diff options
author | Hugh Dickins <hughd@google.com> | 2021-06-15 18:24:03 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2021-06-16 09:24:42 -0700 |
commit | 22061a1ffabdb9c3385de159c5db7aac3a4df1cc (patch) | |
tree | 5b7d0f2d9bc7b332e52c7707edd077e585ce52c8 /mm/memory.c | |
parent | 31657170deaf1d8d2f6a1955fbc6fa9d228be036 (diff) |
mm/thp: unmap_mapping_page() to fix THP truncate_cleanup_page()
There is a race between THP unmapping and truncation, when truncate sees
pmd_none() and skips the entry, after munmap's zap_huge_pmd() cleared
it, but before its page_remove_rmap() gets to decrement
compound_mapcount: generating false "BUG: Bad page cache" reports that
the page is still mapped when deleted. This commit fixes that, but not
in the way I hoped.
The first attempt used try_to_unmap(page, TTU_SYNC|TTU_IGNORE_MLOCK)
instead of unmap_mapping_range() in truncate_cleanup_page(): it has
often been an annoyance that we usually call unmap_mapping_range() with
no pages locked, but there apply it to a single locked page.
try_to_unmap() looks more suitable for a single locked page.
However, try_to_unmap_one() contains a VM_BUG_ON_PAGE(!pvmw.pte,page):
it is used to insert THP migration entries, but not used to unmap THPs.
Copy zap_huge_pmd() and add THP handling now? Perhaps, but their TLB
needs are different, I'm too ignorant of the DAX cases, and couldn't
decide how far to go for anon+swap. Set that aside.
The second attempt took a different tack: make no change in truncate.c,
but modify zap_huge_pmd() to insert an invalidated huge pmd instead of
clearing it initially, then pmd_clear() between page_remove_rmap() and
unlocking at the end. Nice. But powerpc blows that approach out of the
water, with its serialize_against_pte_lookup(), and interesting pgtable
usage. It would need serious help to get working on powerpc (with a
minor optimization issue on s390 too). Set that aside.
Just add an "if (page_mapped(page)) synchronize_rcu();" or other such
delay, after unmapping in truncate_cleanup_page()? Perhaps, but though
that's likely to reduce or eliminate the number of incidents, it would
give less assurance of whether we had identified the problem correctly.
This successful iteration introduces "unmap_mapping_page(page)" instead
of try_to_unmap(), and goes the usual unmap_mapping_range_tree() route,
with an addition to details. Then zap_pmd_range() watches for this
case, and does spin_unlock(pmd_lock) if so - just like
page_vma_mapped_walk() now does in the PVMW_SYNC case. Not pretty, but
safe.
Note that unmap_mapping_page() is doing a VM_BUG_ON(!PageLocked) to
assert its interface; but currently that's only used to make sure that
page->mapping is stable, and zap_pmd_range() doesn't care if the page is
locked or not. Along these lines, in invalidate_inode_pages2_range()
move the initial unmap_mapping_range() out from under page lock, before
then calling unmap_mapping_page() under page lock if still mapped.
Link: https://lkml.kernel.org/r/a2a4a148-cdd8-942c-4ef8-51b77f643dbe@google.com
Fixes: fc127da085c2 ("truncate: handle file thp")
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jue Wang <juew@google.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Xu <peterx@redhat.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Wang Yugui <wangyugui@e16-tech.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'mm/memory.c')
-rw-r--r-- | mm/memory.c | 41 |
1 files changed, 41 insertions, 0 deletions
diff --git a/mm/memory.c b/mm/memory.c index f3ffab9b9e39..486f4a2874e7 100644 --- a/mm/memory.c +++ b/mm/memory.c @@ -1361,7 +1361,18 @@ static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, else if (zap_huge_pmd(tlb, vma, pmd, addr)) goto next; /* fall through */ + } else if (details && details->single_page && + PageTransCompound(details->single_page) && + next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { + spinlock_t *ptl = pmd_lock(tlb->mm, pmd); + /* + * Take and drop THP pmd lock so that we cannot return + * prematurely, while zap_huge_pmd() has cleared *pmd, + * but not yet decremented compound_mapcount(). + */ + spin_unlock(ptl); } + /* * Here there can be other concurrent MADV_DONTNEED or * trans huge page faults running, and if the pmd is @@ -3237,6 +3248,36 @@ static inline void unmap_mapping_range_tree(struct rb_root_cached *root, } /** + * unmap_mapping_page() - Unmap single page from processes. + * @page: The locked page to be unmapped. + * + * Unmap this page from any userspace process which still has it mmaped. + * Typically, for efficiency, the range of nearby pages has already been + * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once + * truncation or invalidation holds the lock on a page, it may find that + * the page has been remapped again: and then uses unmap_mapping_page() + * to unmap it finally. + */ +void unmap_mapping_page(struct page *page) +{ + struct address_space *mapping = page->mapping; + struct zap_details details = { }; + + VM_BUG_ON(!PageLocked(page)); + VM_BUG_ON(PageTail(page)); + + details.check_mapping = mapping; + details.first_index = page->index; + details.last_index = page->index + thp_nr_pages(page) - 1; + details.single_page = page; + + i_mmap_lock_write(mapping); + if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) + unmap_mapping_range_tree(&mapping->i_mmap, &details); + i_mmap_unlock_write(mapping); +} + +/** * unmap_mapping_pages() - Unmap pages from processes. * @mapping: The address space containing pages to be unmapped. * @start: Index of first page to be unmapped. |