diff options
author | Dan Williams <dan.j.williams@intel.com> | 2017-11-29 16:10:35 -0800 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2017-11-29 18:40:42 -0800 |
commit | 2bb6d2837083de722bfdc369cb0d76ce188dd9b4 (patch) | |
tree | 7af023d93cd1a1d59fd58f4f9792191ad4d419a9 /mm/gup.c | |
parent | 9702cffdbf2129516db679e4467db81e1cd287da (diff) |
mm: introduce get_user_pages_longterm
Patch series "introduce get_user_pages_longterm()", v2.
Here is a new get_user_pages api for cases where a driver intends to
keep an elevated page count indefinitely. This is distinct from usages
like iov_iter_get_pages where the elevated page counts are transient.
The iov_iter_get_pages cases immediately turn around and submit the
pages to a device driver which will put_page when the i/o operation
completes (under kernel control).
In the longterm case userspace is responsible for dropping the page
reference at some undefined point in the future. This is untenable for
filesystem-dax case where the filesystem is in control of the lifetime
of the block / page and needs reasonable limits on how long it can wait
for pages in a mapping to become idle.
Fixing filesystems to actually wait for dax pages to be idle before
blocks from a truncate/hole-punch operation are repurposed is saved for
a later patch series.
Also, allowing longterm registration of dax mappings is a future patch
series that introduces a "map with lease" semantic where the kernel can
revoke a lease and force userspace to drop its page references.
I have also tagged these for -stable to purposely break cases that might
assume that longterm memory registrations for filesystem-dax mappings
were supported by the kernel. The behavior regression this policy
change implies is one of the reasons we maintain the "dax enabled.
Warning: EXPERIMENTAL, use at your own risk" notification when mounting
a filesystem in dax mode.
It is worth noting the device-dax interface does not suffer the same
constraints since it does not support file space management operations
like hole-punch.
This patch (of 4):
Until there is a solution to the dma-to-dax vs truncate problem it is
not safe to allow long standing memory registrations against
filesytem-dax vmas. Device-dax vmas do not have this problem and are
explicitly allowed.
This is temporary until a "memory registration with layout-lease"
mechanism can be implemented for the affected sub-systems (RDMA and
V4L2).
[akpm@linux-foundation.org: use kcalloc()]
Link: http://lkml.kernel.org/r/151068939435.7446.13560129395419350737.stgit@dwillia2-desk3.amr.corp.intel.com
Fixes: 3565fce3a659 ("mm, x86: get_user_pages() for dax mappings")
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Suggested-by: Christoph Hellwig <hch@lst.de>
Cc: Doug Ledford <dledford@redhat.com>
Cc: Hal Rosenstock <hal.rosenstock@gmail.com>
Cc: Inki Dae <inki.dae@samsung.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Joonyoung Shim <jy0922.shim@samsung.com>
Cc: Kyungmin Park <kyungmin.park@samsung.com>
Cc: Mauro Carvalho Chehab <mchehab@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Sean Hefty <sean.hefty@intel.com>
Cc: Seung-Woo Kim <sw0312.kim@samsung.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'mm/gup.c')
-rw-r--r-- | mm/gup.c | 64 |
1 files changed, 64 insertions, 0 deletions
@@ -1095,6 +1095,70 @@ long get_user_pages(unsigned long start, unsigned long nr_pages, } EXPORT_SYMBOL(get_user_pages); +#ifdef CONFIG_FS_DAX +/* + * This is the same as get_user_pages() in that it assumes we are + * operating on the current task's mm, but it goes further to validate + * that the vmas associated with the address range are suitable for + * longterm elevated page reference counts. For example, filesystem-dax + * mappings are subject to the lifetime enforced by the filesystem and + * we need guarantees that longterm users like RDMA and V4L2 only + * establish mappings that have a kernel enforced revocation mechanism. + * + * "longterm" == userspace controlled elevated page count lifetime. + * Contrast this to iov_iter_get_pages() usages which are transient. + */ +long get_user_pages_longterm(unsigned long start, unsigned long nr_pages, + unsigned int gup_flags, struct page **pages, + struct vm_area_struct **vmas_arg) +{ + struct vm_area_struct **vmas = vmas_arg; + struct vm_area_struct *vma_prev = NULL; + long rc, i; + + if (!pages) + return -EINVAL; + + if (!vmas) { + vmas = kcalloc(nr_pages, sizeof(struct vm_area_struct *), + GFP_KERNEL); + if (!vmas) + return -ENOMEM; + } + + rc = get_user_pages(start, nr_pages, gup_flags, pages, vmas); + + for (i = 0; i < rc; i++) { + struct vm_area_struct *vma = vmas[i]; + + if (vma == vma_prev) + continue; + + vma_prev = vma; + + if (vma_is_fsdax(vma)) + break; + } + + /* + * Either get_user_pages() failed, or the vma validation + * succeeded, in either case we don't need to put_page() before + * returning. + */ + if (i >= rc) + goto out; + + for (i = 0; i < rc; i++) + put_page(pages[i]); + rc = -EOPNOTSUPP; +out: + if (vmas != vmas_arg) + kfree(vmas); + return rc; +} +EXPORT_SYMBOL(get_user_pages_longterm); +#endif /* CONFIG_FS_DAX */ + /** * populate_vma_page_range() - populate a range of pages in the vma. * @vma: target vma |