diff options
author | Hans de Goede <hdegoede@redhat.com> | 2019-08-17 16:24:29 +0200 |
---|---|---|
committer | Herbert Xu <herbert@gondor.apana.org.au> | 2019-08-22 14:57:34 +1000 |
commit | aca1111965d78477f9169c0df54d0ea06173572f (patch) | |
tree | 8079a82367045d149607adb960fdeae67de207a6 /lib | |
parent | 23966841934908ad4ef997231f1fdd1f9a9d0f42 (diff) |
crypto: sha256 - Fix some coding style issues
For some reason after the first 15 steps the last statement of each
step ends with "t1+t2", missing spaces around the "+". This commit
fixes this. This was done with a 's/= t1+t2/= t1 + t2/' to make sure
no functional changes are introduced.
Note the main goal of this is to make lib/sha256.c's sha256_transform
and its helpers identical in formatting too the duplcate implementation
in crypto/sha256_generic.c so that "diff -u" can be used to compare them
to prove that no functional changes are made when further patches in
this series consolidate the 2 implementations into 1.
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Diffstat (limited to 'lib')
-rw-r--r-- | lib/sha256.c | 98 |
1 files changed, 49 insertions, 49 deletions
diff --git a/lib/sha256.c b/lib/sha256.c index d9af148d4349..ba4dce0b3711 100644 --- a/lib/sha256.c +++ b/lib/sha256.c @@ -92,109 +92,109 @@ static void sha256_transform(u32 *state, const u8 *input) t1 = b + e1(g) + Ch(g, h, a) + 0x9bdc06a7 + W[14]; t2 = e0(c) + Maj(c, d, e); f += t1; b = t1 + t2; t1 = a + e1(f) + Ch(f, g, h) + 0xc19bf174 + W[15]; - t2 = e0(b) + Maj(b, c, d); e += t1; a = t1+t2; + t2 = e0(b) + Maj(b, c, d); e += t1; a = t1 + t2; t1 = h + e1(e) + Ch(e, f, g) + 0xe49b69c1 + W[16]; - t2 = e0(a) + Maj(a, b, c); d += t1; h = t1+t2; + t2 = e0(a) + Maj(a, b, c); d += t1; h = t1 + t2; t1 = g + e1(d) + Ch(d, e, f) + 0xefbe4786 + W[17]; - t2 = e0(h) + Maj(h, a, b); c += t1; g = t1+t2; + t2 = e0(h) + Maj(h, a, b); c += t1; g = t1 + t2; t1 = f + e1(c) + Ch(c, d, e) + 0x0fc19dc6 + W[18]; - t2 = e0(g) + Maj(g, h, a); b += t1; f = t1+t2; + t2 = e0(g) + Maj(g, h, a); b += t1; f = t1 + t2; t1 = e + e1(b) + Ch(b, c, d) + 0x240ca1cc + W[19]; - t2 = e0(f) + Maj(f, g, h); a += t1; e = t1+t2; + t2 = e0(f) + Maj(f, g, h); a += t1; e = t1 + t2; t1 = d + e1(a) + Ch(a, b, c) + 0x2de92c6f + W[20]; - t2 = e0(e) + Maj(e, f, g); h += t1; d = t1+t2; + t2 = e0(e) + Maj(e, f, g); h += t1; d = t1 + t2; t1 = c + e1(h) + Ch(h, a, b) + 0x4a7484aa + W[21]; - t2 = e0(d) + Maj(d, e, f); g += t1; c = t1+t2; + t2 = e0(d) + Maj(d, e, f); g += t1; c = t1 + t2; t1 = b + e1(g) + Ch(g, h, a) + 0x5cb0a9dc + W[22]; - t2 = e0(c) + Maj(c, d, e); f += t1; b = t1+t2; + t2 = e0(c) + Maj(c, d, e); f += t1; b = t1 + t2; t1 = a + e1(f) + Ch(f, g, h) + 0x76f988da + W[23]; - t2 = e0(b) + Maj(b, c, d); e += t1; a = t1+t2; + t2 = e0(b) + Maj(b, c, d); e += t1; a = t1 + t2; t1 = h + e1(e) + Ch(e, f, g) + 0x983e5152 + W[24]; - t2 = e0(a) + Maj(a, b, c); d += t1; h = t1+t2; + t2 = e0(a) + Maj(a, b, c); d += t1; h = t1 + t2; t1 = g + e1(d) + Ch(d, e, f) + 0xa831c66d + W[25]; - t2 = e0(h) + Maj(h, a, b); c += t1; g = t1+t2; + t2 = e0(h) + Maj(h, a, b); c += t1; g = t1 + t2; t1 = f + e1(c) + Ch(c, d, e) + 0xb00327c8 + W[26]; - t2 = e0(g) + Maj(g, h, a); b += t1; f = t1+t2; + t2 = e0(g) + Maj(g, h, a); b += t1; f = t1 + t2; t1 = e + e1(b) + Ch(b, c, d) + 0xbf597fc7 + W[27]; - t2 = e0(f) + Maj(f, g, h); a += t1; e = t1+t2; + t2 = e0(f) + Maj(f, g, h); a += t1; e = t1 + t2; t1 = d + e1(a) + Ch(a, b, c) + 0xc6e00bf3 + W[28]; - t2 = e0(e) + Maj(e, f, g); h += t1; d = t1+t2; + t2 = e0(e) + Maj(e, f, g); h += t1; d = t1 + t2; t1 = c + e1(h) + Ch(h, a, b) + 0xd5a79147 + W[29]; - t2 = e0(d) + Maj(d, e, f); g += t1; c = t1+t2; + t2 = e0(d) + Maj(d, e, f); g += t1; c = t1 + t2; t1 = b + e1(g) + Ch(g, h, a) + 0x06ca6351 + W[30]; - t2 = e0(c) + Maj(c, d, e); f += t1; b = t1+t2; + t2 = e0(c) + Maj(c, d, e); f += t1; b = t1 + t2; t1 = a + e1(f) + Ch(f, g, h) + 0x14292967 + W[31]; - t2 = e0(b) + Maj(b, c, d); e += t1; a = t1+t2; + t2 = e0(b) + Maj(b, c, d); e += t1; a = t1 + t2; t1 = h + e1(e) + Ch(e, f, g) + 0x27b70a85 + W[32]; - t2 = e0(a) + Maj(a, b, c); d += t1; h = t1+t2; + t2 = e0(a) + Maj(a, b, c); d += t1; h = t1 + t2; t1 = g + e1(d) + Ch(d, e, f) + 0x2e1b2138 + W[33]; - t2 = e0(h) + Maj(h, a, b); c += t1; g = t1+t2; + t2 = e0(h) + Maj(h, a, b); c += t1; g = t1 + t2; t1 = f + e1(c) + Ch(c, d, e) + 0x4d2c6dfc + W[34]; - t2 = e0(g) + Maj(g, h, a); b += t1; f = t1+t2; + t2 = e0(g) + Maj(g, h, a); b += t1; f = t1 + t2; t1 = e + e1(b) + Ch(b, c, d) + 0x53380d13 + W[35]; - t2 = e0(f) + Maj(f, g, h); a += t1; e = t1+t2; + t2 = e0(f) + Maj(f, g, h); a += t1; e = t1 + t2; t1 = d + e1(a) + Ch(a, b, c) + 0x650a7354 + W[36]; - t2 = e0(e) + Maj(e, f, g); h += t1; d = t1+t2; + t2 = e0(e) + Maj(e, f, g); h += t1; d = t1 + t2; t1 = c + e1(h) + Ch(h, a, b) + 0x766a0abb + W[37]; - t2 = e0(d) + Maj(d, e, f); g += t1; c = t1+t2; + t2 = e0(d) + Maj(d, e, f); g += t1; c = t1 + t2; t1 = b + e1(g) + Ch(g, h, a) + 0x81c2c92e + W[38]; - t2 = e0(c) + Maj(c, d, e); f += t1; b = t1+t2; + t2 = e0(c) + Maj(c, d, e); f += t1; b = t1 + t2; t1 = a + e1(f) + Ch(f, g, h) + 0x92722c85 + W[39]; - t2 = e0(b) + Maj(b, c, d); e += t1; a = t1+t2; + t2 = e0(b) + Maj(b, c, d); e += t1; a = t1 + t2; t1 = h + e1(e) + Ch(e, f, g) + 0xa2bfe8a1 + W[40]; - t2 = e0(a) + Maj(a, b, c); d += t1; h = t1+t2; + t2 = e0(a) + Maj(a, b, c); d += t1; h = t1 + t2; t1 = g + e1(d) + Ch(d, e, f) + 0xa81a664b + W[41]; - t2 = e0(h) + Maj(h, a, b); c += t1; g = t1+t2; + t2 = e0(h) + Maj(h, a, b); c += t1; g = t1 + t2; t1 = f + e1(c) + Ch(c, d, e) + 0xc24b8b70 + W[42]; - t2 = e0(g) + Maj(g, h, a); b += t1; f = t1+t2; + t2 = e0(g) + Maj(g, h, a); b += t1; f = t1 + t2; t1 = e + e1(b) + Ch(b, c, d) + 0xc76c51a3 + W[43]; - t2 = e0(f) + Maj(f, g, h); a += t1; e = t1+t2; + t2 = e0(f) + Maj(f, g, h); a += t1; e = t1 + t2; t1 = d + e1(a) + Ch(a, b, c) + 0xd192e819 + W[44]; - t2 = e0(e) + Maj(e, f, g); h += t1; d = t1+t2; + t2 = e0(e) + Maj(e, f, g); h += t1; d = t1 + t2; t1 = c + e1(h) + Ch(h, a, b) + 0xd6990624 + W[45]; - t2 = e0(d) + Maj(d, e, f); g += t1; c = t1+t2; + t2 = e0(d) + Maj(d, e, f); g += t1; c = t1 + t2; t1 = b + e1(g) + Ch(g, h, a) + 0xf40e3585 + W[46]; - t2 = e0(c) + Maj(c, d, e); f += t1; b = t1+t2; + t2 = e0(c) + Maj(c, d, e); f += t1; b = t1 + t2; t1 = a + e1(f) + Ch(f, g, h) + 0x106aa070 + W[47]; - t2 = e0(b) + Maj(b, c, d); e += t1; a = t1+t2; + t2 = e0(b) + Maj(b, c, d); e += t1; a = t1 + t2; t1 = h + e1(e) + Ch(e, f, g) + 0x19a4c116 + W[48]; - t2 = e0(a) + Maj(a, b, c); d += t1; h = t1+t2; + t2 = e0(a) + Maj(a, b, c); d += t1; h = t1 + t2; t1 = g + e1(d) + Ch(d, e, f) + 0x1e376c08 + W[49]; - t2 = e0(h) + Maj(h, a, b); c += t1; g = t1+t2; + t2 = e0(h) + Maj(h, a, b); c += t1; g = t1 + t2; t1 = f + e1(c) + Ch(c, d, e) + 0x2748774c + W[50]; - t2 = e0(g) + Maj(g, h, a); b += t1; f = t1+t2; + t2 = e0(g) + Maj(g, h, a); b += t1; f = t1 + t2; t1 = e + e1(b) + Ch(b, c, d) + 0x34b0bcb5 + W[51]; - t2 = e0(f) + Maj(f, g, h); a += t1; e = t1+t2; + t2 = e0(f) + Maj(f, g, h); a += t1; e = t1 + t2; t1 = d + e1(a) + Ch(a, b, c) + 0x391c0cb3 + W[52]; - t2 = e0(e) + Maj(e, f, g); h += t1; d = t1+t2; + t2 = e0(e) + Maj(e, f, g); h += t1; d = t1 + t2; t1 = c + e1(h) + Ch(h, a, b) + 0x4ed8aa4a + W[53]; - t2 = e0(d) + Maj(d, e, f); g += t1; c = t1+t2; + t2 = e0(d) + Maj(d, e, f); g += t1; c = t1 + t2; t1 = b + e1(g) + Ch(g, h, a) + 0x5b9cca4f + W[54]; - t2 = e0(c) + Maj(c, d, e); f += t1; b = t1+t2; + t2 = e0(c) + Maj(c, d, e); f += t1; b = t1 + t2; t1 = a + e1(f) + Ch(f, g, h) + 0x682e6ff3 + W[55]; - t2 = e0(b) + Maj(b, c, d); e += t1; a = t1+t2; + t2 = e0(b) + Maj(b, c, d); e += t1; a = t1 + t2; t1 = h + e1(e) + Ch(e, f, g) + 0x748f82ee + W[56]; - t2 = e0(a) + Maj(a, b, c); d += t1; h = t1+t2; + t2 = e0(a) + Maj(a, b, c); d += t1; h = t1 + t2; t1 = g + e1(d) + Ch(d, e, f) + 0x78a5636f + W[57]; - t2 = e0(h) + Maj(h, a, b); c += t1; g = t1+t2; + t2 = e0(h) + Maj(h, a, b); c += t1; g = t1 + t2; t1 = f + e1(c) + Ch(c, d, e) + 0x84c87814 + W[58]; - t2 = e0(g) + Maj(g, h, a); b += t1; f = t1+t2; + t2 = e0(g) + Maj(g, h, a); b += t1; f = t1 + t2; t1 = e + e1(b) + Ch(b, c, d) + 0x8cc70208 + W[59]; - t2 = e0(f) + Maj(f, g, h); a += t1; e = t1+t2; + t2 = e0(f) + Maj(f, g, h); a += t1; e = t1 + t2; t1 = d + e1(a) + Ch(a, b, c) + 0x90befffa + W[60]; - t2 = e0(e) + Maj(e, f, g); h += t1; d = t1+t2; + t2 = e0(e) + Maj(e, f, g); h += t1; d = t1 + t2; t1 = c + e1(h) + Ch(h, a, b) + 0xa4506ceb + W[61]; - t2 = e0(d) + Maj(d, e, f); g += t1; c = t1+t2; + t2 = e0(d) + Maj(d, e, f); g += t1; c = t1 + t2; t1 = b + e1(g) + Ch(g, h, a) + 0xbef9a3f7 + W[62]; - t2 = e0(c) + Maj(c, d, e); f += t1; b = t1+t2; + t2 = e0(c) + Maj(c, d, e); f += t1; b = t1 + t2; t1 = a + e1(f) + Ch(f, g, h) + 0xc67178f2 + W[63]; - t2 = e0(b) + Maj(b, c, d); e += t1; a = t1+t2; + t2 = e0(b) + Maj(b, c, d); e += t1; a = t1 + t2; state[0] += a; state[1] += b; state[2] += c; state[3] += d; state[4] += e; state[5] += f; state[6] += g; state[7] += h; |