_pages; pgdat_resize_unlock(zone->zone_pgdat, &flags); + /* + * When exposing larger, physically contiguous memory areas to the + * buddy, shuffling in the buddy (when freeing onlined pages, putting + * them either to the head or the tail of the freelist) is only helpful + * for maintaining the shuffle, but not for creating the initial + * shuffle. Shuffle the whole zone to make sure the just onlined pages + * are properly distributed across the whole freelist. + */ shuffle_zone(zone); node_states_set_node(nid, &arg); @@ -844,8 +852,6 @@ int __ref online_pages(unsigned long pfn, unsigned long nr_pages, kswapd_run(nid); kcompactd_run(nid); - vm_total_pages = nr_free_pagecache_pages(); - writeback_set_ratelimit(); memory_notify(MEM_ONLINE, &arg); @@ -1595,7 +1601,6 @@ static int __ref __offline_pages(unsigned long start_pfn, kcompactd_stop(node); } - vm_total_pages = nr_free_pagecache_pages(); writeback_set_ratelimit(); memory_notify(MEM_OFFLINE, &arg); diff --git a/mm/migrate.c b/mm/migrate.c index 4fcc465736ff..d179657f8685 100644 --- a/mm/migrate.c +++ b/mm/migrate.c @@ -2386,9 +2386,9 @@ static void migrate_vma_collect(struct migrate_vma *migrate) * that the registered device driver can skip invalidating device * private page mappings that won't be migrated. */ - mmu_notifier_range_init(&range, MMU_NOTIFY_MIGRATE, 0, migrate->vma, - migrate->vma->vm_mm, migrate->start, migrate->end); - range.migrate_pgmap_owner = migrate->pgmap_owner; + mmu_notifier_range_init_migrate(&range, 0, migrate->vma, + migrate->vma->vm_mm, migrate->start, migrate->end, + migrate->pgmap_owner); mmu_notifier_invalidate_range_start(&range); walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end, diff --git a/mm/mm_init.c b/mm/mm_init.c index 435e5f794b3b..b06a30fbedff 100644 --- a/mm/mm_init.c +++ b/mm/mm_init.c @@ -13,6 +13,7 @@ #include <linux/memory.h> #include <linux/notifier.h> #include <linux/sched.h> +#include <linux/mman.h> #include "internal.h" #ifdef CONFIG_DEBUG_MEMORY_INIT @@ -144,14 +145,23 @@ EXPORT_SYMBOL_GPL(mm_kobj); #ifdef CONFIG_SMP s32 vm_committed_as_batch = 32; -static void __meminit mm_compute_batch(void) +void mm_compute_batch(int overcommit_policy) { u64 memsized_batch; s32 nr = num_present_cpus(); s32 batch = max_t(s32, nr*2, 32); - - /* batch size set to 0.4% of (total memory/#cpus), or max int32 */ - memsized_batch = min_t(u64, (totalram_pages()/nr)/256, 0x7fffffff); + unsigned long ram_pages = totalram_pages(); + + /* + * For policy OVERCOMMIT_NEVER, set batch size to 0.4% of + * (total memory/#cpus), and lift it to 25% for other policies + * to easy the possible lock contention for percpu_counter + * vm_committed_as, while the max limit is INT_MAX + */ + if (overcommit_policy == OVERCOMMIT_NEVER) + memsized_batch = min_t(u64, ram_pages/nr/256, INT_MAX); + else + memsized_batch = min_t(u64, ram_pages/nr/4, INT_MAX); vm_committed_as_batch = max_t(s32, memsized_batch, batch); } @@ -162,7 +172,7 @@ static int __meminit mm_compute_batch_notifier(struct notifier_block *self, switch (action) { case MEM_ONLINE: case MEM_OFFLINE: - mm_compute_batch(); + mm_compute_batch(sysctl_overcommit_memory); default: break; } @@ -176,7 +186,7 @@ static struct notifier_block compute_batch_nb __meminitdata = { static int __init mm_compute_batch_init(void) { - mm_compute_batch(); + mm_compute_batch(sysctl_overcommit_memory); register_hotmemory_notifier(&compute_batch_nb); return 0; diff --git a/mm/mmap.c b/mm/mmap.c index dcdab2675a21..40248d84ad5f 100644 --- a/mm/mmap.c +++ b/mm/mmap.c @@ -1030,7 +1030,7 @@ static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. * * We don't check here for the merged mmap wrapping around the end of pagecache - * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which + * indices (16TB on ia32) because do_mmap() does not permit mmap's which * wrap, nor mmaps which cover the final page at index -1UL. */ static int @@ -1365,11 +1365,11 @@ static inline bool file_mmap_ok(struct file *file, struct inode *inode, */ unsigned long do_mmap(struct file *file, unsigned long addr, unsigned long len, unsigned long prot, - unsigned long flags, vm_flags_t vm_flags, - unsigned long pgoff, unsigned long *populate, - struct list_head *uf) + unsigned long flags, unsigned long pgoff, + unsigned long *populate, struct list_head *uf) { struct mm_struct *mm = current->mm; + vm_flags_t vm_flags; int pkey = 0; *populate = 0; @@ -1431,7 +1431,7 @@ unsigned long do_mmap(struct file *file, unsigned long addr, * to. we assume access permissions have been handled by the open * of the memory object, so we don't do any here. */ - vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) | + vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) | mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; if (flags & MAP_LOCKED) @@ -1562,11 +1562,12 @@ unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, file = fget(fd); if (!file) return -EBADF; - if (is_file_hugepages(file)) + if (is_file_hugepages(file)) { len = ALIGN(len, huge_page_size(hstate_file(file))); - retval = -EINVAL; - if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file))) + } else if (unlikely(flags & MAP_HUGETLB)) { + retval = -EINVAL; goto out_fput; + } } else if (flags & MAP_HUGETLB) { struct user_struct *user = NULL; struct hstate *hs; @@ -1689,7 +1690,7 @@ unsigned long mmap_region(struct file *file, unsigned long addr, struct list_head *uf) { struct mm_struct *mm = current->mm; - struct vm_area_struct *vma, *prev; + struct vm_area_struct *vma, *prev, *merge; int error; struct rb_node **rb_link, *rb_parent; unsigned long charged = 0; @@ -1773,6 +1774,25 @@ unsigned long mmap_region(struct file *file, unsigned long addr, if (error) goto unmap_and_free_vma; + /* If vm_flags changed after call_mmap(), we should try merge vma again + * as we may succeed this time. + */ + if (unlikely(vm_flags != vma->vm_flags && prev)) { + merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags, + NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX); + if (merge) { + fput(file); + vm_area_free(vma); + vma = merge; + /* Update vm_flags and possible addr to pick up the change. We don't + * warn here if addr changed as the vma is not linked by vma_link(). + */ + addr = vma->vm_start; + vm_flags = vma->vm_flags; + goto unmap_writable; + } + } + /* Can addr have changed?? * * Answer: Yes, several device drivers can do it in their @@ -1795,6 +1815,7 @@ unsigned long mmap_region(struct file *file, unsigned long addr, vma_link(mm, vma, prev, rb_link, rb_parent); /* Once vma denies write, undo our temporary denial count */ if (file) { +unmap_writable: if (vm_flags & VM_SHARED) mapping_unmap_writable(file->f_mapping); if (vm_flags & VM_DENYWRITE) @@ -2209,7 +2230,7 @@ get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, /* * mmap_region() will call shmem_zero_setup() to create a file, * so use shmem's get_unmapped_area in case it can be huge. - * do_mmap_pgoff() will clear pgoff, so match alignment. + * do_mmap() will clear pgoff, so match alignment. */ pgoff = 0; get_area = shmem_get_unmapped_area; @@ -2982,7 +3003,7 @@ SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, } file = get_file(vma->vm_file); - ret = do_mmap_pgoff(vma->vm_file, start, size, + ret = do_mmap(vma->vm_file, start, size, prot, flags, pgoff, &populate, NULL); fput(file); out: @@ -3202,7 +3223,7 @@ int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) * By setting it to reflect the virtual start address of the * vma, merges and splits can happen in a seamless way, just * using the existing file pgoff checks and manipulations. - * Similarly in do_mmap_pgoff and in do_brk. + * Similarly in do_mmap and in do_brk. */ if (vma_is_anonymous(vma)) { BUG_ON(vma->anon_vma); diff --git a/mm/mremap.c b/mm/mremap.c index 6b153dc05fe4..138abbae4f75 100644 --- a/mm/mremap.c +++ b/mm/mremap.c @@ -193,17 +193,12 @@ static void move_ptes(struct vm_area_struct *vma, pmd_t *old_pmd, #ifdef CONFIG_HAVE_MOVE_PMD static bool move_normal_pmd(struct vm_area_struct *vma, unsigned long old_addr, - unsigned long new_addr, unsigned long old_end, - pmd_t *old_pmd, pmd_t *new_pmd) + unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd) { spinlock_t *old_ptl, *new_ptl; struct mm_struct *mm = vma->vm_mm; pmd_t pmd; - if ((old_addr & ~PMD_MASK) || (new_addr & ~PMD_MASK) - || old_end - old_addr < PMD_SIZE) - return false; - /* * The destination pmd shouldn't be established, free_pgtables() * should have released it. @@ -279,6 +274,9 @@ unsigned long move_page_tables(struct vm_area_struct *vma, extent = next - old_addr; if (extent > old_end - old_addr) extent = old_end - old_addr; + next = (new_addr + PMD_SIZE) & PMD_MASK; + if (extent > next - new_addr) + extent = next - new_addr; old_pmd = get_old_pmd(vma->vm_mm, old_addr); if (!old_pmd) continue; @@ -292,7 +290,7 @@ unsigned long move_page_tables(struct vm_area_struct *vma, if (need_rmap_locks) take_rmap_locks(vma); moved = move_huge_pmd(vma, old_addr, new_addr, - old_end, old_pmd, new_pmd); + old_pmd, new_pmd); if (need_rmap_locks) drop_rmap_locks(vma); if (moved) @@ -312,7 +310,7 @@ unsigned long move_page_tables(struct vm_area_struct *vma, if (need_rmap_locks) take_rmap_locks(vma); moved = move_normal_pmd(vma, old_addr, new_addr, - old_end, old_pmd, new_pmd); + old_pmd, new_pmd); if (need_rmap_locks) drop_rmap_locks(vma); if (moved) @@ -322,9 +320,6 @@ unsigned long move_page_tables(struct vm_area_struct *vma, if (pte_alloc(new_vma->vm_mm, new_pmd)) break; - next = (new_addr + PMD_SIZE) & PMD_MASK; - if (extent > next - new_addr) - extent = next - new_addr; move_ptes(vma, old_pmd, old_addr, old_addr + extent, new_vma, new_pmd, new_addr, need_rmap_locks); } diff --git a/mm/nommu.c b/mm/nommu.c index 314174817b04..340ae7774c13 100644 --- a/mm/nommu.c +++ b/mm/nommu.c @@ -1078,7 +1078,6 @@ unsigned long do_mmap(struct file *file, unsigned long len, unsigned long prot, unsigned long flags, - vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, struct list_head *uf) @@ -1086,6 +1085,7 @@ unsigned long do_mmap(struct file *file, struct vm_area_struct *vma; struct vm_region *region; struct rb_node *rb; + vm_flags_t vm_flags; unsigned long capabilities, result; int ret; @@ -1104,7 +1104,7 @@ unsigned long do_mmap(struct file *file, /* we've determined that we can make the mapping, now translate what we * now know into VMA flags */ - vm_flags |= determine_vm_flags(file, prot, flags, capabilities); + vm_flags = determine_vm_flags(file, prot, flags, capabilities); /* we're going to need to record the mapping */ region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL); @@ -1763,7 +1763,7 @@ EXPORT_SYMBOL_GPL(access_process_vm); * * Check the shared mappings on an inode on behalf of a shrinking truncate to * make sure that that any outstanding VMAs aren't broken and then shrink the - * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't + * vm_regions that extend that beyond so that do_mmap() doesn't * automatically grant mappings that are too large. */ int nommu_shrink_inode_mappings(struct inode *inode, size_t size, diff --git a/mm/oom_kill.c b/mm/oom_kill.c index 6e94962893ee..d30ce75f23fb 100644 --- a/mm/oom_kill.c +++ b/mm/oom_kill.c @@ -184,7 +184,7 @@ static bool is_dump_unreclaim_slabs(void) global_node_page_state(NR_ISOLATED_FILE) + global_node_page_state(NR_UNEVICTABLE); - return (global_node_page_state(NR_SLAB_UNRECLAIMABLE) > nr_lru); + return (global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B) > nr_lru); } /** diff --git a/mm/page-writeback.c b/mm/page-writeback.c index 28b3e7a67565..4e4ddd67b71e 100644 --- a/mm/page-writeback.c +++ b/mm/page-writeback.c @@ -2076,13 +2076,11 @@ static int page_writeback_cpu_online(unsigned int cpu) * Called early on to tune the page writeback dirty limits. * * We used to scale dirty pages according to how total memory - * related to pages that could be allocated for buffers (by - * comparing nr_free_buffer_pages() to vm_total_pages. + * related to pages that could be allocated for buffers. * * However, that was when we used "dirty_ratio" to scale with * all memory, and we don't do that any more. "dirty_ratio" - * is now applied to total non-HIGHPAGE memory (by subtracting - * totalhigh_pages from vm_total_pages), and as such we can't + * is now applied to total non-HIGHPAGE memory, and as such we can't * get into the old insane situation any more where we had * large amounts of dirty pages compared to a small amount of * non-HIGHMEM memory. diff --git a/mm/page_alloc.c b/mm/page_alloc.c index 901a21f61d68..167732f4d124 100644 --- a/mm/page_alloc.c +++ b/mm/page_alloc.c @@ -459,25 +459,23 @@ static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) { #ifdef CONFIG_SPARSEMEM pfn &= (PAGES_PER_SECTION-1); - return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; #else pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); - return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; #endif /* CONFIG_SPARSEMEM */ + return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; } /** * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages * @page: The page within the block of interest * @pfn: The target page frame number - * @end_bitidx: The last bit of interest to retrieve * @mask: mask of bits that the caller is interested in * * Return: pageblock_bits flags */ -static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page, +static __always_inline +unsigned long __get_pfnblock_flags_mask(struct page *page, unsigned long pfn, - unsigned long end_bitidx, unsigned long mask) { unsigned long *bitmap; @@ -490,20 +488,18 @@ static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page bitidx &= (BITS_PER_LONG-1); word = bitmap[word_bitidx]; - bitidx += end_bitidx; - return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; + return (word >> bitidx) & mask; } unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, - unsigned long end_bitidx, unsigned long mask) { - return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask); + return __get_pfnblock_flags_mask(page, pfn, mask); } static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) { - return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK); + return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); } /** @@ -511,12 +507,10 @@ static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned * @page: The page within the block of interest * @flags: The flags to set * @pfn: The target page frame number - * @end_bitidx: The last bit of interest * @mask: mask of bits that the caller is interested in */ void set_pfnblock_flags_mask(struct page *page, unsigned long flags, unsigned long pfn, - unsigned long end_bitidx, unsigned long mask) { unsigned long *bitmap; @@ -533,9 +527,8 @@ void set_pfnblock_flags_mask(struct page *page, unsigned long flags, VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); - bitidx += end_bitidx; - mask <<= (BITS_PER_LONG - bitidx - 1); - flags <<= (BITS_PER_LONG - bitidx - 1); + mask <<= bitidx; + flags <<= bitidx; word = READ_ONCE(bitmap[word_bitidx]); for (;;) { @@ -552,8 +545,8 @@ void set_pageblock_migratetype(struct page *page, int migratetype) migratetype < MIGRATE_PCPTYPES)) migratetype = MIGRATE_UNMOVABLE; - set_pageblock_flags_group(page, (unsigned long)migratetype, - PB_migrate, PB_migrate_end); + set_pfnblock_flags_mask(page, (unsigned long)migratetype, + page_to_pfn(page), MIGRATETYPE_MASK); } #ifdef CONFIG_DEBUG_VM @@ -813,11 +806,10 @@ static inline struct capture_control *task_capc(struct zone *zone) { struct capture_control *capc = current->capture_control; - return capc && + return unlikely(capc) && !(current->flags & PF_KTHREAD) && !capc->page && - capc->cc->zone == zone && - capc->cc->direct_compaction ? capc : NULL; + capc->cc->zone == zone ? capc : NULL; } static inline bool @@ -1164,8 +1156,11 @@ static void kernel_init_free_pages(struct page *page, int numpages) { int i; + /* s390's use of memset() could override KASAN redzones. */ + kasan_disable_current(); for (i = 0; i < numpages; i++) clear_highpage(page + i); + kasan_enable_current(); } static __always_inline bool free_pages_prepare(struct page *page, @@ -2273,7 +2268,7 @@ struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, * This array describes the order lists are fallen back to when * the free lists for the desirable migrate type are depleted */ -static int fallbacks[MIGRATE_TYPES][4] = { +static int fallbacks[MIGRATE_TYPES][3] = { [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, @@ -2790,7 +2785,7 @@ __rmqueue(struct zone *zone, unsigned int order, int migratetype, * allocating from CMA when over half of the zone's free memory * is in the CMA area. */ - if (migratetype == MIGRATE_MOVABLE && + if (alloc_flags & ALLOC_CMA && zone_page_state(zone, NR_FREE_CMA_PAGES) > zone_page_state(zone, NR_FREE_PAGES) / 2) { page = __rmqueue_cma_fallback(zone, order); @@ -2801,7 +2796,7 @@ __rmqueue(struct zone *zone, unsigned int order, int migratetype, retry: page = __rmqueue_smallest(zone, order, migratetype); if (unlikely(!page)) { - if (migratetype == MIGRATE_MOVABLE) + if (alloc_flags & ALLOC_CMA) page = __rmqueue_cma_fallback(zone, order); if (!page && __rmqueue_fallback(zone, order, migratetype, @@ -3487,6 +3482,29 @@ static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) } ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); +static inline long __zone_watermark_unusable_free(struct zone *z, + unsigned int order, unsigned int alloc_flags) +{ + const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); + long unusable_free = (1 << order) - 1; + + /* + * If the caller does not have rights to ALLOC_HARDER then subtract + * the high-atomic reserves. This will over-estimate the size of the + * atomic reserve but it avoids a search. + */ + if (likely(!alloc_harder)) + unusable_free += z->nr_reserved_highatomic; + +#ifdef CONFIG_CMA + /* If allocation can't use CMA areas don't use free CMA pages */ + if (!(alloc_flags & ALLOC_CMA)) + unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); +#endif + + return unusable_free; +} + /* * Return true if free base pages are above 'mark'. For high-order checks it * will return true of the order-0 watermark is reached and there is at least @@ -3502,19 +3520,12 @@ bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); /* free_pages may go negative - that's OK */ - free_pages -= (1 << order) - 1; + free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); if (alloc_flags & ALLOC_HIGH) min -= min / 2; - /* - * If the caller does not have rights to ALLOC_HARDER then subtract - * the high-atomic reserves. This will over-estimate the size of the - * atomic reserve but it avoids a search. - */ - if (likely(!alloc_harder)) { - free_pages -= z->nr_reserved_highatomic; - } else { + if (unlikely(alloc_harder)) { /* * OOM victims can try even harder than normal ALLOC_HARDER * users on the grounds that it's definitely going to be in @@ -3527,13 +3538,6 @@ bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, min -= min / 4; } - -#ifdef CONFIG_CMA - /* If allocation can't use CMA areas don't use free CMA pages */ - if (!(alloc_flags & ALLOC_CMA)) - free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); -#endif - /* * Check watermarks for an order-0 allocation request. If these * are not met, then a high-order request also cannot go ahead @@ -3580,30 +3584,42 @@ bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, static inline bool zone_watermark_fast(struct zone *z, unsigned int order, unsigned long mark, int highest_zoneidx, - unsigned int alloc_flags) + unsigned int alloc_flags, gfp_t gfp_mask) { - long free_pages = zone_page_state(z, NR_FREE_PAGES); - long cma_pages = 0; + long free_pages; -#ifdef CONFIG_CMA - /* If allocation can't use CMA areas don't use free CMA pages */ - if (!(alloc_flags & ALLOC_CMA)) - cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES); -#endif + free_pages = zone_page_state(z, NR_FREE_PAGES); /* * Fast check for order-0 only. If this fails then the reserves - * need to be calculated. There is a corner case where the check - * passes but only the high-order atomic reserve are free. If - * the caller is !atomic then it'll uselessly search the free - * list. That corner case is then slower but it is harmless. + * need to be calculated. */ - if (!order && (free_pages - cma_pages) > - mark + z->lowmem_reserve[highest_zoneidx]) + if (!order) { + long fast_free; + + fast_free = free_pages; + fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags); + if (fast_free > mark + z->lowmem_reserve[highest_zoneidx]) + return true; + } + + if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, + free_pages)) return true; + /* + * Ignore watermark boosting for GFP_ATOMIC order-0 allocations + * when checking the min watermark. The min watermark is the + * point where boosting is ignored so that kswapd is woken up + * when below the low watermark. + */ + if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost + && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { + mark = z->_watermark[WMARK_MIN]; + return __zone_watermark_ok(z, order, mark, highest_zoneidx, + alloc_flags, free_pages); + } - return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, - free_pages); + return false; } bool zone_watermark_ok_safe(struct zone *z, unsigned int order, @@ -3671,6 +3687,20 @@ alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) return alloc_flags; } +static inline unsigned int current_alloc_flags(gfp_t gfp_mask, + unsigned int alloc_flags) +{ +#ifdef CONFIG_CMA + unsigned int pflags = current->flags; + + if (!(pflags & PF_MEMALLOC_NOCMA) && + gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) + alloc_flags |= ALLOC_CMA; + +#endif + return alloc_flags; +} + /* * get_page_from_freelist goes through the zonelist trying to allocate * a page. @@ -3747,7 +3777,8 @@ retry: mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); if (!zone_watermark_fast(zone, order, mark, - ac->highest_zoneidx, alloc_flags)) { + ac->highest_zoneidx, alloc_flags, + gfp_mask)) { int ret; #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT @@ -4316,10 +4347,8 @@ gfp_to_alloc_flags(gfp_t gfp_mask) } else if (unlikely(rt_task(current)) && !in_interrupt()) alloc_flags |= ALLOC_HARDER; -#ifdef CONFIG_CMA - if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) - alloc_flags |= ALLOC_CMA; -#endif + alloc_flags = current_alloc_flags(gfp_mask, alloc_flags); + return alloc_flags; } @@ -4620,7 +4649,7 @@ retry: reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); if (reserve_flags) - alloc_flags = reserve_flags; + alloc_flags = current_alloc_flags(gfp_mask, reserve_flags); /* * Reset the nodemask and zonelist iterators if memory policies can be @@ -4697,7 +4726,7 @@ retry: /* Avoid allocations with no watermarks from looping endlessly */ if (tsk_is_oom_victim(current) && - (alloc_flags == ALLOC_OOM || + (alloc_flags & ALLOC_OOM || (gfp_mask & __GFP_NOMEMALLOC))) goto nopage; @@ -4771,7 +4800,11 @@ static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, if (cpusets_enabled()) { *alloc_mask |= __GFP_HARDWALL; - if (!ac->nodemask) + /* + * When we are in the interrupt context, it is irrelevant + * to the current task context. It means that any node ok. + */ + if (!in_interrupt() && !ac->nodemask) ac->nodemask = &cpuset_current_mems_allowed; else *alloc_flags |= ALLOC_CPUSET; @@ -4785,8 +4818,7 @@ static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, if (should_fail_alloc_page(gfp_mask, order)) return false; - if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE) - *alloc_flags |= ALLOC_CMA; + *alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags); return true; } @@ -5165,19 +5197,6 @@ unsigned long nr_free_buffer_pages(void) } EXPORT_SYMBOL_GPL(nr_free_buffer_pages); -/** - * nr_free_pagecache_pages - count number of pages beyond high watermark - * - * nr_free_pagecache_pages() counts the number of pages which are beyond the - * high watermark within all zones. - * - * Return: number of pages beyond high watermark within all zones. - */ -unsigned long nr_free_pagecache_pages(void) -{ - return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); -} - static inline void show_node(struct zone *zone) { if (IS_ENABLED(CONFIG_NUMA)) @@ -5220,8 +5239,8 @@ long si_mem_available(void) * items that are in use, and cannot be freed. Cap this estimate at the * low watermark. */ - reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) + - global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); + reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) + + global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); available += reclaimable - min(reclaimable / 2, wmark_low); if (available < 0) @@ -5364,8 +5383,8 @@ void show_free_areas(unsigned int filter, nodemask_t *nodemask) global_node_page_state(NR_UNEVICTABLE), global_node_page_state(NR_FILE_DIRTY), global_node_page_state(NR_WRITEBACK), - global_node_page_state(NR_SLAB_RECLAIMABLE), - global_node_page_state(NR_SLAB_UNRECLAIMABLE), + global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B), + global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B), global_node_page_state(NR_FILE_MAPPED), global_node_page_state(NR_SHMEM), global_zone_page_state(NR_PAGETABLE), @@ -5396,6 +5415,10 @@ void show_free_areas(unsigned int filter, nodemask_t *nodemask) " anon_thp: %lukB" #endif " writeback_tmp:%lukB" + " kernel_stack:%lukB" +#ifdef CONFIG_SHADOW_CALL_STACK + " shadow_call_stack:%lukB" +#endif " all_unreclaimable? %s" "\n", pgdat->node_id, @@ -5417,6 +5440,10 @@ void show_free_areas(unsigned int filter, nodemask_t *nodemask) K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR), #endif K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), + node_page_state(pgdat, NR_KERNEL_STACK_KB), +#ifdef CONFIG_SHADOW_CALL_STACK + node_page_state(pgdat, NR_KERNEL_SCS_KB), +#endif pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? "yes" : "no"); } @@ -5448,10 +5475,6 @@ void show_free_areas(unsigned int filter, nodemask_t *nodemask) " present:%lukB" " managed:%lukB" " mlocked:%lukB" - " kernel_stack:%lukB" -#ifdef CONFIG_SHADOW_CALL_STACK - " shadow_call_stack:%lukB" -#endif " pagetables:%lukB" " bounce:%lukB" " free_pcp:%lukB" @@ -5473,10 +5496,6 @@ void show_free_areas(unsigned int filter, nodemask_t *nodemask) K(zone->present_pages), K(zone_managed_pages(zone)), K(zone_page_state(zone, NR_MLOCK)), - zone_page_state(zone, NR_KERNEL_STACK_KB), -#ifdef CONFIG_SHADOW_CALL_STACK - zone_page_state(zone, NR_KERNEL_SCS_KB), -#endif K(zone_page_state(zone, NR_PAGETABLE)), K(zone_page_state(zone, NR_BOUNCE)), K(free_pcp), @@ -5891,13 +5910,16 @@ build_all_zonelists_init(void) */ void __ref build_all_zonelists(pg_data_t *pgdat) { + unsigned long vm_total_pages; + if (system_state == SYSTEM_BOOTING) { build_all_zonelists_init(); } else { __build_all_zonelists(pgdat); /* cpuset refresh routine should be here */ } - vm_total_pages = nr_free_pagecache_pages(); + /* Get the number of free pages beyond high watermark in all zones. */ + vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); /* * Disable grouping by mobility if the number of pages in the * system is too low to allow the mechanism to work. It would be @@ -6325,22 +6347,6 @@ void __meminit init_currently_empty_zone(struct zone *zone, } /** - * sparse_memory_present_with_active_regions - Call memory_present for each active range - * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. - * - * If an architecture guarantees that all ranges registered contain no holes and may - * be freed, this function may be used instead of calling memory_present() manually. - */ -void __init sparse_memory_present_with_active_regions(int nid) -{ - unsigned long start_pfn, end_pfn; - int i, this_nid; - - for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) - memory_present(this_nid, start_pfn, end_pfn); -} - -/** * get_pfn_range_for_nid - Return the start and end page frames for a node * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. * @start_pfn: Passed by reference. On return, it will have the node start_pfn. diff --git a/mm/page_counter.c b/mm/page_counter.c index c56db2d5e159..b4663844c9b3 100644 --- a/mm/page_counter.c +++ b/mm/page_counter.c @@ -72,7 +72,7 @@ void page_counter_charge(struct page_counter *counter, unsigned long nr_pages) long new; new = atomic_long_add_return(nr_pages, &c->usage); - propagate_protected_usage(counter, new); + propagate_protected_usage(c, new); /* * This is indeed racy, but we can live with some * inaccuracy in the watermark. @@ -116,7 +116,7 @@ bool page_counter_try_charge(struct page_counter *counter, new = atomic_long_add_return(nr_pages, &c->usage); if (new > c->max) { atomic_long_sub(nr_pages, &c->usage); - propagate_protected_usage(counter, new); + propagate_protected_usage(c, new); /* * This is racy, but we can live with some * inaccuracy in the failcnt. @@ -125,7 +125,7 @@ bool page_counter_try_charge(struct page_counter *counter, *fail = c; goto failed; } - propagate_protected_usage(counter, new); + propagate_protected_usage(c, new); /* * Just like with failcnt, we can live with some * inaccuracy in the watermark. diff --git a/mm/page_io.c b/mm/page_io.c index ccda76790088..9e362567d454 100644 --- a/mm/page_io.c +++ b/mm/page_io.c @@ -441,7 +441,7 @@ int swap_readpage(struct page *page, bool synchronous) break; if (!blk_poll(disk->queue, qc, true)) - io_schedule(); + blk_io_schedule(); } __set_current_state(TASK_RUNNING); bio_put(bio); diff --git a/mm/pgalloc-track.h b/mm/pgalloc-track.h new file mode 100644 index 000000000000..1dcc865029a2 --- /dev/null +++ b/mm/pgalloc-track.h @@ -0,0 +1,51 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +#ifndef _LINUX_PGALLLC_TRACK_H +#define _LINUX_PGALLLC_TRACK_H + +#if defined(CONFIG_MMU) +static inline p4d_t *p4d_alloc_track(struct mm_struct *mm, pgd_t *pgd, + unsigned long address, + pgtbl_mod_mask *mod_mask) +{ + if (unlikely(pgd_none(*pgd))) { + if (__p4d_alloc(mm, pgd, address)) + return NULL; + *mod_mask |= PGTBL_PGD_MODIFIED; + } + + return p4d_offset(pgd, address); +} + +static inline pud_t *pud_alloc_track(struct mm_struct *mm, p4d_t *p4d, + unsigned long address, + pgtbl_mod_mask *mod_mask) +{ + if (unlikely(p4d_none(*p4d))) { + if (__pud_alloc(mm, p4d, address)) + return NULL; + *mod_mask |= PGTBL_P4D_MODIFIED; + } + + return pud_offset(p4d, address); +} + +static inline pmd_t *pmd_alloc_track(struct mm_struct *mm, pud_t *pud, + unsigned long address, + pgtbl_mod_mask *mod_mask) +{ + if (unlikely(pud_none(*pud))) { + if (__pmd_alloc(mm, pud, address)) + return NULL; + *mod_mask |= PGTBL_PUD_MODIFIED; + } + + return pmd_offset(pud, address); +} +#endif /* CONFIG_MMU */ + +#define pte_alloc_kernel_track(pmd, address, mask) \ + ((unlikely(pmd_none(*(pmd))) && \ + (__pte_alloc_kernel(pmd) || ({*(mask)|=PGTBL_PMD_MODIFIED;0;})))?\ + NULL: pte_offset_kernel(pmd, address)) + +#endif /* _LINUX_PGALLLC_TRACK_H */ diff --git a/mm/shmem.c b/mm/shmem.c index b2abca3f7f33..eb6b36d89722 100644 --- a/mm/shmem.c +++ b/mm/shmem.c @@ -114,11 +114,13 @@ struct shmem_options { kuid_t uid; kgid_t gid; umode_t mode; + bool full_inums; int huge; int seen; #define SHMEM_SEEN_BLOCKS 1 #define SHMEM_SEEN_INODES 2 #define SHMEM_SEEN_HUGE 4 +#define SHMEM_SEEN_INUMS 8 }; #ifdef CONFIG_TMPFS @@ -260,18 +262,76 @@ bool vma_is_shmem(struct vm_area_struct *vma) static LIST_HEAD(shmem_swaplist); static DEFINE_MUTEX(shmem_swaplist_mutex); -static int shmem_reserve_inode(struct super_block *sb) +/* + * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and + * produces a novel ino for the newly allocated inode. + * + * It may also be called when making a hard link to permit the space needed by + * each dentry. However, in that case, no new inode number is needed since that + * internally draws from another pool of inode numbers (currently global + * get_next_ino()). This case is indicated by passing NULL as inop. + */ +#define SHMEM_INO_BATCH 1024 +static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) { struct shmem_sb_info *sbinfo = SHMEM_SB(sb); - if (sbinfo->max_inodes) { + ino_t ino; + + if (!(sb->s_flags & SB_KERNMOUNT)) { spin_lock(&sbinfo->stat_lock); if (!sbinfo->free_inodes) { spin_unlock(&sbinfo->stat_lock); return -ENOSPC; } sbinfo->free_inodes--; + if (inop) { + ino = sbinfo->next_ino++; + if (unlikely(is_zero_ino(ino))) + ino = sbinfo->next_ino++; + if (unlikely(!sbinfo->full_inums && + ino > UINT_MAX)) { + /* + * Emulate get_next_ino uint wraparound for + * compatibility + */ + if (IS_ENABLED(CONFIG_64BIT)) + pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", + __func__, MINOR(sb->s_dev)); + sbinfo->next_ino = 1; + ino = sbinfo->next_ino++; + } + *inop = ino; + } spin_unlock(&sbinfo->stat_lock); + } else if (inop) { + /* + * __shmem_file_setup, one of our callers, is lock-free: it + * doesn't hold stat_lock in shmem_reserve_inode since + * max_inodes is always 0, and is called from potentially + * unknown contexts. As such, use a per-cpu batched allocator + * which doesn't require the per-sb stat_lock unless we are at + * the batch boundary. + * + * We don't need to worry about inode{32,64} since SB_KERNMOUNT + * shmem mounts are not exposed to userspace, so we don't need + * to worry about things like glibc compatibility. + */ + ino_t *next_ino; + next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); + ino = *next_ino; + if (unlikely(ino % SHMEM_INO_BATCH == 0)) { + spin_lock(&sbinfo->stat_lock); + ino = sbinfo->next_ino; + sbinfo->next_ino += SHMEM_INO_BATCH; + spin_unlock(&sbinfo->stat_lock); + if (unlikely(is_zero_ino(ino))) + ino++; + } + *inop = ino; + *next_ino = ++ino; + put_cpu(); } + return 0; } @@ -2222,13 +2282,14 @@ static struct inode *shmem_get_inode(struct super_block *sb, const struct inode struct inode *inode; struct shmem_inode_info *info; struct shmem_sb_info *sbinfo = SHMEM_SB(sb); + ino_t ino; - if (shmem_reserve_inode(sb)) + if (shmem_reserve_inode(sb, &ino)) return NULL; inode = new_inode(sb); if (inode) { - inode->i_ino = get_next_ino(); + inode->i_ino = ino; inode_init_owner(inode, dir, mode); inode->i_blocks = 0; inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); @@ -2932,7 +2993,7 @@ static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentr * first link must skip that, to get the accounting right. */ if (inode->i_nlink) { - ret = shmem_reserve_inode(inode->i_sb); + ret = shmem_reserve_inode(inode->i_sb, NULL); if (ret) goto out; } @@ -3347,6 +3408,8 @@ enum shmem_param { Opt_nr_inodes, Opt_size, Opt_uid, + Opt_inode32, + Opt_inode64, }; static const struct constant_table shmem_param_enums_huge[] = { @@ -3366,6 +3429,8 @@ const struct fs_parameter_spec shmem_fs_parameters[] = { fsparam_string("nr_inodes", Opt_nr_inodes), fsparam_string("size", Opt_size), fsparam_u32 ("uid", Opt_uid), + fsparam_flag ("inode32", Opt_inode32), + fsparam_flag ("inode64", Opt_inode64), {} }; @@ -3437,6 +3502,18 @@ static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) break; } goto unsupported_parameter; + case Opt_inode32: + ctx->full_inums = false; + ctx->seen |= SHMEM_SEEN_INUMS; + break; + case Opt_inode64: + if (sizeof(ino_t) < 8) { + return invalfc(fc, + "Cannot use inode64 with <64bit inums in kernel\n"); + } + ctx->full_inums = true; + ctx->seen |= SHMEM_SEEN_INUMS; + break; } return 0; @@ -3528,8 +3605,16 @@ static int shmem_reconfigure(struct fs_context *fc) } } + if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && + sbinfo->next_ino > UINT_MAX) { + err = "Current inum too high to switch to 32-bit inums"; + goto out; + } + if (ctx->seen & SHMEM_SEEN_HUGE) sbinfo->huge = ctx->huge; + if (ctx->seen & SHMEM_SEEN_INUMS) + sbinfo->full_inums = ctx->full_inums; if (ctx->seen & SHMEM_SEEN_BLOCKS) sbinfo->max_blocks = ctx->blocks; if (ctx->seen & SHMEM_SEEN_INODES) { @@ -3569,6 +3654,29 @@ static int shmem_show_options(struct seq_file *seq, struct dentry *root) if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) seq_printf(seq, ",gid=%u", from_kgid_munged(&init_user_ns, sbinfo->gid)); + + /* + * Showing inode{64,32} might be useful even if it's the system default, + * since then people don't have to resort to checking both here and + * /proc/config.gz to confirm 64-bit inums were successfully applied + * (which may not even exist if IKCONFIG_PROC isn't enabled). + * + * We hide it when inode64 isn't the default and we are using 32-bit + * inodes, since that probably just means the feature isn't even under + * consideration. + * + * As such: + * + * +-----------------+-----------------+ + * | TMPFS_INODE64=y | TMPFS_INODE64=n | + * +------------------+-----------------+-----------------+ + * | full_inums=true | show | show | + * | full_inums=false | show | hide | + * +------------------+-----------------+-----------------+ + * + */ + if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) + seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); #ifdef CONFIG_TRANSPARENT_HUGEPAGE /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ if (sbinfo->huge) @@ -3584,6 +3692,7 @@ static void shmem_put_super(struct super_block *sb) { struct shmem_sb_info *sbinfo = SHMEM_SB(sb); + free_percpu(sbinfo->ino_batch); percpu_counter_destroy(&sbinfo->used_blocks); mpol_put(sbinfo->mpol); kfree(sbinfo); @@ -3616,6 +3725,8 @@ static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) ctx->blocks = shmem_default_max_blocks(); if (!(ctx->seen & SHMEM_SEEN_INODES)) ctx->inodes = shmem_default_max_inodes(); + if (!(ctx->seen & SHMEM_SEEN_INUMS)) + ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); } else { sb->s_flags |= SB_NOUSER; } @@ -3626,8 +3737,14 @@ static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) #endif sbinfo->max_blocks = ctx->blocks; sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes; + if (sb->s_flags & SB_KERNMOUNT) { + sbinfo->ino_batch = alloc_percpu(ino_t); + if (!sbinfo->ino_batch) + goto failed; + } sbinfo->uid = ctx->uid; sbinfo->gid = ctx->gid; + sbinfo->full_inums = ctx->full_inums; sbinfo->mode = ctx->mode; sbinfo->huge = ctx->huge; sbinfo->mpol = ctx->mpol; @@ -4128,7 +4245,7 @@ EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); /** * shmem_zero_setup - setup a shared anonymous mapping - * @vma: the vma to be mmapped is prepared by do_mmap_pgoff + * @vma: the vma to be mmapped is prepared by do_mmap */ int shmem_zero_setup(struct vm_area_struct *vma) { diff --git a/mm/shuffle.c b/mm/shuffle.c index 44406d9977c7..9b5cd4b004b0 100644 --- a/mm/shuffle.c +++ b/mm/shuffle.c @@ -10,33 +10,11 @@ #include "shuffle.h" DEFINE_STATIC_KEY_FALSE(page_alloc_shuffle_key); -static unsigned long shuffle_state __ro_after_init; - -/* - * Depending on the architecture, module parameter parsing may run - * before, or after the cache detection. SHUFFLE_FORCE_DISABLE prevents, - * or reverts the enabling of the shuffle implementation. SHUFFLE_ENABLE - * attempts to turn on the implementation, but aborts if it finds - * SHUFFLE_FORCE_DISABLE already set. - */ -__meminit void page_alloc_shuffle(enum mm_shuffle_ctl ctl) -{ - if (ctl == SHUFFLE_FORCE_DISABLE) - set_bit(SHUFFLE_FORCE_DISABLE, &shuffle_state); - - if (test_bit(SHUFFLE_FORCE_DISABLE, &shuffle_state)) { - if (test_and_clear_bit(SHUFFLE_ENABLE, &shuffle_state)) - static_branch_disable(&page_alloc_shuffle_key); - } else if (ctl == SHUFFLE_ENABLE - && !test_and_set_bit(SHUFFLE_ENABLE, &shuffle_state)) - static_branch_enable(&page_alloc_shuffle_key); -} static bool shuffle_param; static int shuffle_show(char *buffer, const struct kernel_param *kp) { - return sprintf(buffer, "%c\n", test_bit(SHUFFLE_ENABLE, &shuffle_state) - ? 'Y' : 'N'); + return sprintf(buffer, "%c\n", shuffle_param ? 'Y' : 'N'); } static __meminit int shuffle_store(const char *val, @@ -47,9 +25,7 @@ static __meminit int shuffle_store(const char *val, if (rc < 0) return rc; if (shuffle_param) - page_alloc_shuffle(SHUFFLE_ENABLE); - else - page_alloc_shuffle(SHUFFLE_FORCE_DISABLE); + static_branch_enable(&page_alloc_shuffle_key); return 0; } module_param_call(shuffle, shuffle_store, shuffle_show, &shuffle_param, 0400); @@ -58,25 +34,25 @@ module_param_call(shuffle, shuffle_store, shuffle_show, &shuffle_param, 0400); * For two pages to be swapped in the shuffle, they must be free (on a * 'free_area' lru), have the same order, and have the same migratetype. */ -static struct page * __meminit shuffle_valid_page(unsigned long pfn, int order) +static struct page * __meminit shuffle_valid_page(struct zone *zone, + unsigned long pfn, int order) { - struct page *page; + struct page *page = pfn_to_online_page(pfn); /* * Given we're dealing with randomly selected pfns in a zone we * need to ask questions like... */ - /* ...is the pfn even in the memmap? */ - if (!pfn_valid_within(pfn)) + /* ... is the page managed by the buddy? */ + if (!page) return NULL; - /* ...is the pfn in a present section or a hole? */ - if (!pfn_in_present_section(pfn)) + /* ... is the page assigned to the same zone? */ + if (page_zone(page) != zone) return NULL; /* ...is the page free and currently on a free_area list? */ - page = pfn_to_page(pfn); if (!PageBuddy(page)) return NULL; @@ -123,7 +99,7 @@ void __meminit __shuffle_zone(struct zone *z) * page_j randomly selected in the span @zone_start_pfn to * @spanned_pages. */ - page_i = shuffle_valid_page(i, order); + page_i = shuffle_valid_page(z, i, order); if (!page_i) continue; @@ -137,7 +113,7 @@ void __meminit __shuffle_zone(struct zone *z) j = z->zone_start_pfn + ALIGN_DOWN(get_random_long() % z->spanned_pages, order_pages); - page_j = shuffle_valid_page(j, order); + page_j = shuffle_valid_page(z, j, order); if (page_j && page_j != page_i) break; } diff --git a/mm/shuffle.h b/mm/shuffle.h index 4d79f03b6658..71b784f0b7c3 100644 --- a/mm/shuffle.h +++ b/mm/shuffle.h @@ -4,23 +4,10 @@ #define _MM_SHUFFLE_H #include <linux/jump_label.h> -/* - * SHUFFLE_ENABLE is called from the command line enabling path, or by - * platform-firmware enabling that indicates the presence of a - * direct-mapped memory-side-cache. SHUFFLE_FORCE_DISABLE is called from - * the command line path and overrides any previous or future - * SHUFFLE_ENABLE. - */ -enum mm_shuffle_ctl { - SHUFFLE_ENABLE, - SHUFFLE_FORCE_DISABLE, -}; - #define SHUFFLE_ORDER (MAX_ORDER-1) #ifdef CONFIG_SHUFFLE_PAGE_ALLOCATOR DECLARE_STATIC_KEY_FALSE(page_alloc_shuffle_key); -extern void page_alloc_shuffle(enum mm_shuffle_ctl ctl); extern void __shuffle_free_memory(pg_data_t *pgdat); extern bool shuffle_pick_tail(void); static inline void shuffle_free_memory(pg_data_t *pgdat) @@ -58,10 +45,6 @@ static inline void shuffle_zone(struct zone *z) { } -static inline void page_alloc_shuffle(enum mm_shuffle_ctl ctl) -{ -} - static inline bool is_shuffle_order(int order) { return false; diff --git a/mm/slab.c b/mm/slab.c index 9350062ffc1a..3160dff6fd76 100644 --- a/mm/slab.c +++ b/mm/slab.c @@ -588,6 +588,16 @@ static int transfer_objects(struct array_cache *to, return nr; } +/* &alien->lock must be held by alien callers. */ +static __always_inline void __free_one(struct array_cache *ac, void *objp) +{ + /* Avoid trivial double-free. */ + if (IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) && + WARN_ON_ONCE(ac->avail > 0 && ac->entry[ac->avail - 1] == objp)) + return; + ac->entry[ac->avail++] = objp; +} + #ifndef CONFIG_NUMA #define drain_alien_cache(cachep, alien) do { } while (0) @@ -767,7 +777,7 @@ static int __cache_free_alien(struct kmem_cache *cachep, void *objp, STATS_INC_ACOVERFLOW(cachep); __drain_alien_cache(cachep, ac, page_node, &list); } - ac->entry[ac->avail++] = objp; + __free_one(ac, objp); spin_unlock(&alien->lock); slabs_destroy(cachep, &list); } else { @@ -1050,7 +1060,7 @@ int slab_prepare_cpu(unsigned int cpu) * offline. * * Even if all the cpus of a node are down, we don't free the - * kmem_list3 of any cache. This to avoid a race between cpu_down, and + * kmem_cache_node of any cache. This to avoid a race between cpu_down, and * a kmalloc allocation from another cpu for memory from the node of * the cpu going down. The list3 structure is usually allocated from * kmem_cache_create() and gets destroyed at kmem_cache_destroy(). @@ -1239,7 +1249,6 @@ void __init kmem_cache_init(void) nr_node_ids * sizeof(struct kmem_cache_node *), SLAB_HWCACHE_ALIGN, 0, 0); list_add(&kmem_cache->list, &slab_caches); - memcg_link_cache(kmem_cache, NULL); slab_state = PARTIAL; /* @@ -1370,11 +1379,7 @@ static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, return NULL; } - if (charge_slab_page(page, flags, cachep->gfporder, cachep)) { - __free_pages(page, cachep->gfporder); - return NULL; - } - + account_slab_page(page, cachep->gfporder, cachep); __SetPageSlab(page); /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */ if (sk_memalloc_socks() && page_is_pfmemalloc(page)) @@ -1398,7 +1403,7 @@ static void kmem_freepages(struct kmem_cache *cachep, struct page *page) if (current->reclaim_state) current->reclaim_state->reclaimed_slab += 1 << order; - uncharge_slab_page(page, order, cachep); + unaccount_slab_page(page, order, cachep); __free_pages(page, order); } @@ -2243,17 +2248,6 @@ int __kmem_cache_shrink(struct kmem_cache *cachep) return (ret ? 1 : 0); } -#ifdef CONFIG_MEMCG -void __kmemcg_cache_deactivate(struct kmem_cache *cachep) -{ - __kmem_cache_shrink(cachep); -} - -void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s) -{ -} -#endif - int __kmem_cache_shutdown(struct kmem_cache *cachep) { return __kmem_cache_shrink(cachep); @@ -2579,13 +2573,9 @@ static struct page *cache_grow_begin(struct kmem_cache *cachep, * Be lazy and only check for valid flags here, keeping it out of the * critical path in kmem_cache_alloc(). */ - if (unlikely(flags & GFP_SLAB_BUG_MASK)) { - gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; - flags &= ~GFP_SLAB_BUG_MASK; - pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", - invalid_mask, &invalid_mask, flags, &flags); - dump_stack(); - } + if (unlikely(flags & GFP_SLAB_BUG_MASK)) + flags = kmalloc_fix_flags(flags); + WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO)); local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); @@ -3222,9 +3212,10 @@ slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, unsigned long save_flags; void *ptr; int slab_node = numa_mem_id(); + struct obj_cgroup *objcg = NULL; flags &= gfp_allowed_mask; - cachep = slab_pre_alloc_hook(cachep, flags); + cachep = slab_pre_alloc_hook(cachep, &objcg, 1, flags); if (unlikely(!cachep)) return NULL; @@ -3260,7 +3251,7 @@ slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, if (unlikely(slab_want_init_on_alloc(flags, cachep)) && ptr) memset(ptr, 0, cachep->object_size); - slab_post_alloc_hook(cachep, flags, 1, &ptr); + slab_post_alloc_hook(cachep, objcg, flags, 1, &ptr); return ptr; } @@ -3301,9 +3292,10 @@ slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller) { unsigned long save_flags; void *objp; + struct obj_cgroup *objcg = NULL; flags &= gfp_allowed_mask; - cachep = slab_pre_alloc_hook(cachep, flags); + cachep = slab_pre_alloc_hook(cachep, &objcg, 1, flags); if (unlikely(!cachep)) return NULL; @@ -3317,7 +3309,7 @@ slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller) if (unlikely(slab_want_init_on_alloc(flags, cachep)) && objp) memset(objp, 0, cachep->object_size); - slab_post_alloc_hook(cachep, flags, 1, &objp); + slab_post_alloc_hook(cachep, objcg, flags, 1, &objp); return objp; } @@ -3426,6 +3418,11 @@ static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp, if (kasan_slab_free(cachep, objp, _RET_IP_)) return; + /* Use KCSAN to help debug racy use-after-free. */ + if (!(cachep->flags & SLAB_TYPESAFE_BY_RCU)) + __kcsan_check_access(objp, cachep->object_size, + KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); + ___cache_free(cachep, objp, caller); } @@ -3439,6 +3436,7 @@ void ___cache_free(struct kmem_cache *cachep, void *objp, memset(objp, 0, cachep->object_size); kmemleak_free_recursive(objp, cachep->flags); objp = cache_free_debugcheck(cachep, objp, caller); + memcg_slab_free_hook(cachep, virt_to_head_page(objp), objp); /* * Skip calling cache_free_alien() when the platform is not numa. @@ -3466,7 +3464,7 @@ void ___cache_free(struct kmem_cache *cachep, void *objp, } } - ac->entry[ac->avail++] = objp; + __free_one(ac, objp); } /** @@ -3504,8 +3502,9 @@ int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, void **p) { size_t i; + struct obj_cgroup *objcg = NULL; - s = slab_pre_alloc_hook(s, flags); + s = slab_pre_alloc_hook(s, &objcg, size, flags); if (!s) return 0; @@ -3528,13 +3527,13 @@ int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, for (i = 0; i < size; i++) memset(p[i], 0, s->object_size); - slab_post_alloc_hook(s, flags, size, p); + slab_post_alloc_hook(s, objcg, flags, size, p); /* FIXME: Trace call missing. Christoph would like a bulk variant */ return size; error: local_irq_enable(); cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_); - slab_post_alloc_hook(s, flags, i, p); + slab_post_alloc_hook(s, objcg, flags, i, p); __kmem_cache_free_bulk(s, i, p); return 0; } @@ -3796,8 +3795,8 @@ fail: } /* Always called with the slab_mutex held */ -static int __do_tune_cpucache(struct kmem_cache *cachep, int limit, - int batchcount, int shared, gfp_t gfp) +static int do_tune_cpucache(struct kmem_cache *cachep, int limit, + int batchcount, int shared, gfp_t gfp) { struct array_cache __percpu *cpu_cache, *prev; int cpu; @@ -3842,29 +3841,6 @@ setup_node: return setup_kmem_cache_nodes(cachep, gfp); } -static int do_tune_cpucache(struct kmem_cache *cachep, int limit, - int batchcount, int shared, gfp_t gfp) -{ - int ret; - struct kmem_cache *c; - - ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp); - - if (slab_state < FULL) - return ret; - - if ((ret < 0) || !is_root_cache(cachep)) - return ret; - - lockdep_assert_held(&slab_mutex); - for_each_memcg_cache(c, cachep) { - /* return value determined by the root cache only */ - __do_tune_cpucache(c, limit, batchcount, shared, gfp); - } - - return ret; -} - /* Called with slab_mutex held always */ static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp) { @@ -3877,13 +3853,6 @@ static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp) if (err) goto end; - if (!is_root_cache(cachep)) { - struct kmem_cache *root = memcg_root_cache(cachep); - limit = root->limit; - shared = root->shared; - batchcount = root->batchcount; - } - if (limit && shared && batchcount) goto skip_setup; /* diff --git a/mm/slab.h b/mm/slab.h index 74f7e09a7cfd..6cc323f1313a 100644 --- a/mm/slab.h +++ b/mm/slab.h @@ -30,69 +30,6 @@ struct kmem_cache { struct list_head list; /* List of all slab caches on the system */ }; -#else /* !CONFIG_SLOB */ - -struct memcg_cache_array { - struct rcu_head rcu; - struct kmem_cache *entries[0]; -}; - -/* - * This is the main placeholder for memcg-related information in kmem caches. - * Both the root cache and the child caches will have it. For the root cache, - * this will hold a dynamically allocated array large enough to hold - * information about the currently limited memcgs in the system. To allow the - * array to be accessed without taking any locks, on relocation we free the old - * version only after a grace period. - * - * Root and child caches hold different metadata. - * - * @root_cache: Common to root and child caches. NULL for root, pointer to - * the root cache for children. - * - * The following fields are specific to root caches. - * - * @memcg_caches: kmemcg ID indexed table of child caches. This table is - * used to index child cachces during allocation and cleared - * early during shutdown. - * - * @root_caches_node: List node for slab_root_caches list. - * - * @children: List of all child caches. While the child caches are also - * reachable through @memcg_caches, a child cache remains on - * this list until it is actually destroyed. - * - * The following fields are specific to child caches. - * - * @memcg: Pointer to the memcg this cache belongs to. - * - * @children_node: List node for @root_cache->children list. - * - * @kmem_caches_node: List node for @memcg->kmem_caches list. - */ -struct memcg_cache_params { - struct kmem_cache *root_cache; - union { - struct { - struct memcg_cache_array __rcu *memcg_caches; - struct list_head __root_caches_node; - struct list_head children; - bool dying; - }; - struct { - struct mem_cgroup *memcg; - struct list_head children_node; - struct list_head kmem_caches_node; - struct percpu_ref refcnt; - - void (*work_fn)(struct kmem_cache *); - union { - struct rcu_head rcu_head; - struct work_struct work; - }; - }; - }; -}; #endif /* CONFIG_SLOB */ #ifdef CONFIG_SLAB @@ -109,6 +46,7 @@ struct memcg_cache_params { #include <linux/kmemleak.h> #include <linux/random.h> #include <linux/sched/mm.h> +#include <linux/kmemleak.h> /* * State of the slab allocator. @@ -152,6 +90,7 @@ void create_kmalloc_caches(slab_flags_t); struct kmem_cache *kmalloc_slab(size_t, gfp_t); #endif +gfp_t kmalloc_fix_flags(gfp_t flags); /* Functions provided by the slab allocators */ int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags); @@ -234,10 +173,7 @@ bool __kmem_cache_empty(struct kmem_cache *); int __kmem_cache_shutdown(struct kmem_cache *); void __kmem_cache_release(struct kmem_cache *); int __kmem_cache_shrink(struct kmem_cache *); -void __kmemcg_cache_deactivate(struct kmem_cache *s); -void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s); void slab_kmem_cache_release(struct kmem_cache *); -void kmem_cache_shrink_all(struct kmem_cache *s); struct seq_file; struct file; @@ -272,199 +208,208 @@ int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **); static inline int cache_vmstat_idx(struct kmem_cache *s) { return (s->flags & SLAB_RECLAIM_ACCOUNT) ? - NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE; + NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B; } -#ifdef CONFIG_MEMCG_KMEM - -/* List of all root caches. */ -extern struct list_head slab_root_caches; -#define root_caches_node memcg_params.__root_caches_node +#ifdef CONFIG_SLUB_DEBUG +#ifdef CONFIG_SLUB_DEBUG_ON +DECLARE_STATIC_KEY_TRUE(slub_debug_enabled); +#else +DECLARE_STATIC_KEY_FALSE(slub_debug_enabled); +#endif +extern void print_tracking(struct kmem_cache *s, void *object); +#else +static inline void print_tracking(struct kmem_cache *s, void *object) +{ +} +#endif /* - * Iterate over all memcg caches of the given root cache. The caller must hold - * slab_mutex. + * Returns true if any of the specified slub_debug flags is enabled for the + * cache. Use only for flags parsed by setup_slub_debug() as it also enables + * the static key. */ -#define for_each_memcg_cache(iter, root) \ - list_for_each_entry(iter, &(root)->memcg_params.children, \ - memcg_params.children_node) - -static inline bool is_root_cache(struct kmem_cache *s) +static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags) { - return !s->memcg_params.root_cache; +#ifdef CONFIG_SLUB_DEBUG + VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS)); + if (static_branch_unlikely(&slub_debug_enabled)) + return s->flags & flags; +#endif + return false; } -static inline bool slab_equal_or_root(struct kmem_cache *s, - struct kmem_cache *p) +#ifdef CONFIG_MEMCG_KMEM +static inline struct obj_cgroup **page_obj_cgroups(struct page *page) { - return p == s || p == s->memcg_params.root_cache; + /* + * page->mem_cgroup and page->obj_cgroups are sharing the same + * space. To distinguish between them in case we don't know for sure + * that the page is a slab page (e.g. page_cgroup_ino()), let's + * always set the lowest bit of obj_cgroups. + */ + return (struct obj_cgroup **) + ((unsigned long)page->obj_cgroups & ~0x1UL); } -/* - * We use suffixes to the name in memcg because we can't have caches - * created in the system with the same name. But when we print them - * locally, better refer to them with the base name - */ -static inline const char *cache_name(struct kmem_cache *s) +static inline bool page_has_obj_cgroups(struct page *page) { - if (!is_root_cache(s)) - s = s->memcg_params.root_cache; - return s->name; + return ((unsigned long)page->obj_cgroups & 0x1UL); } -static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s) +int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s, + gfp_t gfp); + +static inline void memcg_free_page_obj_cgroups(struct page *page) { - if (is_root_cache(s)) - return s; - return s->memcg_params.root_cache; + kfree(page_obj_cgroups(page)); + page->obj_cgroups = NULL; } -/* - * Expects a pointer to a slab page. Please note, that PageSlab() check - * isn't sufficient, as it returns true also for tail compound slab pages, - * which do not have slab_cache pointer set. - * So this function assumes that the page can pass PageSlab() && !PageTail() - * check. - * - * The kmem_cache can be reparented asynchronously. The caller must ensure - * the memcg lifetime, e.g. by taking rcu_read_lock() or cgroup_mutex. - */ -static inline struct mem_cgroup *memcg_from_slab_page(struct page *page) +static inline size_t obj_full_size(struct kmem_cache *s) { - struct kmem_cache *s; - - s = READ_ONCE(page->slab_cache); - if (s && !is_root_cache(s)) - return READ_ONCE(s->memcg_params.memcg); - - return NULL; + /* + * For each accounted object there is an extra space which is used + * to store obj_cgroup membership. Charge it too. + */ + return s->size + sizeof(struct obj_cgroup *); } -/* - * Charge the slab page belonging to the non-root kmem_cache. - * Can be called for non-root kmem_caches only. - */ -static __always_inline int memcg_charge_slab(struct page *page, - gfp_t gfp, int order, - struct kmem_cache *s) +static inline struct obj_cgroup *memcg_slab_pre_alloc_hook(struct kmem_cache *s, + size_t objects, + gfp_t flags) { - int nr_pages = 1 << order; - struct mem_cgroup *memcg; - struct lruvec *lruvec; - int ret; - - rcu_read_lock(); - memcg = READ_ONCE(s->memcg_params.memcg); - while (memcg && !css_tryget_online(&memcg->css)) - memcg = parent_mem_cgroup(memcg); - rcu_read_unlock(); + struct obj_cgroup *objcg; - if (unlikely(!memcg || mem_cgroup_is_root(memcg))) { - mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s), - nr_pages); - percpu_ref_get_many(&s->memcg_params.refcnt, nr_pages); - return 0; - } + if (memcg_kmem_bypass()) + return NULL; - ret = memcg_kmem_charge(memcg, gfp, nr_pages); - if (ret) - goto out; + objcg = get_obj_cgroup_from_current(); + if (!objcg) + return NULL; - lruvec = mem_cgroup_lruvec(memcg, page_pgdat(page)); - mod_lruvec_state(lruvec, cache_vmstat_idx(s), nr_pages); + if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s))) { + obj_cgroup_put(objcg); + return NULL; + } - /* transer try_charge() page references to kmem_cache */ - percpu_ref_get_many(&s->memcg_params.refcnt, nr_pages); - css_put_many(&memcg->css, nr_pages); -out: - css_put(&memcg->css); - return ret; + return objcg; } -/* - * Uncharge a slab page belonging to a non-root kmem_cache. - * Can be called for non-root kmem_caches only. - */ -static __always_inline void memcg_uncharge_slab(struct page *page, int order, - struct kmem_cache *s) +static inline void mod_objcg_state(struct obj_cgroup *objcg, + struct pglist_data *pgdat, + int idx, int nr) { - int nr_pages = 1 << order; struct mem_cgroup *memcg; struct lruvec *lruvec; rcu_read_lock(); - memcg = READ_ONCE(s->memcg_params.memcg); - if (likely(!mem_cgroup_is_root(memcg))) { - lruvec = mem_cgroup_lruvec(memcg, page_pgdat(page)); - mod_lruvec_state(lruvec, cache_vmstat_idx(s), -nr_pages); - memcg_kmem_uncharge(memcg, nr_pages); - } else { - mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s), - -nr_pages); - } + memcg = obj_cgroup_memcg(objcg); + lruvec = mem_cgroup_lruvec(memcg, pgdat); + mod_memcg_lruvec_state(lruvec, idx, nr); rcu_read_unlock(); +} + +static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s, + struct obj_cgroup *objcg, + gfp_t flags, size_t size, + void **p) +{ + struct page *page; + unsigned long off; + size_t i; + + if (!objcg) + return; - percpu_ref_put_many(&s->memcg_params.refcnt, nr_pages); + flags &= ~__GFP_ACCOUNT; + for (i = 0; i < size; i++) { + if (likely(p[i])) { + page = virt_to_head_page(p[i]); + + if (!page_has_obj_cgroups(page) && + memcg_alloc_page_obj_cgroups(page, s, flags)) { + obj_cgroup_uncharge(objcg, obj_full_size(s)); + continue; + } + + off = obj_to_index(s, page, p[i]); + obj_cgroup_get(objcg); + page_obj_cgroups(page)[off] = objcg; + mod_objcg_state(objcg, page_pgdat(page), + cache_vmstat_idx(s), obj_full_size(s)); + } else { + obj_cgroup_uncharge(objcg, obj_full_size(s)); + } + } + obj_cgroup_put(objcg); } -extern void slab_init_memcg_params(struct kmem_cache *); -extern void memcg_link_cache(struct kmem_cache *s, struct mem_cgroup *memcg); +static inline void memcg_slab_free_hook(struct kmem_cache *s, struct page *page, + void *p) +{ + struct obj_cgroup *objcg; + unsigned int off; -#else /* CONFIG_MEMCG_KMEM */ + if (!memcg_kmem_enabled()) + return; -/* If !memcg, all caches are root. */ -#define slab_root_caches slab_caches -#define root_caches_node list + if (!page_has_obj_cgroups(page)) + return; -#define for_each_memcg_cache(iter, root) \ - for ((void)(iter), (void)(root); 0; ) + off = obj_to_index(s, page, p); + objcg = page_obj_cgroups(page)[off]; + page_obj_cgroups(page)[off] = NULL; -static inline bool is_root_cache(struct kmem_cache *s) -{ - return true; -} + if (!objcg) + return; -static inline bool slab_equal_or_root(struct kmem_cache *s, - struct kmem_cache *p) -{ - return s == p; -} + obj_cgroup_uncharge(objcg, obj_full_size(s)); + mod_objcg_state(objcg, page_pgdat(page), cache_vmstat_idx(s), + -obj_full_size(s)); -static inline const char *cache_name(struct kmem_cache *s) -{ - return s->name; + obj_cgroup_put(objcg); } -static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s) +#else /* CONFIG_MEMCG_KMEM */ +static inline bool page_has_obj_cgroups(struct page *page) { - return s; + return false; } -static inline struct mem_cgroup *memcg_from_slab_page(struct page *page) +static inline struct mem_cgroup *memcg_from_slab_obj(void *ptr) { return NULL; } -static inline int memcg_charge_slab(struct page *page, gfp_t gfp, int order, - struct kmem_cache *s) +static inline int memcg_alloc_page_obj_cgroups(struct page *page, + struct kmem_cache *s, gfp_t gfp) { return 0; } -static inline void memcg_uncharge_slab(struct page *page, int order, - struct kmem_cache *s) +static inline void memcg_free_page_obj_cgroups(struct page *page) { } -static inline void slab_init_memcg_params(struct kmem_cache *s) +static inline struct obj_cgroup *memcg_slab_pre_alloc_hook(struct kmem_cache *s, + size_t objects, + gfp_t flags) { + return NULL; } -static inline void memcg_link_cache(struct kmem_cache *s, - struct mem_cgroup *memcg) +static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s, + struct obj_cgroup *objcg, + gfp_t flags, size_t size, + void **p) { } +static inline void memcg_slab_free_hook(struct kmem_cache *s, struct page *page, + void *p) +{ +} #endif /* CONFIG_MEMCG_KMEM */ static inline struct kmem_cache *virt_to_cache(const void *obj) @@ -478,51 +423,36 @@ static inline struct kmem_cache *virt_to_cache(const void *obj) return page->slab_cache; } -static __always_inline int charge_slab_page(struct page *page, - gfp_t gfp, int order, - struct kmem_cache *s) +static __always_inline void account_slab_page(struct page *page, int order, + struct kmem_cache *s) { - if (is_root_cache(s)) { - mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s), - 1 << order); - return 0; - } - - return memcg_charge_slab(page, gfp, order, s); + mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s), + PAGE_SIZE << order); } -static __always_inline void uncharge_slab_page(struct page *page, int order, - struct kmem_cache *s) +static __always_inline void unaccount_slab_page(struct page *page, int order, + struct kmem_cache *s) { - if (is_root_cache(s)) { - mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s), - -(1 << order)); - return; - } + if (memcg_kmem_enabled()) + memcg_free_page_obj_cgroups(page); - memcg_uncharge_slab(page, order, s); + mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s), + -(PAGE_SIZE << order)); } static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x) { struct kmem_cache *cachep; - /* - * When kmemcg is not being used, both assignments should return the - * same value. but we don't want to pay the assignment price in that - * case. If it is not compiled in, the compiler should be smart enough - * to not do even the assignment. In that case, slab_equal_or_root - * will also be a constant. - */ - if (!memcg_kmem_enabled() && - !IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) && - !unlikely(s->flags & SLAB_CONSISTENCY_CHECKS)) + if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) && + !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) return s; cachep = virt_to_cache(x); - WARN_ONCE(cachep && !slab_equal_or_root(cachep, s), + if (WARN(cachep && cachep != s, "%s: Wrong slab cache. %s but object is from %s\n", - __func__, s->name, cachep->name); + __func__, s->name, cachep->name)) + print_tracking(cachep, x); return cachep; } @@ -557,7 +487,8 @@ static inline size_t slab_ksize(const struct kmem_cache *s) } static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, - gfp_t flags) + struct obj_cgroup **objcgp, + size_t size, gfp_t flags) { flags &= gfp_allowed_mask; @@ -571,13 +502,14 @@ static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, if (memcg_kmem_enabled() && ((flags & __GFP_ACCOUNT) || (s->flags & SLAB_ACCOUNT))) - return memcg_kmem_get_cache(s); + *objcgp = memcg_slab_pre_alloc_hook(s, size, flags); return s; } -static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, - size_t size, void **p) +static inline void slab_post_alloc_hook(struct kmem_cache *s, + struct obj_cgroup *objcg, + gfp_t flags, size_t size, void **p) { size_t i; @@ -590,7 +522,7 @@ static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, } if (memcg_kmem_enabled()) - memcg_kmem_put_cache(s); + memcg_slab_post_alloc_hook(s, objcg, flags, size, p); } #ifndef CONFIG_SLOB @@ -645,9 +577,6 @@ static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) void *slab_start(struct seq_file *m, loff_t *pos); void *slab_next(struct seq_file *m, void *p, loff_t *pos); void slab_stop(struct seq_file *m, void *p); -void *memcg_slab_start(struct seq_file *m, loff_t *pos); -void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos); -void memcg_slab_stop(struct seq_file *m, void *p); int memcg_slab_show(struct seq_file *m, void *p); #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG) diff --git a/mm/slab_common.c b/mm/slab_common.c index fe8b68482670..a513f3237155 100644 --- a/mm/slab_common.c +++ b/mm/slab_common.c @@ -26,6 +26,8 @@ #define CREATE_TRACE_POINTS #include <trace/events/kmem.h> +#include "internal.h" + #include "slab.h" enum slab_state slab_state; @@ -128,152 +130,6 @@ int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr, return i; } -#ifdef CONFIG_MEMCG_KMEM - -LIST_HEAD(slab_root_caches); -static DEFINE_SPINLOCK(memcg_kmem_wq_lock); - -static void kmemcg_cache_shutdown(struct percpu_ref *percpu_ref); - -void slab_init_memcg_params(struct kmem_cache *s) -{ - s->memcg_params.root_cache = NULL; - RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL); - INIT_LIST_HEAD(&s->memcg_params.children); - s->memcg_params.dying = false; -} - -static int init_memcg_params(struct kmem_cache *s, - struct kmem_cache *root_cache) -{ - struct memcg_cache_array *arr; - - if (root_cache) { - int ret = percpu_ref_init(&s->memcg_params.refcnt, - kmemcg_cache_shutdown, - 0, GFP_KERNEL); - if (ret) - return ret; - - s->memcg_params.root_cache = root_cache; - INIT_LIST_HEAD(&s->memcg_params.children_node); - INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node); - return 0; - } - - slab_init_memcg_params(s); - - if (!memcg_nr_cache_ids) - return 0; - - arr = kvzalloc(sizeof(struct memcg_cache_array) + - memcg_nr_cache_ids * sizeof(void *), - GFP_KERNEL); - if (!arr) - return -ENOMEM; - - RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr); - return 0; -} - -static void destroy_memcg_params(struct kmem_cache *s) -{ - if (is_root_cache(s)) { - kvfree(rcu_access_pointer(s->memcg_params.memcg_caches)); - } else { - mem_cgroup_put(s->memcg_params.memcg); - WRITE_ONCE(s->memcg_params.memcg, NULL); - percpu_ref_exit(&s->memcg_params.refcnt); - } -} - -static void free_memcg_params(struct rcu_head *rcu) -{ - struct memcg_cache_array *old; - - old = container_of(rcu, struct memcg_cache_array, rcu); - kvfree(old); -} - -static int update_memcg_params(struct kmem_cache *s, int new_array_size) -{ - struct memcg_cache_array *old, *new; - - new = kvzalloc(sizeof(struct memcg_cache_array) + - new_array_size * sizeof(void *), GFP_KERNEL); - if (!new) - return -ENOMEM; - - old = rcu_dereference_protected(s->memcg_params.memcg_caches, - lockdep_is_held(&slab_mutex)); - if (old) - memcpy(new->entries, old->entries, - memcg_nr_cache_ids * sizeof(void *)); - - rcu_assign_pointer(s->memcg_params.memcg_caches, new); - if (old) - call_rcu(&old->rcu, free_memcg_params); - return 0; -} - -int memcg_update_all_caches(int num_memcgs) -{ - struct kmem_cache *s; - int ret = 0; - - mutex_lock(&slab_mutex); - list_for_each_entry(s, &slab_root_caches, root_caches_node) { - ret = update_memcg_params(s, num_memcgs); - /* - * Instead of freeing the memory, we'll just leave the caches - * up to this point in an updated state. - */ - if (ret) - break; - } - mutex_unlock(&slab_mutex); - return ret; -} - -void memcg_link_cache(struct kmem_cache *s, struct mem_cgroup *memcg) -{ - if (is_root_cache(s)) { - list_add(&s->root_caches_node, &slab_root_caches); - } else { - css_get(&memcg->css); - s->memcg_params.memcg = memcg; - list_add(&s->memcg_params.children_node, - &s->memcg_params.root_cache->memcg_params.children); - list_add(&s->memcg_params.kmem_caches_node, - &s->memcg_params.memcg->kmem_caches); - } -} - -static void memcg_unlink_cache(struct kmem_cache *s) -{ - if (is_root_cache(s)) { - list_del(&s->root_caches_node); - } else { - list_del(&s->memcg_params.children_node); - list_del(&s->memcg_params.kmem_caches_node); - } -} -#else -static inline int init_memcg_params(struct kmem_cache *s, - struct kmem_cache *root_cache) -{ - return 0; -} - -static inline void destroy_memcg_params(struct kmem_cache *s) -{ -} - -static inline void memcg_unlink_cache(struct kmem_cache *s) -{ -} -#endif /* CONFIG_MEMCG_KMEM */ - /* * Figure out what the alignment of the objects will be given a set of * flags, a user specified alignment and the size of the objects. @@ -311,9 +167,6 @@ int slab_unmergeable(struct kmem_cache *s) if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE)) return 1; - if (!is_root_cache(s)) - return 1; - if (s->ctor) return 1; @@ -326,14 +179,6 @@ int slab_unmergeable(struct kmem_cache *s) if (s->refcount < 0) return 1; -#ifdef CONFIG_MEMCG_KMEM - /* - * Skip the dying kmem_cache. - */ - if (s->memcg_params.dying) - return 1; -#endif - return 0; } @@ -356,7 +201,7 @@ struct kmem_cache *find_mergeable(unsigned int size, unsigned int align, if (flags & SLAB_NEVER_MERGE) return NULL; - list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) { + list_for_each_entry_reverse(s, &slab_caches, list) { if (slab_unmergeable(s)) continue; @@ -388,7 +233,7 @@ static struct kmem_cache *create_cache(const char *name, unsigned int object_size, unsigned int align, slab_flags_t flags, unsigned int useroffset, unsigned int usersize, void (*ctor)(void *), - struct mem_cgroup *memcg, struct kmem_cache *root_cache) + struct kmem_cache *root_cache) { struct kmem_cache *s; int err; @@ -408,24 +253,18 @@ static struct kmem_cache *create_cache(const char *name, s->useroffset = useroffset; s->usersize = usersize; - err = init_memcg_params(s, root_cache); - if (err) - goto out_free_cache; - err = __kmem_cache_create(s, flags); if (err) goto out_free_cache; s->refcount = 1; list_add(&s->list, &slab_caches); - memcg_link_cache(s, memcg); out: if (err) return ERR_PTR(err); return s; out_free_cache: - destroy_memcg_params(s); kmem_cache_free(kmem_cache, s); goto out; } @@ -471,7 +310,6 @@ kmem_cache_create_usercopy(const char *name, get_online_cpus(); get_online_mems(); - memcg_get_cache_ids(); mutex_lock(&slab_mutex); @@ -512,7 +350,7 @@ kmem_cache_create_usercopy(const char *name, s = create_cache(cache_name, size, calculate_alignment(flags, align, size), - flags, useroffset, usersize, ctor, NULL, NULL); + flags, useroffset, usersize, ctor, NULL); if (IS_ERR(s)) { err = PTR_ERR(s); kfree_const(cache_name); @@ -521,7 +359,6 @@ kmem_cache_create_usercopy(const char *name, out_unlock: mutex_unlock(&slab_mutex); - memcg_put_cache_ids(); put_online_mems(); put_online_cpus(); @@ -614,7 +451,6 @@ static int shutdown_cache(struct kmem_cache *s) if (__kmem_cache_shutdown(s) != 0) return -EBUSY; - memcg_unlink_cache(s); list_del(&s->list); if (s->flags & SLAB_TYPESAFE_BY_RCU) { @@ -635,311 +471,9 @@ static int shutdown_cache(struct kmem_cache *s) return 0; } -#ifdef CONFIG_MEMCG_KMEM -/* - * memcg_create_kmem_cache - Create a cache for a memory cgroup. - * @memcg: The memory cgroup the new cache is for. - * @root_cache: The parent of the new cache. - * - * This function attempts to create a kmem cache that will serve allocation - * requests going from @memcg to @root_cache. The new cache inherits properties - * from its parent. - */ -void memcg_create_kmem_cache(struct mem_cgroup *memcg, - struct kmem_cache *root_cache) -{ - static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */ - struct cgroup_subsys_state *css = &memcg->css; - struct memcg_cache_array *arr; - struct kmem_cache *s = NULL; - char *cache_name; - int idx; - - get_online_cpus(); - get_online_mems(); - - mutex_lock(&slab_mutex); - - /* - * The memory cgroup could have been offlined while the cache - * creation work was pending. - */ - if (memcg->kmem_state != KMEM_ONLINE) - goto out_unlock; - - idx = memcg_cache_id(memcg); - arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches, - lockdep_is_held(&slab_mutex)); - - /* - * Since per-memcg caches are created asynchronously on first - * allocation (see memcg_kmem_get_cache()), several threads can try to - * create the same cache, but only one of them may succeed. - */ - if (arr->entries[idx]) - goto out_unlock; - - cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf)); - cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name, - css->serial_nr, memcg_name_buf); - if (!cache_name) - goto out_unlock; - - s = create_cache(cache_name, root_cache->object_size, - root_cache->align, - root_cache->flags & CACHE_CREATE_MASK, - root_cache->useroffset, root_cache->usersize, - root_cache->ctor, memcg, root_cache); - /* - * If we could not create a memcg cache, do not complain, because - * that's not critical at all as we can always proceed with the root - * cache. - */ - if (IS_ERR(s)) { - kfree(cache_name); - goto out_unlock; - } - - /* - * Since readers won't lock (see memcg_kmem_get_cache()), we need a - * barrier here to ensure nobody will see the kmem_cache partially - * initialized. - */ - smp_wmb(); - arr->entries[idx] = s; - -out_unlock: - mutex_unlock(&slab_mutex); - - put_online_mems(); - put_online_cpus(); -} - -static void kmemcg_workfn(struct work_struct *work) -{ - struct kmem_cache *s = container_of(work, struct kmem_cache, - memcg_params.work); - - get_online_cpus(); - get_online_mems(); - - mutex_lock(&slab_mutex); - s->memcg_params.work_fn(s); - mutex_unlock(&slab_mutex); - - put_online_mems(); - put_online_cpus(); -} - -static void kmemcg_rcufn(struct rcu_head *head) -{ - struct kmem_cache *s = container_of(head, struct kmem_cache, - memcg_params.rcu_head); - - /* - * We need to grab blocking locks. Bounce to ->work. The - * work item shares the space with the RCU head and can't be - * initialized earlier. - */ - INIT_WORK(&s->memcg_params.work, kmemcg_workfn); - queue_work(memcg_kmem_cache_wq, &s->memcg_params.work); -} - -static void kmemcg_cache_shutdown_fn(struct kmem_cache *s) -{ - WARN_ON(shutdown_cache(s)); -} - -static void kmemcg_cache_shutdown(struct percpu_ref *percpu_ref) -{ - struct kmem_cache *s = container_of(percpu_ref, struct kmem_cache, - memcg_params.refcnt); - unsigned long flags; - - spin_lock_irqsave(&memcg_kmem_wq_lock, flags); - if (s->memcg_params.root_cache->memcg_params.dying) - goto unlock; - - s->memcg_params.work_fn = kmemcg_cache_shutdown_fn; - INIT_WORK(&s->memcg_params.work, kmemcg_workfn); - queue_work(memcg_kmem_cache_wq, &s->memcg_params.work); - -unlock: - spin_unlock_irqrestore(&memcg_kmem_wq_lock, flags); -} - -static void kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s) -{ - __kmemcg_cache_deactivate_after_rcu(s); - percpu_ref_kill(&s->memcg_params.refcnt); -} - -static void kmemcg_cache_deactivate(struct kmem_cache *s) -{ - if (WARN_ON_ONCE(is_root_cache(s))) - return; - - __kmemcg_cache_deactivate(s); - s->flags |= SLAB_DEACTIVATED; - - /* - * memcg_kmem_wq_lock is used to synchronize memcg_params.dying - * flag and make sure that no new kmem_cache deactivation tasks - * are queued (see flush_memcg_workqueue() ). - */ - spin_lock_irq(&memcg_kmem_wq_lock); - if (s->memcg_params.root_cache->memcg_params.dying) - goto unlock; - - s->memcg_params.work_fn = kmemcg_cache_deactivate_after_rcu; - call_rcu(&s->memcg_params.rcu_head, kmemcg_rcufn); -unlock: - spin_unlock_irq(&memcg_kmem_wq_lock); -} - -void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg, - struct mem_cgroup *parent) -{ - int idx; - struct memcg_cache_array *arr; - struct kmem_cache *s, *c; - unsigned int nr_reparented; - - idx = memcg_cache_id(memcg); - - get_online_cpus(); - get_online_mems(); - - mutex_lock(&slab_mutex); - list_for_each_entry(s, &slab_root_caches, root_caches_node) { - arr = rcu_dereference_protected(s->memcg_params.memcg_caches, - lockdep_is_held(&slab_mutex)); - c = arr->entries[idx]; - if (!c) - continue; - - kmemcg_cache_deactivate(c); - arr->entries[idx] = NULL; - } - nr_reparented = 0; - list_for_each_entry(s, &memcg->kmem_caches, - memcg_params.kmem_caches_node) { - WRITE_ONCE(s->memcg_params.memcg, parent); - css_put(&memcg->css); - nr_reparented++; - } - if (nr_reparented) { - list_splice_init(&memcg->kmem_caches, - &parent->kmem_caches); - css_get_many(&parent->css, nr_reparented); - } - mutex_unlock(&slab_mutex); - - put_online_mems(); - put_online_cpus(); -} - -static int shutdown_memcg_caches(struct kmem_cache *s) -{ - struct memcg_cache_array *arr; - struct kmem_cache *c, *c2; - LIST_HEAD(busy); - int i; - - BUG_ON(!is_root_cache(s)); - - /* - * First, shutdown active caches, i.e. caches that belong to online - * memory cgroups. - */ - arr = rcu_dereference_protected(s->memcg_params.memcg_caches, - lockdep_is_held(&slab_mutex)); - for_each_memcg_cache_index(i) { - c = arr->entries[i]; - if (!c) - continue; - if (shutdown_cache(c)) - /* - * The cache still has objects. Move it to a temporary - * list so as not to try to destroy it for a second - * time while iterating over inactive caches below. - */ - list_move(&c->memcg_params.children_node, &busy); - else - /* - * The cache is empty and will be destroyed soon. Clear - * the pointer to it in the memcg_caches array so that - * it will never be accessed even if the root cache - * stays alive. - */ - arr->entries[i] = NULL; - } - - /* - * Second, shutdown all caches left from memory cgroups that are now - * offline. - */ - list_for_each_entry_safe(c, c2, &s->memcg_params.children, - memcg_params.children_node) - shutdown_cache(c); - - list_splice(&busy, &s->memcg_params.children); - - /* - * A cache being destroyed must be empty. In particular, this means - * that all per memcg caches attached to it must be empty too. - */ - if (!list_empty(&s->memcg_params.children)) - return -EBUSY; - return 0; -} - -static void memcg_set_kmem_cache_dying(struct kmem_cache *s) -{ - spin_lock_irq(&memcg_kmem_wq_lock); - s->memcg_params.dying = true; - spin_unlock_irq(&memcg_kmem_wq_lock); -} - -static void flush_memcg_workqueue(struct kmem_cache *s) -{ - /* - * SLAB and SLUB deactivate the kmem_caches through call_rcu. Make - * sure all registered rcu callbacks have been invoked. - */ - rcu_barrier(); - - /* - * SLAB and SLUB create memcg kmem_caches through workqueue and SLUB - * deactivates the memcg kmem_caches through workqueue. Make sure all - * previous workitems on workqueue are processed. - */ - if (likely(memcg_kmem_cache_wq)) - flush_workqueue(memcg_kmem_cache_wq); - - /* - * If we're racing with children kmem_cache deactivation, it might - * take another rcu grace period to complete their destruction. - * At this moment the corresponding percpu_ref_kill() call should be - * done, but it might take another rcu grace period to complete - * switching to the atomic mode. - * Please, note that we check without grabbing the slab_mutex. It's safe - * because at this moment the children list can't grow. - */ - if (!list_empty(&s->memcg_params.children)) - rcu_barrier(); -} -#else -static inline int shutdown_memcg_caches(struct kmem_cache *s) -{ - return 0; -} -#endif /* CONFIG_MEMCG_KMEM */ - void slab_kmem_cache_release(struct kmem_cache *s) { __kmem_cache_release(s); - destroy_memcg_params(s); kfree_const(s->name); kmem_cache_free(kmem_cache, s); } @@ -960,26 +494,7 @@ void kmem_cache_destroy(struct kmem_cache *s) if (s->refcount) goto out_unlock; -#ifdef CONFIG_MEMCG_KMEM - memcg_set_kmem_cache_dying(s); - - mutex_unlock(&slab_mutex); - - put_online_mems(); - put_online_cpus(); - - flush_memcg_workqueue(s); - - get_online_cpus(); - get_online_mems(); - - mutex_lock(&slab_mutex); -#endif - - err = shutdown_memcg_caches(s); - if (!err) - err = shutdown_cache(s); - + err = shutdown_cache(s); if (err) { pr_err("kmem_cache_destroy %s: Slab cache still has objects\n", s->name); @@ -1016,43 +531,6 @@ int kmem_cache_shrink(struct kmem_cache *cachep) } EXPORT_SYMBOL(kmem_cache_shrink); -/** - * kmem_cache_shrink_all - shrink a cache and all memcg caches for root cache - * @s: The cache pointer - */ -void kmem_cache_shrink_all(struct kmem_cache *s) -{ - struct kmem_cache *c; - - if (!IS_ENABLED(CONFIG_MEMCG_KMEM) || !is_root_cache(s)) { - kmem_cache_shrink(s); - return; - } - - get_online_cpus(); - get_online_mems(); - kasan_cache_shrink(s); - __kmem_cache_shrink(s); - - /* - * We have to take the slab_mutex to protect from the memcg list - * modification. - */ - mutex_lock(&slab_mutex); - for_each_memcg_cache(c, s) { - /* - * Don't need to shrink deactivated memcg caches. - */ - if (s->flags & SLAB_DEACTIVATED) - continue; - kasan_cache_shrink(c); - __kmem_cache_shrink(c); - } - mutex_unlock(&slab_mutex); - put_online_mems(); - put_online_cpus(); -} - bool slab_is_available(void) { return slab_state >= UP; @@ -1081,8 +559,6 @@ void __init create_boot_cache(struct kmem_cache *s, const char *name, s->useroffset = useroffset; s->usersize = usersize; - slab_init_memcg_params(s); - err = __kmem_cache_create(s, flags); if (err) @@ -1103,7 +579,6 @@ struct kmem_cache *__init create_kmalloc_cache(const char *name, create_boot_cache(s, name, size, flags, useroffset, usersize); list_add(&s->list, &slab_caches); - memcg_link_cache(s, NULL); s->refcount = 1; return s; } @@ -1332,6 +807,18 @@ void __init create_kmalloc_caches(slab_flags_t flags) } #endif /* !CONFIG_SLOB */ +gfp_t kmalloc_fix_flags(gfp_t flags) +{ + gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; + + flags &= ~GFP_SLAB_BUG_MASK; + pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", + invalid_mask, &invalid_mask, flags, &flags); + dump_stack(); + + return flags; +} + /* * To avoid unnecessary overhead, we pass through large allocation requests * directly to the page allocator. We use __GFP_COMP, because we will need to @@ -1342,12 +829,15 @@ void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) void *ret = NULL; struct page *page; + if (unlikely(flags & GFP_SLAB_BUG_MASK)) + flags = kmalloc_fix_flags(flags); + flags |= __GFP_COMP; page = alloc_pages(flags, order); if (likely(page)) { ret = page_address(page); - mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE, - 1 << order); + mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B, + PAGE_SIZE << order); } ret = kasan_kmalloc_large(ret, size, flags); /* As ret might get tagged, call kmemleak hook after KASAN. */ @@ -1444,12 +934,12 @@ static void print_slabinfo_header(struct seq_file *m) void *slab_start(struct seq_file *m, loff_t *pos) { mutex_lock(&slab_mutex); - return seq_list_start(&slab_root_caches, *pos); + return seq_list_start(&slab_caches, *pos); } void *slab_next(struct seq_file *m, void *p, loff_t *pos) { - return seq_list_next(p, &slab_root_caches, pos); + return seq_list_next(p, &slab_caches, pos); } void slab_stop(struct seq_file *m, void *p) @@ -1457,27 +947,6 @@ void slab_stop(struct seq_file *m, void *p) mutex_unlock(&slab_mutex); } -static void -memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info) -{ - struct kmem_cache *c; - struct slabinfo sinfo; - - if (!is_root_cache(s)) - return; - - for_each_memcg_cache(c, s) { - memset(&sinfo, 0, sizeof(sinfo)); - get_slabinfo(c, &sinfo); - - info->active_slabs += sinfo.active_slabs; - info->num_slabs += sinfo.num_slabs; - info->shared_avail += sinfo.shared_avail; - info->active_objs += sinfo.active_objs; - info->num_objs += sinfo.num_objs; - } -} - static void cache_show(struct kmem_cache *s, struct seq_file *m) { struct slabinfo sinfo; @@ -1485,10 +954,8 @@ static void cache_show(struct kmem_cache *s, struct seq_file *m) memset(&sinfo, 0, sizeof(sinfo)); get_slabinfo(s, &sinfo); - memcg_accumulate_slabinfo(s, &sinfo); - seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", - cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size, + s->name, sinfo.active_objs, sinfo.num_objs, s->size, sinfo.objects_per_slab, (1 << sinfo.cache_order)); seq_printf(m, " : tunables %4u %4u %4u", @@ -1501,9 +968,9 @@ static void cache_show(struct kmem_cache *s, struct seq_file *m) static int slab_show(struct seq_file *m, void *p) { - struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node); + struct kmem_cache *s = list_entry(p, struct kmem_cache, list); - if (p == slab_root_caches.next) + if (p == slab_caches.next) print_slabinfo_header(m); cache_show(s, m); return 0; @@ -1530,13 +997,13 @@ void dump_unreclaimable_slab(void) pr_info("Name Used Total\n"); list_for_each_entry_safe(s, s2, &slab_caches, list) { - if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT)) + if (s->flags & SLAB_RECLAIM_ACCOUNT) continue; get_slabinfo(s, &sinfo); if (sinfo.num_objs > 0) - pr_info("%-17s %10luKB %10luKB\n", cache_name(s), + pr_info("%-17s %10luKB %10luKB\n", s->name, (sinfo.active_objs * s->size) / 1024, (sinfo.num_objs * s->size) / 1024); } @@ -1544,35 +1011,12 @@ void dump_unreclaimable_slab(void) } #if defined(CONFIG_MEMCG_KMEM) -void *memcg_slab_start(struct seq_file *m, loff_t *pos) -{ - struct mem_cgroup *memcg = mem_cgroup_from_seq(m); - - mutex_lock(&slab_mutex); - return seq_list_start(&memcg->kmem_caches, *pos); -} - -void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos) -{ - struct mem_cgroup *memcg = mem_cgroup_from_seq(m); - - return seq_list_next(p, &memcg->kmem_caches, pos); -} - -void memcg_slab_stop(struct seq_file *m, void *p) -{ - mutex_unlock(&slab_mutex); -} - int memcg_slab_show(struct seq_file *m, void *p) { - struct kmem_cache *s = list_entry(p, struct kmem_cache, - memcg_params.kmem_caches_node); - struct mem_cgroup *memcg = mem_cgroup_from_seq(m); - - if (p == memcg->kmem_caches.next) - print_slabinfo_header(m); - cache_show(s, m); + /* + * Deprecated. + * Please, take a look at tools/cgroup/slabinfo.py . + */ return 0; } #endif @@ -1618,73 +1062,15 @@ static int __init slab_proc_init(void) } module_init(slab_proc_init); -#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_MEMCG_KMEM) -/* - * Display information about kmem caches that have child memcg caches. - */ -static int memcg_slabinfo_show(struct seq_file *m, void *unused) -{ - struct kmem_cache *s, *c; - struct slabinfo sinfo; - - mutex_lock(&slab_mutex); - seq_puts(m, "# <name> <css_id[:dead|deact]> <active_objs> <num_objs>"); - seq_puts(m, " <active_slabs> <num_slabs>\n"); - list_for_each_entry(s, &slab_root_caches, root_caches_node) { - /* - * Skip kmem caches that don't have any memcg children. - */ - if (list_empty(&s->memcg_params.children)) - continue; - - memset(&sinfo, 0, sizeof(sinfo)); - get_slabinfo(s, &sinfo); - seq_printf(m, "%-17s root %6lu %6lu %6lu %6lu\n", - cache_name(s), sinfo.active_objs, sinfo.num_objs, - sinfo.active_slabs, sinfo.num_slabs); - - for_each_memcg_cache(c, s) { - struct cgroup_subsys_state *css; - char *status = ""; - - css = &c->memcg_params.memcg->css; - if (!(css->flags & CSS_ONLINE)) - status = ":dead"; - else if (c->flags & SLAB_DEACTIVATED) - status = ":deact"; - - memset(&sinfo, 0, sizeof(sinfo)); - get_slabinfo(c, &sinfo); - seq_printf(m, "%-17s %4d%-6s %6lu %6lu %6lu %6lu\n", - cache_name(c), css->id, status, - sinfo.active_objs, sinfo.num_objs, - sinfo.active_slabs, sinfo.num_slabs); - } - } - mutex_unlock(&slab_mutex); - return 0; -} -DEFINE_SHOW_ATTRIBUTE(memcg_slabinfo); - -static int __init memcg_slabinfo_init(void) -{ - debugfs_create_file("memcg_slabinfo", S_IFREG | S_IRUGO, - NULL, NULL, &memcg_slabinfo_fops); - return 0; -} - -late_initcall(memcg_slabinfo_init); -#endif /* CONFIG_DEBUG_FS && CONFIG_MEMCG_KMEM */ #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */ static __always_inline void *__do_krealloc(const void *p, size_t new_size, gfp_t flags) { void *ret; - size_t ks = 0; + size_t ks; - if (p) - ks = ksize(p); + ks = ksize(p); if (ks >= new_size) { p = kasan_krealloc((void *)p, new_size, flags); @@ -1729,28 +1115,27 @@ void *krealloc(const void *p, size_t new_size, gfp_t flags) EXPORT_SYMBOL(krealloc); /** - * kzfree - like kfree but zero memory + * kfree_sensitive - Clear sensitive information in memory before freeing * @p: object to free memory of * * The memory of the object @p points to is zeroed before freed. - * If @p is %NULL, kzfree() does nothing. + * If @p is %NULL, kfree_sensitive() does nothing. * * Note: this function zeroes the whole allocated buffer which can be a good * deal bigger than the requested buffer size passed to kmalloc(). So be * careful when using this function in performance sensitive code. */ -void kzfree(const void *p) +void kfree_sensitive(const void *p) { size_t ks; void *mem = (void *)p; - if (unlikely(ZERO_OR_NULL_PTR(mem))) - return; ks = ksize(mem); - memzero_explicit(mem, ks); + if (ks) + memzero_explicit(mem, ks); kfree(mem); } -EXPORT_SYMBOL(kzfree); +EXPORT_SYMBOL(kfree_sensitive); /** * ksize - get the actual amount of memory allocated for a given object @@ -1770,8 +1155,6 @@ size_t ksize(const void *objp) { size_t size; - if (WARN_ON_ONCE(!objp)) - return 0; /* * We need to check that the pointed to object is valid, and only then * unpoison the shadow memory below. We use __kasan_check_read(), to @@ -1785,7 +1168,7 @@ size_t ksize(const void *objp) * We want to perform the check before __ksize(), to avoid potentially * crashing in __ksize() due to accessing invalid metadata. */ - if (unlikely(objp == ZERO_SIZE_PTR) || !__kasan_check_read(objp, 1)) + if (unlikely(ZERO_OR_NULL_PTR(objp)) || !__kasan_check_read(objp, 1)) return 0; size = __ksize(objp); diff --git a/mm/slob.c b/mm/slob.c index ac2aecfbc7a8..7cc9805c8091 100644 --- a/mm/slob.c +++ b/mm/slob.c @@ -202,8 +202,8 @@ static void *slob_new_pages(gfp_t gfp, int order, int node) if (!page) return NULL; - mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE, - 1 << order); + mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B, + PAGE_SIZE << order); return page_address(page); } @@ -214,8 +214,8 @@ static void slob_free_pages(void *b, int order) if (current->reclaim_state) current->reclaim_state->reclaimed_slab += 1 << order; - mod_node_page_state(page_pgdat(sp), NR_SLAB_UNRECLAIMABLE, - -(1 << order)); + mod_node_page_state(page_pgdat(sp), NR_SLAB_UNRECLAIMABLE_B, + -(PAGE_SIZE << order)); __free_pages(sp, order); } @@ -552,8 +552,8 @@ void kfree(const void *block) slob_free(m, *m + align); } else { unsigned int order = compound_order(sp); - mod_node_page_state(page_pgdat(sp), NR_SLAB_UNRECLAIMABLE, - -(1 << order)); + mod_node_page_state(page_pgdat(sp), NR_SLAB_UNRECLAIMABLE_B, + -(PAGE_SIZE << order)); __free_pages(sp, order); } diff --git a/mm/slub.c b/mm/slub.c index f226d66408ee..68c02b2eecd9 100644 --- a/mm/slub.c +++ b/mm/slub.c @@ -114,18 +114,22 @@ * the fast path and disables lockless freelists. */ -static inline int kmem_cache_debug(struct kmem_cache *s) -{ #ifdef CONFIG_SLUB_DEBUG - return unlikely(s->flags & SLAB_DEBUG_FLAGS); +#ifdef CONFIG_SLUB_DEBUG_ON +DEFINE_STATIC_KEY_TRUE(slub_debug_enabled); #else - return 0; +DEFINE_STATIC_KEY_FALSE(slub_debug_enabled); #endif +#endif + +static inline bool kmem_cache_debug(struct kmem_cache *s) +{ + return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS); } void *fixup_red_left(struct kmem_cache *s, void *p) { - if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) + if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) p += s->red_left_pad; return p; @@ -214,14 +218,10 @@ enum track_item { TRACK_ALLOC, TRACK_FREE }; #ifdef CONFIG_SYSFS static int sysfs_slab_add(struct kmem_cache *); static int sysfs_slab_alias(struct kmem_cache *, const char *); -static void memcg_propagate_slab_attrs(struct kmem_cache *s); -static void sysfs_slab_remove(struct kmem_cache *s); #else static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) { return 0; } -static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } -static inline void sysfs_slab_remove(struct kmem_cache *s) { } #endif static inline void stat(const struct kmem_cache *s, enum stat_item si) @@ -313,12 +313,6 @@ static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) __p < (__addr) + (__objects) * (__s)->size; \ __p += (__s)->size) -/* Determine object index from a given position */ -static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr) -{ - return (kasan_reset_tag(p) - addr) / s->size; -} - static inline unsigned int order_objects(unsigned int order, unsigned int size) { return ((unsigned int)PAGE_SIZE << order) / size; @@ -461,7 +455,7 @@ static unsigned long *get_map(struct kmem_cache *s, struct page *page) bitmap_zero(object_map, page->objects); for (p = page->freelist; p; p = get_freepointer(s, p)) - set_bit(slab_index(p, s, addr), object_map); + set_bit(__obj_to_index(s, addr, p), object_map); return object_map; } @@ -469,8 +463,6 @@ static unsigned long *get_map(struct kmem_cache *s, struct page *page) static void put_map(unsigned long *map) __releases(&object_map_lock) { VM_BUG_ON(map != object_map); - lockdep_assert_held(&object_map_lock); - spin_unlock(&object_map_lock); } @@ -499,7 +491,7 @@ static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; static slab_flags_t slub_debug; #endif -static char *slub_debug_slabs; +static char *slub_debug_string; static int disable_higher_order_debug; /* @@ -634,7 +626,7 @@ static void print_track(const char *s, struct track *t, unsigned long pr_time) #endif } -static void print_tracking(struct kmem_cache *s, void *object) +void print_tracking(struct kmem_cache *s, void *object) { unsigned long pr_time = jiffies; if (!(s->flags & SLAB_STORE_USER)) @@ -1112,7 +1104,7 @@ static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) static void setup_object_debug(struct kmem_cache *s, struct page *page, void *object) { - if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) + if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)) return; init_object(s, object, SLUB_RED_INACTIVE); @@ -1122,7 +1114,7 @@ static void setup_object_debug(struct kmem_cache *s, struct page *page, static void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) { - if (!(s->flags & SLAB_POISON)) + if (!kmem_cache_debug_flags(s, SLAB_POISON)) return; metadata_access_enable(); @@ -1262,69 +1254,135 @@ out: return ret; } -static int __init setup_slub_debug(char *str) +/* + * Parse a block of slub_debug options. Blocks are delimited by ';' + * + * @str: start of block + * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified + * @slabs: return start of list of slabs, or NULL when there's no list + * @init: assume this is initial parsing and not per-kmem-create parsing + * + * returns the start of next block if there's any, or NULL + */ +static char * +parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init) { - slub_debug = DEBUG_DEFAULT_FLAGS; - if (*str++ != '=' || !*str) - /* - * No options specified. Switch on full debugging. - */ - goto out; + bool higher_order_disable = false; - if (*str == ',') + /* Skip any completely empty blocks */ + while (*str && *str == ';') + str++; + + if (*str == ',') { /* * No options but restriction on slabs. This means full * debugging for slabs matching a pattern. */ + *flags = DEBUG_DEFAULT_FLAGS; goto check_slabs; + } + *flags = 0; - slub_debug = 0; - if (*str == '-') - /* - * Switch off all debugging measures. - */ - goto out; - - /* - * Determine which debug features should be switched on - */ - for (; *str && *str != ','; str++) { + /* Determine which debug features should be switched on */ + for (; *str && *str != ',' && *str != ';'; str++) { switch (tolower(*str)) { + case '-': + *flags = 0; + break; case 'f': - slub_debug |= SLAB_CONSISTENCY_CHECKS; + *flags |= SLAB_CONSISTENCY_CHECKS; break; case 'z': - slub_debug |= SLAB_RED_ZONE; + *flags |= SLAB_RED_ZONE; break; case 'p': - slub_debug |= SLAB_POISON; + *flags |= SLAB_POISON; break; case 'u': - slub_debug |= SLAB_STORE_USER; + *flags |= SLAB_STORE_USER; break; case 't': - slub_debug |= SLAB_TRACE; + *flags |= SLAB_TRACE; break; case 'a': - slub_debug |= SLAB_FAILSLAB; + *flags |= SLAB_FAILSLAB; break; case 'o': /* * Avoid enabling debugging on caches if its minimum * order would increase as a result. */ - disable_higher_order_debug = 1; + higher_order_disable = true; break; default: - pr_err("slub_debug option '%c' unknown. skipped\n", - *str); + if (init) + pr_err("slub_debug option '%c' unknown. skipped\n", *str); } } - check_slabs: if (*str == ',') - slub_debug_slabs = str + 1; + *slabs = ++str; + else + *slabs = NULL; + + /* Skip over the slab list */ + while (*str && *str != ';') + str++; + + /* Skip any completely empty blocks */ + while (*str && *str == ';') + str++; + + if (init && higher_order_disable) + disable_higher_order_debug = 1; + + if (*str) + return str; + else + return NULL; +} + +static int __init setup_slub_debug(char *str) +{ + slab_flags_t flags; + char *saved_str; + char *slab_list; + bool global_slub_debug_changed = false; + bool slab_list_specified = false; + + slub_debug = DEBUG_DEFAULT_FLAGS; + if (*str++ != '=' || !*str) + /* + * No options specified. Switch on full debugging. + */ + goto out; + + saved_str = str; + while (str) { + str = parse_slub_debug_flags(str, &flags, &slab_list, true); + + if (!slab_list) { + slub_debug = flags; + global_slub_debug_changed = true; + } else { + slab_list_specified = true; + } + } + + /* + * For backwards compatibility, a single list of flags with list of + * slabs means debugging is only enabled for those slabs, so the global + * slub_debug should be 0. We can extended that to multiple lists as + * long as there is no option specifying flags without a slab list. + */ + if (slab_list_specified) { + if (!global_slub_debug_changed) + slub_debug = 0; + slub_debug_string = saved_str; + } out: + if (slub_debug != 0 || slub_debug_string) + static_branch_enable(&slub_debug_enabled); if ((static_branch_unlikely(&init_on_alloc) || static_branch_unlikely(&init_on_free)) && (slub_debug & SLAB_POISON)) @@ -1352,36 +1410,47 @@ slab_flags_t kmem_cache_flags(unsigned int object_size, { char *iter; size_t len; + char *next_block; + slab_flags_t block_flags; /* If slub_debug = 0, it folds into the if conditional. */ - if (!slub_debug_slabs) + if (!slub_debug_string) return flags | slub_debug; len = strlen(name); - iter = slub_debug_slabs; - while (*iter) { - char *end, *glob; - size_t cmplen; - - end = strchrnul(iter, ','); + next_block = slub_debug_string; + /* Go through all blocks of debug options, see if any matches our slab's name */ + while (next_block) { + next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false); + if (!iter) + continue; + /* Found a block that has a slab list, search it */ + while (*iter) { + char *end, *glob; + size_t cmplen; + + end = strchrnul(iter, ','); + if (next_block && next_block < end) + end = next_block - 1; + + glob = strnchr(iter, end - iter, '*'); + if (glob) + cmplen = glob - iter; + else + cmplen = max_t(size_t, len, (end - iter)); - glob = strnchr(iter, end - iter, '*'); - if (glob) - cmplen = glob - iter; - else - cmplen = max_t(size_t, len, (end - iter)); + if (!strncmp(name, iter, cmplen)) { + flags |= block_flags; + return flags; + } - if (!strncmp(name, iter, cmplen)) { - flags |= slub_debug; - break; + if (!*end || *end == ';') + break; + iter = end + 1; } - - if (!*end) - break; - iter = end + 1; } - return flags; + return slub_debug; } #else /* !CONFIG_SLUB_DEBUG */ static inline void setup_object_debug(struct kmem_cache *s, @@ -1470,6 +1539,11 @@ static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x) if (!(s->flags & SLAB_DEBUG_OBJECTS)) debug_check_no_obj_freed(x, s->object_size); + /* Use KCSAN to help debug racy use-after-free. */ + if (!(s->flags & SLAB_TYPESAFE_BY_RCU)) + __kcsan_check_access(x, s->object_size, + KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); + /* KASAN might put x into memory quarantine, delaying its reuse */ return kasan_slab_free(s, x, _RET_IP_); } @@ -1546,10 +1620,8 @@ static inline struct page *alloc_slab_page(struct kmem_cache *s, else page = __alloc_pages_node(node, flags, order); - if (page && charge_slab_page(page, flags, order, s)) { - __free_pages(page, order); - page = NULL; - } + if (page) + account_slab_page(page, order, s); return page; } @@ -1745,13 +1817,8 @@ out: static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) { - if (unlikely(flags & GFP_SLAB_BUG_MASK)) { - gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; - flags &= ~GFP_SLAB_BUG_MASK; - pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", - invalid_mask, &invalid_mask, flags, &flags); - dump_stack(); - } + if (unlikely(flags & GFP_SLAB_BUG_MASK)) + flags = kmalloc_fix_flags(flags); return allocate_slab(s, flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); @@ -1762,7 +1829,7 @@ static void __free_slab(struct kmem_cache *s, struct page *page) int order = compound_order(page); int pages = 1 << order; - if (s->flags & SLAB_CONSISTENCY_CHECKS) { + if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) { void *p; slab_pad_check(s, page); @@ -1777,7 +1844,7 @@ static void __free_slab(struct kmem_cache *s, struct page *page) page->mapping = NULL; if (current->reclaim_state) current->reclaim_state->reclaimed_slab += pages; - uncharge_slab_page(page, order, s); + unaccount_slab_page(page, order, s); __free_pages(page, order); } @@ -2744,8 +2811,9 @@ static __always_inline void *slab_alloc_node(struct kmem_cache *s, struct kmem_cache_cpu *c; struct page *page; unsigned long tid; + struct obj_cgroup *objcg = NULL; - s = slab_pre_alloc_hook(s, gfpflags); + s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags); if (!s) return NULL; redo: @@ -2821,7 +2889,7 @@ redo: if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object) memset(object, 0, s->object_size); - slab_post_alloc_hook(s, gfpflags, 1, &object); + slab_post_alloc_hook(s, objcg, gfpflags, 1, &object); return object; } @@ -3026,6 +3094,8 @@ static __always_inline void do_slab_free(struct kmem_cache *s, void *tail_obj = tail ? : head; struct kmem_cache_cpu *c; unsigned long tid; + + memcg_slab_free_hook(s, page, head); redo: /* * Determine the currently cpus per cpu slab. @@ -3205,9 +3275,10 @@ int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, { struct kmem_cache_cpu *c; int i; + struct obj_cgroup *objcg = NULL; /* memcg and kmem_cache debug support */ - s = slab_pre_alloc_hook(s, flags); + s = slab_pre_alloc_hook(s, &objcg, size, flags); if (unlikely(!s)) return false; /* @@ -3261,11 +3332,11 @@ int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, } /* memcg and kmem_cache debug support */ - slab_post_alloc_hook(s, flags, size, p); + slab_post_alloc_hook(s, objcg, flags, size, p); return i; error: local_irq_enable(); - slab_post_alloc_hook(s, flags, i, p); + slab_post_alloc_hook(s, objcg, flags, i, p); __kmem_cache_free_bulk(s, i, p); return 0; } @@ -3675,6 +3746,7 @@ static int calculate_sizes(struct kmem_cache *s, int forced_order) */ size = ALIGN(size, s->align); s->size = size; + s->reciprocal_size = reciprocal_value(size); if (forced_order >= 0) order = forced_order; else @@ -3779,7 +3851,7 @@ static void list_slab_objects(struct kmem_cache *s, struct page *page, map = get_map(s, page); for_each_object(p, s, addr, page->objects) { - if (!test_bit(slab_index(p, s, addr), map)) { + if (!test_bit(__obj_to_index(s, addr, p), map)) { pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); print_tracking(s, p); } @@ -3842,7 +3914,6 @@ int __kmem_cache_shutdown(struct kmem_cache *s) if (n->nr_partial || slabs_node(s, node)) return 1; } - sysfs_slab_remove(s); return 0; } @@ -3912,8 +3983,8 @@ static void *kmalloc_large_node(size_t size, gfp_t flags, int node) page = alloc_pages_node(node, flags, order); if (page) { ptr = page_address(page); - mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE, - 1 << order); + mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B, + PAGE_SIZE << order); } return kmalloc_large_node_hook(ptr, size, flags); @@ -3980,7 +4051,7 @@ void __check_heap_object(const void *ptr, unsigned long n, struct page *page, offset = (ptr - page_address(page)) % s->size; /* Adjust for redzone and reject if within the redzone. */ - if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) { + if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) { if (offset < s->red_left_pad) usercopy_abort("SLUB object in left red zone", s->name, to_user, offset, n); @@ -4044,8 +4115,8 @@ void kfree(const void *x) BUG_ON(!PageCompound(page)); kfree_hook(object); - mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE, - -(1 << order)); + mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B, + -(PAGE_SIZE << order)); __free_pages(page, order); return; } @@ -4126,36 +4197,6 @@ int __kmem_cache_shrink(struct kmem_cache *s) return ret; } -#ifdef CONFIG_MEMCG -void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s) -{ - /* - * Called with all the locks held after a sched RCU grace period. - * Even if @s becomes empty after shrinking, we can't know that @s - * doesn't have allocations already in-flight and thus can't - * destroy @s until the associated memcg is released. - * - * However, let's remove the sysfs files for empty caches here. - * Each cache has a lot of interface files which aren't - * particularly useful for empty draining caches; otherwise, we can - * easily end up with millions of unnecessary sysfs files on - * systems which have a lot of memory and transient cgroups. - */ - if (!__kmem_cache_shrink(s)) - sysfs_slab_remove(s); -} - -void __kmemcg_cache_deactivate(struct kmem_cache *s) -{ - /* - * Disable empty slabs caching. Used to avoid pinning offline - * memory cgroups by kmem pages that can be freed. - */ - slub_set_cpu_partial(s, 0); - s->min_partial = 0; -} -#endif /* CONFIG_MEMCG */ - static int slab_mem_going_offline_callback(void *arg) { struct kmem_cache *s; @@ -4310,9 +4351,7 @@ static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) p->slab_cache = s; #endif } - slab_init_memcg_params(s); list_add(&s->list, &slab_caches); - memcg_link_cache(s, NULL); return s; } @@ -4367,7 +4406,7 @@ struct kmem_cache * __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, slab_flags_t flags, void (*ctor)(void *)) { - struct kmem_cache *s, *c; + struct kmem_cache *s; s = find_mergeable(size, align, flags, name, ctor); if (s) { @@ -4380,11 +4419,6 @@ __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, s->object_size = max(s->object_size, size); s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); - for_each_memcg_cache(c, s) { - c->object_size = s->object_size; - c->inuse = max(c->inuse, ALIGN(size, sizeof(void *))); - } - if (sysfs_slab_alias(s, name)) { s->refcount--; s = NULL; @@ -4406,7 +4440,6 @@ int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) if (slab_state <= UP) return 0; - memcg_propagate_slab_attrs(s); err = sysfs_slab_add(s); if (err) __kmem_cache_release(s); @@ -4495,7 +4528,7 @@ static void validate_slab(struct kmem_cache *s, struct page *page) /* Now we know that a valid freelist exists */ map = get_map(s, page); for_each_object(p, s, addr, page->objects) { - u8 val = test_bit(slab_index(p, s, addr), map) ? + u8 val = test_bit(__obj_to_index(s, addr, p), map) ? SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; if (!check_object(s, page, p, val)) @@ -4686,7 +4719,7 @@ static void process_slab(struct loc_track *t, struct kmem_cache *s, map = get_map(s, page); for_each_object(p, s, addr, page->objects) - if (!test_bit(slab_index(p, s, addr), map)) + if (!test_bit(__obj_to_index(s, addr, p), map)) add_location(t, s, get_track(s, p, alloc)); put_map(map); } @@ -4970,20 +5003,6 @@ static ssize_t show_slab_objects(struct kmem_cache *s, return x + sprintf(buf + x, "\n"); } -#ifdef CONFIG_SLUB_DEBUG -static int any_slab_objects(struct kmem_cache *s) -{ - int node; - struct kmem_cache_node *n; - - for_each_kmem_cache_node(s, node, n) - if (atomic_long_read(&n->total_objects)) - return 1; - - return 0; -} -#endif - #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) #define to_slab(n) container_of(n, struct kmem_cache, kobj) @@ -5025,28 +5044,11 @@ static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) } SLAB_ATTR_RO(objs_per_slab); -static ssize_t order_store(struct kmem_cache *s, - const char *buf, size_t length) -{ - unsigned int order; - int err; - - err = kstrtouint(buf, 10, &order); - if (err) - return err; - - if (order > slub_max_order || order < slub_min_order) - return -EINVAL; - - calculate_sizes(s, order); - return length; -} - static ssize_t order_show(struct kmem_cache *s, char *buf) { return sprintf(buf, "%u\n", oo_order(s->oo)); } -SLAB_ATTR(order); +SLAB_ATTR_RO(order); static ssize_t min_partial_show(struct kmem_cache *s, char *buf) { @@ -5168,16 +5170,7 @@ static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) { return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); } - -static ssize_t reclaim_account_store(struct kmem_cache *s, - const char *buf, size_t length) -{ - s->flags &= ~SLAB_RECLAIM_ACCOUNT; - if (buf[0] == '1') - s->flags |= SLAB_RECLAIM_ACCOUNT; - return length; -} -SLAB_ATTR(reclaim_account); +SLAB_ATTR_RO(reclaim_account); static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) { @@ -5222,104 +5215,34 @@ static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) { return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); } - -static ssize_t sanity_checks_store(struct kmem_cache *s, - const char *buf, size_t length) -{ - s->flags &= ~SLAB_CONSISTENCY_CHECKS; - if (buf[0] == '1') { - s->flags &= ~__CMPXCHG_DOUBLE; - s->flags |= SLAB_CONSISTENCY_CHECKS; - } - return length; -} -SLAB_ATTR(sanity_checks); +SLAB_ATTR_RO(sanity_checks); static ssize_t trace_show(struct kmem_cache *s, char *buf) { return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); } - -static ssize_t trace_store(struct kmem_cache *s, const char *buf, - size_t length) -{ - /* - * Tracing a merged cache is going to give confusing results - * as well as cause other issues like converting a mergeable - * cache into an umergeable one. - */ - if (s->refcount > 1) - return -EINVAL; - - s->flags &= ~SLAB_TRACE; - if (buf[0] == '1') { - s->flags &= ~__CMPXCHG_DOUBLE; - s->flags |= SLAB_TRACE; - } - return length; -} -SLAB_ATTR(trace); +SLAB_ATTR_RO(trace); static ssize_t red_zone_show(struct kmem_cache *s, char *buf) { return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); } -static ssize_t red_zone_store(struct kmem_cache *s, - const char *buf, size_t length) -{ - if (any_slab_objects(s)) - return -EBUSY; - - s->flags &= ~SLAB_RED_ZONE; - if (buf[0] == '1') { - s->flags |= SLAB_RED_ZONE; - } - calculate_sizes(s, -1); - return length; -} -SLAB_ATTR(red_zone); +SLAB_ATTR_RO(red_zone); static ssize_t poison_show(struct kmem_cache *s, char *buf) { return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); } -static ssize_t poison_store(struct kmem_cache *s, - const char *buf, size_t length) -{ - if (any_slab_objects(s)) - return -EBUSY; - - s->flags &= ~SLAB_POISON; - if (buf[0] == '1') { - s->flags |= SLAB_POISON; - } - calculate_sizes(s, -1); - return length; -} -SLAB_ATTR(poison); +SLAB_ATTR_RO(poison); static ssize_t store_user_show(struct kmem_cache *s, char *buf) { return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); } -static ssize_t store_user_store(struct kmem_cache *s, - const char *buf, size_t length) -{ - if (any_slab_objects(s)) - return -EBUSY; - - s->flags &= ~SLAB_STORE_USER; - if (buf[0] == '1') { - s->flags &= ~__CMPXCHG_DOUBLE; - s->flags |= SLAB_STORE_USER; - } - calculate_sizes(s, -1); - return length; -} -SLAB_ATTR(store_user); +SLAB_ATTR_RO(store_user); static ssize_t validate_show(struct kmem_cache *s, char *buf) { @@ -5362,19 +5285,7 @@ static ssize_t failslab_show(struct kmem_cache *s, char *buf) { return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); } - -static ssize_t failslab_store(struct kmem_cache *s, const char *buf, - size_t length) -{ - if (s->refcount > 1) - return -EINVAL; - - s->flags &= ~SLAB_FAILSLAB; - if (buf[0] == '1') - s->flags |= SLAB_FAILSLAB; - return length; -} -SLAB_ATTR(failslab); +SLAB_ATTR_RO(failslab); #endif static ssize_t shrink_show(struct kmem_cache *s, char *buf) @@ -5386,7 +5297,7 @@ static ssize_t shrink_store(struct kmem_cache *s, const char *buf, size_t length) { if (buf[0] == '1') - kmem_cache_shrink_all(s); + kmem_cache_shrink(s); else return -EINVAL; return length; @@ -5610,98 +5521,9 @@ static ssize_t slab_attr_store(struct kobject *kobj, return -EIO; err = attribute->store(s, buf, len); -#ifdef CONFIG_MEMCG - if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { - struct kmem_cache *c; - - mutex_lock(&slab_mutex); - if (s->max_attr_size < len) - s->max_attr_size = len; - - /* - * This is a best effort propagation, so this function's return - * value will be determined by the parent cache only. This is - * basically because not all attributes will have a well - * defined semantics for rollbacks - most of the actions will - * have permanent effects. - * - * Returning the error value of any of the children that fail - * is not 100 % defined, in the sense that users seeing the - * error code won't be able to know anything about the state of - * the cache. - * - * Only returning the error code for the parent cache at least - * has well defined semantics. The cache being written to - * directly either failed or succeeded, in which case we loop - * through the descendants with best-effort propagation. - */ - for_each_memcg_cache(c, s) - attribute->store(c, buf, len); - mutex_unlock(&slab_mutex); - } -#endif return err; } -static void memcg_propagate_slab_attrs(struct kmem_cache *s) -{ -#ifdef CONFIG_MEMCG - int i; - char *buffer = NULL; - struct kmem_cache *root_cache; - - if (is_root_cache(s)) - return; - - root_cache = s->memcg_params.root_cache; - - /* - * This mean this cache had no attribute written. Therefore, no point - * in copying default values around - */ - if (!root_cache->max_attr_size) - return; - - for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { - char mbuf[64]; - char *buf; - struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); - ssize_t len; - - if (!attr || !attr->store || !attr->show) - continue; - - /* - * It is really bad that we have to allocate here, so we will - * do it only as a fallback. If we actually allocate, though, - * we can just use the allocated buffer until the end. - * - * Most of the slub attributes will tend to be very small in - * size, but sysfs allows buffers up to a page, so they can - * theoretically happen. - */ - if (buffer) - buf = buffer; - else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf) && - !IS_ENABLED(CONFIG_SLUB_STATS)) - buf = mbuf; - else { - buffer = (char *) get_zeroed_page(GFP_KERNEL); - if (WARN_ON(!buffer)) - continue; - buf = buffer; - } - - len = attr->show(root_cache, buf); - if (len > 0) - attr->store(s, buf, len); - } - - if (buffer) - free_page((unsigned long)buffer); -#endif /* CONFIG_MEMCG */ -} - static void kmem_cache_release(struct kobject *k) { slab_kmem_cache_release(to_slab(k)); @@ -5721,10 +5543,6 @@ static struct kset *slab_kset; static inline struct kset *cache_kset(struct kmem_cache *s) { -#ifdef CONFIG_MEMCG - if (!is_root_cache(s)) - return s->memcg_params.root_cache->memcg_kset; -#endif return slab_kset; } @@ -5767,27 +5585,6 @@ static char *create_unique_id(struct kmem_cache *s) return name; } -static void sysfs_slab_remove_workfn(struct work_struct *work) -{ - struct kmem_cache *s = - container_of(work, struct kmem_cache, kobj_remove_work); - - if (!s->kobj.state_in_sysfs) - /* - * For a memcg cache, this may be called during - * deactivation and again on shutdown. Remove only once. - * A cache is never shut down before deactivation is - * complete, so no need to worry about synchronization. - */ - goto out; - -#ifdef CONFIG_MEMCG - kset_unregister(s->memcg_kset); -#endif -out: - kobject_put(&s->kobj); -} - static int sysfs_slab_add(struct kmem_cache *s) { int err; @@ -5795,8 +5592,6 @@ static int sysfs_slab_add(struct kmem_cache *s) struct kset *kset = cache_kset(s); int unmergeable = slab_unmergeable(s); - INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn); - if (!kset) { kobject_init(&s->kobj, &slab_ktype); return 0; @@ -5833,16 +5628,6 @@ static int sysfs_slab_add(struct kmem_cache *s) if (err) goto out_del_kobj; -#ifdef CONFIG_MEMCG - if (is_root_cache(s) && memcg_sysfs_enabled) { - s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj); - if (!s->memcg_kset) { - err = -ENOMEM; - goto out_del_kobj; - } - } -#endif - if (!unmergeable) { /* Setup first alias */ sysfs_slab_alias(s, s->name); @@ -5856,19 +5641,6 @@ out_del_kobj: goto out; } -static void sysfs_slab_remove(struct kmem_cache *s) -{ - if (slab_state < FULL) - /* - * Sysfs has not been setup yet so no need to remove the - * cache from sysfs. - */ - return; - - kobject_get(&s->kobj); - schedule_work(&s->kobj_remove_work); -} - void sysfs_slab_unlink(struct kmem_cache *s) { if (slab_state >= FULL) diff --git a/mm/sparse-vmemmap.c b/mm/sparse-vmemmap.c index 0db7738d76e9..16183d85a7d5 100644 --- a/mm/sparse-vmemmap.c +++ b/mm/sparse-vmemmap.c @@ -69,11 +69,19 @@ void * __meminit vmemmap_alloc_block(unsigned long size, int node) __pa(MAX_DMA_ADDRESS)); } +static void * __meminit altmap_alloc_block_buf(unsigned long size, + struct vmem_altmap *altmap); + /* need to make sure size is all the same during early stage */ -void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node) +void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node, + struct vmem_altmap *altmap) { - void *ptr = sparse_buffer_alloc(size); + void *ptr; + + if (altmap) + return altmap_alloc_block_buf(size, altmap); + ptr = sparse_buffer_alloc(size); if (!ptr) ptr = vmemmap_alloc_block(size, node); return ptr; @@ -94,15 +102,8 @@ static unsigned long __meminit vmem_altmap_nr_free(struct vmem_altmap *altmap) return 0; } -/** - * altmap_alloc_block_buf - allocate pages from the device page map - * @altmap: device page map - * @size: size (in bytes) of the allocation - * - * Allocations are aligned to the size of the request. - */ -void * __meminit altmap_alloc_block_buf(unsigned long size, - struct vmem_altmap *altmap) +static void * __meminit altmap_alloc_block_buf(unsigned long size, + struct vmem_altmap *altmap) { unsigned long pfn, nr_pfns, nr_align; @@ -139,12 +140,15 @@ void __meminit vmemmap_verify(pte_t *pte, int node, start, end - 1); } -pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node) +pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, + struct vmem_altmap *altmap) { pte_t *pte = pte_offset_kernel(pmd, addr); if (pte_none(*pte)) { pte_t entry; - void *p = vmemmap_alloc_block_buf(PAGE_SIZE, node); + void *p; + + p = vmemmap_alloc_block_buf(PAGE_SIZE, node, altmap); if (!p) return NULL; entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL); @@ -212,8 +216,8 @@ pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node) return pgd; } -int __meminit vmemmap_populate_basepages(unsigned long start, - unsigned long end, int node) +int __meminit vmemmap_populate_basepages(unsigned long start, unsigned long end, + int node, struct vmem_altmap *altmap) { unsigned long addr = start; pgd_t *pgd; @@ -235,7 +239,7 @@ int __meminit vmemmap_populate_basepages(unsigned long start, pmd = vmemmap_pmd_populate(pud, addr, node); if (!pmd) return -ENOMEM; - pte = vmemmap_pte_populate(pmd, addr, node); + pte = vmemmap_pte_populate(pmd, addr, node, altmap); if (!pte) return -ENOMEM; vmemmap_verify(pte, node, addr, addr + PAGE_SIZE); @@ -247,20 +251,12 @@ int __meminit vmemmap_populate_basepages(unsigned long start, struct page * __meminit __populate_section_memmap(unsigned long pfn, unsigned long nr_pages, int nid, struct vmem_altmap *altmap) { - unsigned long start; - unsigned long end; - - /* - * The minimum granularity of memmap extensions is - * PAGES_PER_SUBSECTION as allocations are tracked in the - * 'subsection_map' bitmap of the section. - */ - end = ALIGN(pfn + nr_pages, PAGES_PER_SUBSECTION); - pfn &= PAGE_SUBSECTION_MASK; - nr_pages = end - pfn; - - start = (unsigned long) pfn_to_page(pfn); - end = start + nr_pages * sizeof(struct page); + unsigned long start = (unsigned long) pfn_to_page(pfn); + unsigned long end = start + nr_pages * sizeof(struct page); + + if (WARN_ON_ONCE(!IS_ALIGNED(pfn, PAGES_PER_SUBSECTION) || + !IS_ALIGNED(nr_pages, PAGES_PER_SUBSECTION))) + return NULL; if (vmemmap_populate(start, end, nid, altmap)) return NULL; diff --git a/mm/sparse.c b/mm/sparse.c index b2b9a3e34696..fcc3d176f1ea 100644 --- a/mm/sparse.c +++ b/mm/sparse.c @@ -16,7 +16,6 @@ #include "internal.h" #include <asm/dma.h> -#include <asm/pgalloc.h> /* * Permanent SPARSEMEM data: @@ -250,7 +249,7 @@ void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages) #endif /* Record a memory area against a node. */ -void __init memory_present(int nid, unsigned long start, unsigned long end) +static void __init memory_present(int nid, unsigned long start, unsigned long end) { unsigned long pfn; @@ -286,11 +285,11 @@ void __init memory_present(int nid, unsigned long start, unsigned long end) } /* - * Mark all memblocks as present using memory_present(). This is a - * convenience function that is useful for a number of arches - * to mark all of the systems memory as present during initialization. + * Mark all memblocks as present using memory_present(). + * This is a convenience function that is useful to mark all of the systems + * memory as present during initialization. */ -void __init memblocks_present(void) +static void __init memblocks_present(void) { struct memblock_region *reg; @@ -575,9 +574,13 @@ failed: */ void __init sparse_init(void) { - unsigned long pnum_begin = first_present_section_nr(); - int nid_begin = sparse_early_nid(__nr_to_section(pnum_begin)); - unsigned long pnum_end, map_count = 1; + unsigned long pnum_end, pnum_begin, map_count = 1; + int nid_begin; + + memblocks_present(); + + pnum_begin = first_present_section_nr(); + nid_begin = sparse_early_nid(__nr_to_section(pnum_begin)); /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */ set_pageblock_order(); @@ -825,10 +828,14 @@ static void section_deactivate(unsigned long pfn, unsigned long nr_pages, ms->section_mem_map &= ~SECTION_HAS_MEM_MAP; } - if (section_is_early && memmap) - free_map_bootmem(memmap); - else + /* + * The memmap of early sections is always fully populated. See + * section_activate() and pfn_valid() . + */ + if (!section_is_early) depopulate_section_memmap(pfn, nr_pages, altmap); + else if (memmap) + free_map_bootmem(memmap); if (empty) ms->section_mem_map = (unsigned long)NULL; diff --git a/mm/swap_slots.c b/mm/swap_slots.c index 0975adc72253..3e6453573a89 100644 --- a/mm/swap_slots.c +++ b/mm/swap_slots.c @@ -46,8 +46,7 @@ static void __drain_swap_slots_cache(unsigned int type); static void deactivate_swap_slots_cache(void); static void reactivate_swap_slots_cache(void); -#define use_swap_slot_cache (swap_slot_cache_active && \ - swap_slot_cache_enabled && swap_slot_cache_initialized) +#define use_swap_slot_cache (swap_slot_cache_active && swap_slot_cache_enabled) #define SLOTS_CACHE 0x1 #define SLOTS_CACHE_RET 0x2 @@ -94,7 +93,7 @@ static bool check_cache_active(void) { long pages; - if (!swap_slot_cache_enabled || !swap_slot_cache_initialized) + if (!swap_slot_cache_enabled) return false; pages = get_nr_swap_pages(); @@ -136,9 +135,16 @@ static int alloc_swap_slot_cache(unsigned int cpu) mutex_lock(&swap_slots_cache_mutex); cache = &per_cpu(swp_slots, cpu); - if (cache->slots || cache->slots_ret) + if (cache->slots || cache->slots_ret) { /* cache already allocated */ - goto out; + mutex_unlock(&swap_slots_cache_mutex); + + kvfree(slots); + kvfree(slots_ret); + + return 0; + } + if (!cache->lock_initialized) { mutex_init(&cache->alloc_lock); spin_lock_init(&cache->free_lock); @@ -155,15 +161,8 @@ static int alloc_swap_slot_cache(unsigned int cpu) */ mb(); cache->slots = slots; - slots = NULL; cache->slots_ret = slots_ret; - slots_ret = NULL; -out: mutex_unlock(&swap_slots_cache_mutex); - if (slots) - kvfree(slots); - if (slots_ret) - kvfree(slots_ret); return 0; } @@ -240,21 +239,19 @@ static int free_slot_cache(unsigned int cpu) int enable_swap_slots_cache(void) { - int ret = 0; - mutex_lock(&swap_slots_cache_enable_mutex); - if (swap_slot_cache_initialized) { - __reenable_swap_slots_cache(); - goto out_unlock; - } + if (!swap_slot_cache_initialized) { + int ret; - ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "swap_slots_cache", - alloc_swap_slot_cache, free_slot_cache); - if (WARN_ONCE(ret < 0, "Cache allocation failed (%s), operating " - "without swap slots cache.\n", __func__)) - goto out_unlock; + ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "swap_slots_cache", + alloc_swap_slot_cache, free_slot_cache); + if (WARN_ONCE(ret < 0, "Cache allocation failed (%s), operating " + "without swap slots cache.\n", __func__)) + goto out_unlock; + + swap_slot_cache_initialized = true; + } - swap_slot_cache_initialized = true; __reenable_swap_slots_cache(); out_unlock: mutex_unlock(&swap_slots_cache_enable_mutex); diff --git a/mm/swap_state.c b/mm/swap_state.c index 05889e8e3c97..e82f4f8b1f63 100644 --- a/mm/swap_state.c +++ b/mm/swap_state.c @@ -725,7 +725,7 @@ static void swap_ra_info(struct vm_fault *vmf, /** * swap_vma_readahead - swap in pages in hope we need them soon - * @entry: swap entry of this memory + * @fentry: swap entry of this memory * @gfp_mask: memory allocation flags * @vmf: fault information * diff --git a/mm/util.c b/mm/util.c index c63c8e47be57..5ef378a2a038 100644 --- a/mm/util.c +++ b/mm/util.c @@ -503,8 +503,8 @@ unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr, if (!ret) { if (mmap_write_lock_killable(mm)) return -EINTR; - ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff, - &populate, &uf); + ret = do_mmap(file, addr, len, prot, flag, pgoff, &populate, + &uf); mmap_write_unlock(mm); userfaultfd_unmap_complete(mm, &uf); if (populate) @@ -746,6 +746,47 @@ int overcommit_ratio_handler(struct ctl_table *table, int write, void *buffer, return ret; } +static void sync_overcommit_as(struct work_struct *dummy) +{ + percpu_counter_sync(&vm_committed_as); +} + +int overcommit_policy_handler(struct ctl_table *table, int write, void *buffer, + size_t *lenp, loff_t *ppos) +{ + struct ctl_table t; + int new_policy; + int ret; + + /* + * The deviation of sync_overcommit_as could be big with loose policy + * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to + * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply + * with the strict "NEVER", and to avoid possible race condtion (even + * though user usually won't too frequently do the switching to policy + * OVERCOMMIT_NEVER), the switch is done in the following order: + * 1. changing the batch + * 2. sync percpu count on each CPU + * 3. switch the policy + */ + if (write) { + t = *table; + t.data = &new_policy; + ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); + if (ret) + return ret; + + mm_compute_batch(new_policy); + if (new_policy == OVERCOMMIT_NEVER) + schedule_on_each_cpu(sync_overcommit_as); + sysctl_overcommit_memory = new_policy; + } else { + ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); + } + + return ret; +} + int overcommit_kbytes_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { @@ -787,10 +828,15 @@ struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; * balancing memory across competing virtual machines that are hosted. * Several metrics drive this policy engine including the guest reported * memory commitment. + * + * The time cost of this is very low for small platforms, and for big + * platform like a 2S/36C/72T Skylake server, in worst case where + * vm_committed_as's spinlock is under severe contention, the time cost + * could be about 30~40 microseconds. */ unsigned long vm_memory_committed(void) { - return percpu_counter_read_positive(&vm_committed_as); + return percpu_counter_sum_positive(&vm_committed_as); } EXPORT_SYMBOL_GPL(vm_memory_committed); diff --git a/mm/vmalloc.c b/mm/vmalloc.c index 5a2b55c8dd9a..b482d240f9a2 100644 --- a/mm/vmalloc.c +++ b/mm/vmalloc.c @@ -7,6 +7,7 @@ * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 * Numa awareness, Christoph Lameter, SGI, June 2005 + * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019 */ #include <linux/vmalloc.h> @@ -25,7 +26,7 @@ #include <linux/list.h> #include <linux/notifier.h> #include <linux/rbtree.h> -#include <linux/radix-tree.h> +#include <linux/xarray.h> #include <linux/rcupdate.h> #include <linux/pfn.h> #include <linux/kmemleak.h> @@ -41,6 +42,7 @@ #include <asm/shmparam.h> #include "internal.h" +#include "pgalloc-track.h" bool is_vmalloc_addr(const void *x) { @@ -173,7 +175,6 @@ void unmap_kernel_range_noflush(unsigned long start, unsigned long size) pgtbl_mod_mask mask = 0; BUG_ON(addr >= end); - start = addr; pgd = pgd_offset_k(addr); do { next = pgd_addr_end(addr, end); @@ -511,6 +512,10 @@ static struct vmap_area *__find_vmap_area(unsigned long addr) /* * This function returns back addresses of parent node * and its left or right link for further processing. + * + * Otherwise NULL is returned. In that case all further + * steps regarding inserting of conflicting overlap range + * have to be declined and actually considered as a bug. */ static __always_inline struct rb_node ** find_va_links(struct vmap_area *va, @@ -549,8 +554,12 @@ find_va_links(struct vmap_area *va, else if (va->va_end > tmp_va->va_start && va->va_start >= tmp_va->va_end) link = &(*link)->rb_right; - else - BUG(); + else { + WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n", + va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end); + + return NULL; + } } while (*link); *parent = &tmp_va->rb_node; @@ -632,43 +641,17 @@ unlink_va(struct vmap_area *va, struct rb_root *root) #if DEBUG_AUGMENT_PROPAGATE_CHECK static void -augment_tree_propagate_check(struct rb_node *n) +augment_tree_propagate_check(void) { struct vmap_area *va; - struct rb_node *node; - unsigned long size; - bool found = false; - - if (n == NULL) - return; + unsigned long computed_size; - va = rb_entry(n, struct vmap_area, rb_node); - size = va->subtree_max_size; - node = n; - - while (node) { - va = rb_entry(node, struct vmap_area, rb_node); - - if (get_subtree_max_size(node->rb_left) == size) { - node = node->rb_left; - } else { - if (va_size(va) == size) { - found = true; - break; - } - - node = node->rb_right; - } - } - - if (!found) { - va = rb_entry(n, struct vmap_area, rb_node); - pr_emerg("tree is corrupted: %lu, %lu\n", - va_size(va), va->subtree_max_size); + list_for_each_entry(va, &free_vmap_area_list, list) { + computed_size = compute_subtree_max_size(va); + if (computed_size != va->subtree_max_size) + pr_emerg("tree is corrupted: %lu, %lu\n", + va_size(va), va->subtree_max_size); } - - augment_tree_propagate_check(n->rb_left); - augment_tree_propagate_check(n->rb_right); } #endif @@ -702,28 +685,15 @@ augment_tree_propagate_check(struct rb_node *n) static __always_inline void augment_tree_propagate_from(struct vmap_area *va) { - struct rb_node *node = &va->rb_node; - unsigned long new_va_sub_max_size; - - while (node) { - va = rb_entry(node, struct vmap_area, rb_node); - new_va_sub_max_size = compute_subtree_max_size(va); - - /* - * If the newly calculated maximum available size of the - * subtree is equal to the current one, then it means that - * the tree is propagated correctly. So we have to stop at - * this point to save cycles. - */ - if (va->subtree_max_size == new_va_sub_max_size) - break; - - va->subtree_max_size = new_va_sub_max_size; - node = rb_parent(&va->rb_node); - } + /* + * Populate the tree from bottom towards the root until + * the calculated maximum available size of checked node + * is equal to its current one. + */ + free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL); #if DEBUG_AUGMENT_PROPAGATE_CHECK - augment_tree_propagate_check(free_vmap_area_root.rb_node); + augment_tree_propagate_check(); #endif } @@ -735,7 +705,8 @@ insert_vmap_area(struct vmap_area *va, struct rb_node *parent; link = find_va_links(va, root, NULL, &parent); - link_va(va, root, parent, link, head); + if (link) + link_va(va, root, parent, link, head); } static void @@ -751,8 +722,10 @@ insert_vmap_area_augment(struct vmap_area *va, else link = find_va_links(va, root, NULL, &parent); - link_va(va, root, parent, link, head); - augment_tree_propagate_from(va); + if (link) { + link_va(va, root, parent, link, head); + augment_tree_propagate_from(va); + } } /* @@ -760,6 +733,11 @@ insert_vmap_area_augment(struct vmap_area *va, * and next free blocks. If coalesce is not done a new * free area is inserted. If VA has been merged, it is * freed. + * + * Please note, it can return NULL in case of overlap + * ranges, followed by WARN() report. Despite it is a + * buggy behaviour, a system can be alive and keep + * ongoing. */ static __always_inline struct vmap_area * merge_or_add_vmap_area(struct vmap_area *va, @@ -776,6 +754,8 @@ merge_or_add_vmap_area(struct vmap_area *va, * inserted, unless it is merged with its sibling/siblings. */ link = find_va_links(va, root, NULL, &parent); + if (!link) + return NULL; /* * Get next node of VA to check if merging can be done. @@ -796,9 +776,6 @@ merge_or_add_vmap_area(struct vmap_area *va, if (sibling->va_start == va->va_end) { sibling->va_start = va->va_start; - /* Check and update the tree if needed. */ - augment_tree_propagate_from(sibling); - /* Free vmap_area object. */ kmem_cache_free(vmap_area_cachep, va); @@ -818,14 +795,18 @@ merge_or_add_vmap_area(struct vmap_area *va, if (next->prev != head) { sibling = list_entry(next->prev, struct vmap_area, list); if (sibling->va_end == va->va_start) { - sibling->va_end = va->va_end; - - /* Check and update the tree if needed. */ - augment_tree_propagate_from(sibling); - + /* + * If both neighbors are coalesced, it is important + * to unlink the "next" node first, followed by merging + * with "previous" one. Otherwise the tree might not be + * fully populated if a sibling's augmented value is + * "normalized" because of rotation operations. + */ if (merged) unlink_va(va, root); + sibling->va_end = va->va_end; + /* Free vmap_area object. */ kmem_cache_free(vmap_area_cachep, va); @@ -836,11 +817,13 @@ merge_or_add_vmap_area(struct vmap_area *va, } insert: - if (!merged) { + if (!merged) link_va(va, root, parent, link, head); - augment_tree_propagate_from(va); - } + /* + * Last step is to check and update the tree. + */ + augment_tree_propagate_from(va); return va; } @@ -1381,6 +1364,9 @@ static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end) va = merge_or_add_vmap_area(va, &free_vmap_area_root, &free_vmap_area_list); + if (!va) + continue; + if (is_vmalloc_or_module_addr((void *)orig_start)) kasan_release_vmalloc(orig_start, orig_end, va->va_start, va->va_end); @@ -1513,12 +1499,11 @@ struct vmap_block { static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); /* - * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block + * XArray of vmap blocks, indexed by address, to quickly find a vmap block * in the free path. Could get rid of this if we change the API to return a * "cookie" from alloc, to be passed to free. But no big deal yet. */ -static DEFINE_SPINLOCK(vmap_block_tree_lock); -static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); +static DEFINE_XARRAY(vmap_blocks); /* * We should probably have a fallback mechanism to allocate virtual memory @@ -1575,13 +1560,6 @@ static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) return ERR_CAST(va); } - err = radix_tree_preload(gfp_mask); - if (unlikely(err)) { - kfree(vb); - free_vmap_area(va); - return ERR_PTR(err); - } - vaddr = vmap_block_vaddr(va->va_start, 0); spin_lock_init(&vb->lock); vb->va = va; @@ -1594,11 +1572,12 @@ static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) INIT_LIST_HEAD(&vb->free_list); vb_idx = addr_to_vb_idx(va->va_start); - spin_lock(&vmap_block_tree_lock); - err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); - spin_unlock(&vmap_block_tree_lock); - BUG_ON(err); - radix_tree_preload_end(); + err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask); + if (err) { + kfree(vb); + free_vmap_area(va); + return ERR_PTR(err); + } vbq = &get_cpu_var(vmap_block_queue); spin_lock(&vbq->lock); @@ -1612,12 +1591,8 @@ static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) static void free_vmap_block(struct vmap_block *vb) { struct vmap_block *tmp; - unsigned long vb_idx; - vb_idx = addr_to_vb_idx(vb->va->va_start); - spin_lock(&vmap_block_tree_lock); - tmp = radix_tree_delete(&vmap_block_tree, vb_idx); - spin_unlock(&vmap_block_tree_lock); + tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start)); BUG_ON(tmp != vb); free_vmap_area_noflush(vb->va); @@ -1723,7 +1698,6 @@ static void *vb_alloc(unsigned long size, gfp_t gfp_mask) static void vb_free(unsigned long addr, unsigned long size) { unsigned long offset; - unsigned long vb_idx; unsigned int order; struct vmap_block *vb; @@ -1733,14 +1707,8 @@ static void vb_free(unsigned long addr, unsigned long size) flush_cache_vunmap(addr, addr + size); order = get_order(size); - offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT; - - vb_idx = addr_to_vb_idx(addr); - rcu_read_lock(); - vb = radix_tree_lookup(&vmap_block_tree, vb_idx); - rcu_read_unlock(); - BUG_ON(!vb); + vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr)); unmap_kernel_range_noflush(addr, size); @@ -3383,8 +3351,9 @@ recovery: orig_end = vas[area]->va_end; va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root, &free_vmap_area_list); - kasan_release_vmalloc(orig_start, orig_end, - va->va_start, va->va_end); + if (va) + kasan_release_vmalloc(orig_start, orig_end, + va->va_start, va->va_end); vas[area] = NULL; } @@ -3432,8 +3401,9 @@ err_free_shadow: orig_end = vas[area]->va_end; va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root, &free_vmap_area_list); - kasan_release_vmalloc(orig_start, orig_end, - va->va_start, va->va_end); + if (va) + kasan_release_vmalloc(orig_start, orig_end, + va->va_start, va->va_end); vas[area] = NULL; kfree(vms[area]); } diff --git a/mm/vmscan.c b/mm/vmscan.c index 749d239c62b2..72da290b171b 100644 --- a/mm/vmscan.c +++ b/mm/vmscan.c @@ -170,11 +170,6 @@ struct scan_control { * From 0 .. 200. Higher means more swappy. */ int vm_swappiness = 60; -/* - * The total number of pages which are beyond the high watermark within all - * zones. - */ -unsigned long vm_total_pages; static void set_task_reclaim_state(struct task_struct *task, struct reclaim_state *rs) @@ -915,7 +910,7 @@ static int __remove_mapping(struct address_space *mapping, struct page *page, * order to detect refaults, thus thrashing, later on. * * But don't store shadows in an address space that is - * already exiting. This is not just an optizimation, + * already exiting. This is not just an optimization, * inode reclaim needs to empty out the radix tree or * the nodes are lost. Don't plant shadows behind its * back. @@ -2035,7 +2030,8 @@ static void shrink_active_list(unsigned long nr_to_scan, __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); - __count_vm_events(PGREFILL, nr_scanned); + if (!cgroup_reclaim(sc)) + __count_vm_events(PGREFILL, nr_scanned); __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); spin_unlock_irq(&pgdat->lru_lock); @@ -2331,7 +2327,8 @@ out: unsigned long protection; lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); - protection = mem_cgroup_protection(memcg, + protection = mem_cgroup_protection(sc->target_mem_cgroup, + memcg, sc->memcg_low_reclaim); if (protection) { @@ -2619,14 +2616,15 @@ static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) unsigned long reclaimed; unsigned long scanned; - switch (mem_cgroup_protected(target_memcg, memcg)) { - case MEMCG_PROT_MIN: + mem_cgroup_calculate_protection(target_memcg, memcg); + + if (mem_cgroup_below_min(memcg)) { /* * Hard protection. * If there is no reclaimable memory, OOM. */ continue; - case MEMCG_PROT_LOW: + } else if (mem_cgroup_below_low(memcg)) { /* * Soft protection. * Respect the protection only as long as @@ -2638,16 +2636,6 @@ static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) continue; } memcg_memory_event(memcg, MEMCG_LOW); - break; - case MEMCG_PROT_NONE: - /* - * All protection thresholds breached. We may - * still choose to vary the scan pressure - * applied based on by how much the cgroup in - * question has exceeded its protection - * thresholds (see get_scan_count). - */ - break; } reclaimed = sc->nr_reclaimed; @@ -3318,7 +3306,6 @@ unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, bool may_swap) { unsigned long nr_reclaimed; - unsigned long pflags; unsigned int noreclaim_flag; struct scan_control sc = { .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), @@ -3339,17 +3326,12 @@ unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); set_task_reclaim_state(current, &sc.reclaim_state); - trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); - - psi_memstall_enter(&pflags); noreclaim_flag = memalloc_noreclaim_save(); nr_reclaimed = do_try_to_free_pages(zonelist, &sc); memalloc_noreclaim_restore(noreclaim_flag); - psi_memstall_leave(&pflags); - trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); set_task_reclaim_state(current, NULL); @@ -4222,7 +4204,8 @@ int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) * unmapped file backed pages. */ if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && - node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages) + node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= + pgdat->min_slab_pages) return NODE_RECLAIM_FULL; /* diff --git a/mm/vmstat.c b/mm/vmstat.c index 3fb23a21f6dd..2b866cbab11d 100644 --- a/mm/vmstat.c +++ b/mm/vmstat.c @@ -341,6 +341,11 @@ void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, long x; long t; + if (vmstat_item_in_bytes(item)) { + VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1)); + delta >>= PAGE_SHIFT; + } + x = delta + __this_cpu_read(*p); t = __this_cpu_read(pcp->stat_threshold); @@ -398,6 +403,8 @@ void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) s8 __percpu *p = pcp->vm_node_stat_diff + item; s8 v, t; + VM_WARN_ON_ONCE(vmstat_item_in_bytes(item)); + v = __this_cpu_inc_return(*p); t = __this_cpu_read(pcp->stat_threshold); if (unlikely(v > t)) { @@ -442,6 +449,8 @@ void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item) s8 __percpu *p = pcp->vm_node_stat_diff + item; s8 v, t; + VM_WARN_ON_ONCE(vmstat_item_in_bytes(item)); + v = __this_cpu_dec_return(*p); t = __this_cpu_read(pcp->stat_threshold); if (unlikely(v < - t)) { @@ -541,6 +550,11 @@ static inline void mod_node_state(struct pglist_data *pgdat, s8 __percpu *p = pcp->vm_node_stat_diff + item; long o, n, t, z; + if (vmstat_item_in_bytes(item)) { + VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1)); + delta >>= PAGE_SHIFT; + } + do { z = 0; /* overflow to node counters */ @@ -989,8 +1003,8 @@ unsigned long sum_zone_numa_state(int node, /* * Determine the per node value of a stat item. */ -unsigned long node_page_state(struct pglist_data *pgdat, - enum node_stat_item item) +unsigned long node_page_state_pages(struct pglist_data *pgdat, + enum node_stat_item item) { long x = atomic_long_read(&pgdat->vm_stat[item]); #ifdef CONFIG_SMP @@ -999,6 +1013,14 @@ unsigned long node_page_state(struct pglist_data *pgdat, #endif return x; } + +unsigned long node_page_state(struct pglist_data *pgdat, + enum node_stat_item item) +{ + VM_WARN_ON_ONCE(vmstat_item_in_bytes(item)); + + return node_page_state_pages(pgdat, item); +} #endif #ifdef CONFIG_COMPACTION @@ -1118,10 +1140,6 @@ const char * const vmstat_text[] = { "nr_zone_write_pending", "nr_mlock", "nr_page_table_pages", - "nr_kernel_stack", -#if IS_ENABLED(CONFIG_SHADOW_CALL_STACK) - "nr_shadow_call_stack", -#endif "nr_bounce", #if IS_ENABLED(CONFIG_ZSMALLOC) "nr_zspages", @@ -1172,6 +1190,10 @@ const char * const vmstat_text[] = { "nr_kernel_misc_reclaimable", "nr_foll_pin_acquired", "nr_foll_pin_released", + "nr_kernel_stack", +#if IS_ENABLED(CONFIG_SHADOW_CALL_STACK) + "nr_shadow_call_stack", +#endif /* enum writeback_stat_item counters */ "nr_dirty_threshold", @@ -1577,7 +1599,7 @@ static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat, seq_printf(m, "\n per-node stats"); for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { seq_printf(m, "\n %-12s %lu", node_stat_name(i), - node_page_state(pgdat, i)); + node_page_state_pages(pgdat, i)); } } seq_printf(m, @@ -1698,7 +1720,7 @@ static void *vmstat_start(struct seq_file *m, loff_t *pos) #endif for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) - v[i] = global_node_page_state(i); + v[i] = global_node_page_state_pages(i); v += NR_VM_NODE_STAT_ITEMS; global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD, diff --git a/mm/workingset.c b/mm/workingset.c index 50b7937bab32..b199726924dd 100644 --- a/mm/workingset.c +++ b/mm/workingset.c @@ -486,8 +486,10 @@ static unsigned long count_shadow_nodes(struct shrinker *shrinker, for (pages = 0, i = 0; i < NR_LRU_LISTS; i++) pages += lruvec_page_state_local(lruvec, NR_LRU_BASE + i); - pages += lruvec_page_state_local(lruvec, NR_SLAB_RECLAIMABLE); - pages += lruvec_page_state_local(lruvec, NR_SLAB_UNRECLAIMABLE); + pages += lruvec_page_state_local( + lruvec, NR_SLAB_RECLAIMABLE_B) >> PAGE_SHIFT; + pages += lruvec_page_state_local( + lruvec, NR_SLAB_UNRECLAIMABLE_B) >> PAGE_SHIFT; } else #endif pages = node_present_pages(sc->nid); |