summaryrefslogtreecommitdiff
path: root/mm/vmscan.c
diff options
context:
space:
mode:
authorVlastimil Babka <vbabka@suse.cz>2021-09-02 14:59:53 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2021-09-03 09:58:17 -0700
commit1399af7e54896c774d67f1c1acc491b07149421d (patch)
treec8660f0cf80b946100a46facf211542e3f9540d2 /mm/vmscan.c
parent2e786d9e5a2014c327d9b2eec83fa60b16af26f9 (diff)
mm, vmscan: guarantee drop_slab_node() termination
drop_slab_node() is called as part of echo 2>/proc/sys/vm/drop_caches operation. It iterates over all memcgs and calls shrink_slab() which in turn iterates over all slab shrinkers. Freed objects are counted and as long as the total number of freed objects from all memcgs and shrinkers is higher than 10, drop_slab_node() loops for another full memcgs*shrinkers iteration. This arbitrary constant threshold of 10 can result in effectively an infinite loop on a system with large number of memcgs and/or parallel activity that allocates new objects. This has been reported previously by Chunxin Zang [1] and recently by our customer. The previous report [1] has resulted in commit 069c411de40a ("mm/vmscan: fix infinite loop in drop_slab_node") which added a check for signals allowing the user to terminate the command writing to drop_caches. At the time it was also considered to make the threshold grow with each iteration to guarantee termination, but such patch hasn't been formally proposed yet. This patch implements the dynamically growing threshold. At first iteration it's enough to free one object to continue, and this threshold effectively doubles with each iteration. Our customer's feedback was positive. There is always a risk that this change will result on some system in a previously terminating drop_caches operation to terminate sooner and free fewer objects. Ideally the semantics would guarantee freeing all freeable objects that existed at the moment of starting the operation, while not looping forever for newly allocated objects, but that's not feasible to track. In the less ideal solution based on thresholds, arguably the termination guarantee is more important than the exhaustiveness guarantee. If there are reports of large regression wrt being exhaustive, we can tune how fast the threshold grows. [1] https://lore.kernel.org/lkml/20200909152047.27905-1-zangchunxin@bytedance.com/T/#u [vbabka@suse.cz: avoid undefined shift behaviour] Link: https://lkml.kernel.org/r/2f034e6f-a753-550a-f374-e4e23899d3d5@suse.cz Link: https://lkml.kernel.org/r/20210818152239.25502-1-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reported-by: Chunxin Zang <zangchunxin@bytedance.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Chris Down <chris@chrisdown.name> Cc: Michal Hocko <mhocko@kernel.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'mm/vmscan.c')
-rw-r--r--mm/vmscan.c3
1 files changed, 2 insertions, 1 deletions
diff --git a/mm/vmscan.c b/mm/vmscan.c
index 1b14a1b2539c..740d03e6dae2 100644
--- a/mm/vmscan.c
+++ b/mm/vmscan.c
@@ -939,6 +939,7 @@ out:
void drop_slab_node(int nid)
{
unsigned long freed;
+ int shift = 0;
do {
struct mem_cgroup *memcg = NULL;
@@ -951,7 +952,7 @@ void drop_slab_node(int nid)
do {
freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
- } while (freed > 10);
+ } while ((freed >> shift++) > 1);
}
void drop_slab(void)