summaryrefslogtreecommitdiff
path: root/kernel
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2017-11-13 13:05:08 -0800
committerLinus Torvalds <torvalds@linux-foundation.org>2017-11-13 13:05:08 -0800
commit31486372a1e9a66ec2e9e2903b8792bba7e503e1 (patch)
tree84f61e0758695e6fbee8d2b7d7b9bc4a5ce6e03b /kernel
parent8e9a2dba8686187d8c8179e5b86640e653963889 (diff)
parentfcdfafcb73be8fa45909327bbddca46fb362a675 (diff)
Merge branch 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf updates from Ingo Molnar: "The main changes in this cycle were: Kernel: - kprobes updates: use better W^X patterns for code modifications, improve optprobes, remove jprobes. (Masami Hiramatsu, Kees Cook) - core fixes: event timekeeping (enabled/running times statistics) fixes, perf_event_read() locking fixes and cleanups, etc. (Peter Zijlstra) - Extend x86 Intel free-running PEBS support and support x86 user-register sampling in perf record and perf script. (Andi Kleen) Tooling: - Completely rework the way inline frames are handled. Instead of querying for the inline nodes on-demand in the individual tools, we now create proper callchain nodes for inlined frames. (Milian Wolff) - 'perf trace' updates (Arnaldo Carvalho de Melo) - Implement a way to print formatted output to per-event files in 'perf script' to facilitate generate flamegraphs, elliminating the need to write scripts to do that separation (yuzhoujian, Arnaldo Carvalho de Melo) - Update vendor events JSON metrics for Intel's Broadwell, Broadwell Server, Haswell, Haswell Server, IvyBridge, IvyTown, JakeTown, Sandy Bridge, Skylake, SkyLake Server - and Goldmont Plus V1 (Andi Kleen, Kan Liang) - Multithread the synthesizing of PERF_RECORD_ events for pre-existing threads in 'perf top', speeding up that phase, greatly improving the user experience in systems such as Intel's Knights Mill (Kan Liang) - Introduce the concept of weak groups in 'perf stat': try to set up a group, but if it's not schedulable fallback to not using a group. That gives us the best of both worlds: groups if they work, but still a usable fallback if they don't. E.g: (Andi Kleen) - perf sched timehist enhancements (David Ahern) - ... various other enhancements, updates, cleanups and fixes" * 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (139 commits) kprobes: Don't spam the build log with deprecation warnings arm/kprobes: Remove jprobe test case arm/kprobes: Fix kretprobe test to check correct counter perf srcline: Show correct function name for srcline of callchains perf srcline: Fix memory leak in addr2inlines() perf trace beauty kcmp: Beautify arguments perf trace beauty: Implement pid_fd beautifier tools include uapi: Grab a copy of linux/kcmp.h perf callchain: Fix double mapping al->addr for children without self period perf stat: Make --per-thread update shadow stats to show metrics perf stat: Move the shadow stats scale computation in perf_stat__update_shadow_stats perf tools: Add perf_data_file__write function perf tools: Add struct perf_data_file perf tools: Rename struct perf_data_file to perf_data perf script: Print information about per-event-dump files perf trace beauty prctl: Generate 'option' string table from kernel headers tools include uapi: Grab a copy of linux/prctl.h perf script: Allow creating per-event dump files perf evsel: Restore evsel->priv as a tool private area perf script: Use event_format__fprintf() ...
Diffstat (limited to 'kernel')
-rw-r--r--kernel/bpf/arraymap.c2
-rw-r--r--kernel/events/core.c470
-rw-r--r--kernel/kprobes.c18
-rw-r--r--kernel/test_kprobes.c29
-rw-r--r--kernel/trace/bpf_trace.c2
5 files changed, 240 insertions, 281 deletions
diff --git a/kernel/bpf/arraymap.c b/kernel/bpf/arraymap.c
index e2636737b69b..c4b9ab01bba5 100644
--- a/kernel/bpf/arraymap.c
+++ b/kernel/bpf/arraymap.c
@@ -492,7 +492,7 @@ static void *perf_event_fd_array_get_ptr(struct bpf_map *map,
ee = ERR_PTR(-EOPNOTSUPP);
event = perf_file->private_data;
- if (perf_event_read_local(event, &value) == -EOPNOTSUPP)
+ if (perf_event_read_local(event, &value, NULL, NULL) == -EOPNOTSUPP)
goto err_out;
ee = bpf_event_entry_gen(perf_file, map_file);
diff --git a/kernel/events/core.c b/kernel/events/core.c
index c298847d4b85..4c39c05e029a 100644
--- a/kernel/events/core.c
+++ b/kernel/events/core.c
@@ -582,6 +582,88 @@ static inline u64 perf_event_clock(struct perf_event *event)
return event->clock();
}
+/*
+ * State based event timekeeping...
+ *
+ * The basic idea is to use event->state to determine which (if any) time
+ * fields to increment with the current delta. This means we only need to
+ * update timestamps when we change state or when they are explicitly requested
+ * (read).
+ *
+ * Event groups make things a little more complicated, but not terribly so. The
+ * rules for a group are that if the group leader is OFF the entire group is
+ * OFF, irrespecive of what the group member states are. This results in
+ * __perf_effective_state().
+ *
+ * A futher ramification is that when a group leader flips between OFF and
+ * !OFF, we need to update all group member times.
+ *
+ *
+ * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
+ * need to make sure the relevant context time is updated before we try and
+ * update our timestamps.
+ */
+
+static __always_inline enum perf_event_state
+__perf_effective_state(struct perf_event *event)
+{
+ struct perf_event *leader = event->group_leader;
+
+ if (leader->state <= PERF_EVENT_STATE_OFF)
+ return leader->state;
+
+ return event->state;
+}
+
+static __always_inline void
+__perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
+{
+ enum perf_event_state state = __perf_effective_state(event);
+ u64 delta = now - event->tstamp;
+
+ *enabled = event->total_time_enabled;
+ if (state >= PERF_EVENT_STATE_INACTIVE)
+ *enabled += delta;
+
+ *running = event->total_time_running;
+ if (state >= PERF_EVENT_STATE_ACTIVE)
+ *running += delta;
+}
+
+static void perf_event_update_time(struct perf_event *event)
+{
+ u64 now = perf_event_time(event);
+
+ __perf_update_times(event, now, &event->total_time_enabled,
+ &event->total_time_running);
+ event->tstamp = now;
+}
+
+static void perf_event_update_sibling_time(struct perf_event *leader)
+{
+ struct perf_event *sibling;
+
+ list_for_each_entry(sibling, &leader->sibling_list, group_entry)
+ perf_event_update_time(sibling);
+}
+
+static void
+perf_event_set_state(struct perf_event *event, enum perf_event_state state)
+{
+ if (event->state == state)
+ return;
+
+ perf_event_update_time(event);
+ /*
+ * If a group leader gets enabled/disabled all its siblings
+ * are affected too.
+ */
+ if ((event->state < 0) ^ (state < 0))
+ perf_event_update_sibling_time(event);
+
+ WRITE_ONCE(event->state, state);
+}
+
#ifdef CONFIG_CGROUP_PERF
static inline bool
@@ -841,40 +923,6 @@ perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
event->shadow_ctx_time = now - t->timestamp;
}
-static inline void
-perf_cgroup_defer_enabled(struct perf_event *event)
-{
- /*
- * when the current task's perf cgroup does not match
- * the event's, we need to remember to call the
- * perf_mark_enable() function the first time a task with
- * a matching perf cgroup is scheduled in.
- */
- if (is_cgroup_event(event) && !perf_cgroup_match(event))
- event->cgrp_defer_enabled = 1;
-}
-
-static inline void
-perf_cgroup_mark_enabled(struct perf_event *event,
- struct perf_event_context *ctx)
-{
- struct perf_event *sub;
- u64 tstamp = perf_event_time(event);
-
- if (!event->cgrp_defer_enabled)
- return;
-
- event->cgrp_defer_enabled = 0;
-
- event->tstamp_enabled = tstamp - event->total_time_enabled;
- list_for_each_entry(sub, &event->sibling_list, group_entry) {
- if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
- sub->tstamp_enabled = tstamp - sub->total_time_enabled;
- sub->cgrp_defer_enabled = 0;
- }
- }
-}
-
/*
* Update cpuctx->cgrp so that it is set when first cgroup event is added and
* cleared when last cgroup event is removed.
@@ -975,17 +1023,6 @@ static inline u64 perf_cgroup_event_time(struct perf_event *event)
}
static inline void
-perf_cgroup_defer_enabled(struct perf_event *event)
-{
-}
-
-static inline void
-perf_cgroup_mark_enabled(struct perf_event *event,
- struct perf_event_context *ctx)
-{
-}
-
-static inline void
list_update_cgroup_event(struct perf_event *event,
struct perf_event_context *ctx, bool add)
{
@@ -1398,60 +1435,6 @@ static u64 perf_event_time(struct perf_event *event)
return ctx ? ctx->time : 0;
}
-/*
- * Update the total_time_enabled and total_time_running fields for a event.
- */
-static void update_event_times(struct perf_event *event)
-{
- struct perf_event_context *ctx = event->ctx;
- u64 run_end;
-
- lockdep_assert_held(&ctx->lock);
-
- if (event->state < PERF_EVENT_STATE_INACTIVE ||
- event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
- return;
-
- /*
- * in cgroup mode, time_enabled represents
- * the time the event was enabled AND active
- * tasks were in the monitored cgroup. This is
- * independent of the activity of the context as
- * there may be a mix of cgroup and non-cgroup events.
- *
- * That is why we treat cgroup events differently
- * here.
- */
- if (is_cgroup_event(event))
- run_end = perf_cgroup_event_time(event);
- else if (ctx->is_active)
- run_end = ctx->time;
- else
- run_end = event->tstamp_stopped;
-
- event->total_time_enabled = run_end - event->tstamp_enabled;
-
- if (event->state == PERF_EVENT_STATE_INACTIVE)
- run_end = event->tstamp_stopped;
- else
- run_end = perf_event_time(event);
-
- event->total_time_running = run_end - event->tstamp_running;
-
-}
-
-/*
- * Update total_time_enabled and total_time_running for all events in a group.
- */
-static void update_group_times(struct perf_event *leader)
-{
- struct perf_event *event;
-
- update_event_times(leader);
- list_for_each_entry(event, &leader->sibling_list, group_entry)
- update_event_times(event);
-}
-
static enum event_type_t get_event_type(struct perf_event *event)
{
struct perf_event_context *ctx = event->ctx;
@@ -1494,6 +1477,8 @@ list_add_event(struct perf_event *event, struct perf_event_context *ctx)
WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
event->attach_state |= PERF_ATTACH_CONTEXT;
+ event->tstamp = perf_event_time(event);
+
/*
* If we're a stand alone event or group leader, we go to the context
* list, group events are kept attached to the group so that
@@ -1701,8 +1686,6 @@ list_del_event(struct perf_event *event, struct perf_event_context *ctx)
if (event->group_leader == event)
list_del_init(&event->group_entry);
- update_group_times(event);
-
/*
* If event was in error state, then keep it
* that way, otherwise bogus counts will be
@@ -1711,7 +1694,7 @@ list_del_event(struct perf_event *event, struct perf_event_context *ctx)
* of the event
*/
if (event->state > PERF_EVENT_STATE_OFF)
- event->state = PERF_EVENT_STATE_OFF;
+ perf_event_set_state(event, PERF_EVENT_STATE_OFF);
ctx->generation++;
}
@@ -1810,38 +1793,24 @@ event_sched_out(struct perf_event *event,
struct perf_cpu_context *cpuctx,
struct perf_event_context *ctx)
{
- u64 tstamp = perf_event_time(event);
- u64 delta;
+ enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
WARN_ON_ONCE(event->ctx != ctx);
lockdep_assert_held(&ctx->lock);
- /*
- * An event which could not be activated because of
- * filter mismatch still needs to have its timings
- * maintained, otherwise bogus information is return
- * via read() for time_enabled, time_running:
- */
- if (event->state == PERF_EVENT_STATE_INACTIVE &&
- !event_filter_match(event)) {
- delta = tstamp - event->tstamp_stopped;
- event->tstamp_running += delta;
- event->tstamp_stopped = tstamp;
- }
-
if (event->state != PERF_EVENT_STATE_ACTIVE)
return;
perf_pmu_disable(event->pmu);
- event->tstamp_stopped = tstamp;
event->pmu->del(event, 0);
event->oncpu = -1;
- event->state = PERF_EVENT_STATE_INACTIVE;
+
if (event->pending_disable) {
event->pending_disable = 0;
- event->state = PERF_EVENT_STATE_OFF;
+ state = PERF_EVENT_STATE_OFF;
}
+ perf_event_set_state(event, state);
if (!is_software_event(event))
cpuctx->active_oncpu--;
@@ -1861,7 +1830,9 @@ group_sched_out(struct perf_event *group_event,
struct perf_event_context *ctx)
{
struct perf_event *event;
- int state = group_event->state;
+
+ if (group_event->state != PERF_EVENT_STATE_ACTIVE)
+ return;
perf_pmu_disable(ctx->pmu);
@@ -1875,7 +1846,7 @@ group_sched_out(struct perf_event *group_event,
perf_pmu_enable(ctx->pmu);
- if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
+ if (group_event->attr.exclusive)
cpuctx->exclusive = 0;
}
@@ -1895,6 +1866,11 @@ __perf_remove_from_context(struct perf_event *event,
{
unsigned long flags = (unsigned long)info;
+ if (ctx->is_active & EVENT_TIME) {
+ update_context_time(ctx);
+ update_cgrp_time_from_cpuctx(cpuctx);
+ }
+
event_sched_out(event, cpuctx, ctx);
if (flags & DETACH_GROUP)
perf_group_detach(event);
@@ -1957,14 +1933,17 @@ static void __perf_event_disable(struct perf_event *event,
if (event->state < PERF_EVENT_STATE_INACTIVE)
return;
- update_context_time(ctx);
- update_cgrp_time_from_event(event);
- update_group_times(event);
+ if (ctx->is_active & EVENT_TIME) {
+ update_context_time(ctx);
+ update_cgrp_time_from_event(event);
+ }
+
if (event == event->group_leader)
group_sched_out(event, cpuctx, ctx);
else
event_sched_out(event, cpuctx, ctx);
- event->state = PERF_EVENT_STATE_OFF;
+
+ perf_event_set_state(event, PERF_EVENT_STATE_OFF);
}
/*
@@ -2021,8 +2000,7 @@ void perf_event_disable_inatomic(struct perf_event *event)
}
static void perf_set_shadow_time(struct perf_event *event,
- struct perf_event_context *ctx,
- u64 tstamp)
+ struct perf_event_context *ctx)
{
/*
* use the correct time source for the time snapshot
@@ -2050,9 +2028,9 @@ static void perf_set_shadow_time(struct perf_event *event,
* is cleaner and simpler to understand.
*/
if (is_cgroup_event(event))
- perf_cgroup_set_shadow_time(event, tstamp);
+ perf_cgroup_set_shadow_time(event, event->tstamp);
else
- event->shadow_ctx_time = tstamp - ctx->timestamp;
+ event->shadow_ctx_time = event->tstamp - ctx->timestamp;
}
#define MAX_INTERRUPTS (~0ULL)
@@ -2065,7 +2043,6 @@ event_sched_in(struct perf_event *event,
struct perf_cpu_context *cpuctx,
struct perf_event_context *ctx)
{
- u64 tstamp = perf_event_time(event);
int ret = 0;
lockdep_assert_held(&ctx->lock);
@@ -2075,11 +2052,12 @@ event_sched_in(struct perf_event *event,
WRITE_ONCE(event->oncpu, smp_processor_id());
/*
- * Order event::oncpu write to happen before the ACTIVE state
- * is visible.
+ * Order event::oncpu write to happen before the ACTIVE state is
+ * visible. This allows perf_event_{stop,read}() to observe the correct
+ * ->oncpu if it sees ACTIVE.
*/
smp_wmb();
- WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
+ perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
/*
* Unthrottle events, since we scheduled we might have missed several
@@ -2091,26 +2069,19 @@ event_sched_in(struct perf_event *event,
event->hw.interrupts = 0;
}
- /*
- * The new state must be visible before we turn it on in the hardware:
- */
- smp_wmb();
-
perf_pmu_disable(event->pmu);
- perf_set_shadow_time(event, ctx, tstamp);
+ perf_set_shadow_time(event, ctx);
perf_log_itrace_start(event);
if (event->pmu->add(event, PERF_EF_START)) {
- event->state = PERF_EVENT_STATE_INACTIVE;
+ perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
event->oncpu = -1;
ret = -EAGAIN;
goto out;
}
- event->tstamp_running += tstamp - event->tstamp_stopped;
-
if (!is_software_event(event))
cpuctx->active_oncpu++;
if (!ctx->nr_active++)
@@ -2134,8 +2105,6 @@ group_sched_in(struct perf_event *group_event,
{
struct perf_event *event, *partial_group = NULL;
struct pmu *pmu = ctx->pmu;
- u64 now = ctx->time;
- bool simulate = false;
if (group_event->state == PERF_EVENT_STATE_OFF)
return 0;
@@ -2165,27 +2134,13 @@ group_error:
/*
* Groups can be scheduled in as one unit only, so undo any
* partial group before returning:
- * The events up to the failed event are scheduled out normally,
- * tstamp_stopped will be updated.
- *
- * The failed events and the remaining siblings need to have
- * their timings updated as if they had gone thru event_sched_in()
- * and event_sched_out(). This is required to get consistent timings
- * across the group. This also takes care of the case where the group
- * could never be scheduled by ensuring tstamp_stopped is set to mark
- * the time the event was actually stopped, such that time delta
- * calculation in update_event_times() is correct.
+ * The events up to the failed event are scheduled out normally.
*/
list_for_each_entry(event, &group_event->sibling_list, group_entry) {
if (event == partial_group)
- simulate = true;
+ break;
- if (simulate) {
- event->tstamp_running += now - event->tstamp_stopped;
- event->tstamp_stopped = now;
- } else {
- event_sched_out(event, cpuctx, ctx);
- }
+ event_sched_out(event, cpuctx, ctx);
}
event_sched_out(group_event, cpuctx, ctx);
@@ -2227,46 +2182,11 @@ static int group_can_go_on(struct perf_event *event,
return can_add_hw;
}
-/*
- * Complement to update_event_times(). This computes the tstamp_* values to
- * continue 'enabled' state from @now, and effectively discards the time
- * between the prior tstamp_stopped and now (as we were in the OFF state, or
- * just switched (context) time base).
- *
- * This further assumes '@event->state == INACTIVE' (we just came from OFF) and
- * cannot have been scheduled in yet. And going into INACTIVE state means
- * '@event->tstamp_stopped = @now'.
- *
- * Thus given the rules of update_event_times():
- *
- * total_time_enabled = tstamp_stopped - tstamp_enabled
- * total_time_running = tstamp_stopped - tstamp_running
- *
- * We can insert 'tstamp_stopped == now' and reverse them to compute new
- * tstamp_* values.
- */
-static void __perf_event_enable_time(struct perf_event *event, u64 now)
-{
- WARN_ON_ONCE(event->state != PERF_EVENT_STATE_INACTIVE);
-
- event->tstamp_stopped = now;
- event->tstamp_enabled = now - event->total_time_enabled;
- event->tstamp_running = now - event->total_time_running;
-}
-
static void add_event_to_ctx(struct perf_event *event,
struct perf_event_context *ctx)
{
- u64 tstamp = perf_event_time(event);
-
list_add_event(event, ctx);
perf_group_attach(event);
- /*
- * We can be called with event->state == STATE_OFF when we create with
- * .disabled = 1. In that case the IOC_ENABLE will call this function.
- */
- if (event->state == PERF_EVENT_STATE_INACTIVE)
- __perf_event_enable_time(event, tstamp);
}
static void ctx_sched_out(struct perf_event_context *ctx,
@@ -2498,28 +2418,6 @@ again:
}
/*
- * Put a event into inactive state and update time fields.
- * Enabling the leader of a group effectively enables all
- * the group members that aren't explicitly disabled, so we
- * have to update their ->tstamp_enabled also.
- * Note: this works for group members as well as group leaders
- * since the non-leader members' sibling_lists will be empty.
- */
-static void __perf_event_mark_enabled(struct perf_event *event)
-{
- struct perf_event *sub;
- u64 tstamp = perf_event_time(event);
-
- event->state = PERF_EVENT_STATE_INACTIVE;
- __perf_event_enable_time(event, tstamp);
- list_for_each_entry(sub, &event->sibling_list, group_entry) {
- /* XXX should not be > INACTIVE if event isn't */
- if (sub->state >= PERF_EVENT_STATE_INACTIVE)
- __perf_event_enable_time(sub, tstamp);
- }
-}
-
-/*
* Cross CPU call to enable a performance event
*/
static void __perf_event_enable(struct perf_event *event,
@@ -2537,14 +2435,12 @@ static void __perf_event_enable(struct perf_event *event,
if (ctx->is_active)
ctx_sched_out(ctx, cpuctx, EVENT_TIME);
- __perf_event_mark_enabled(event);
+ perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
if (!ctx->is_active)
return;
if (!event_filter_match(event)) {
- if (is_cgroup_event(event))
- perf_cgroup_defer_enabled(event);
ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
return;
}
@@ -2864,18 +2760,10 @@ static void __perf_event_sync_stat(struct perf_event *event,
* we know the event must be on the current CPU, therefore we
* don't need to use it.
*/
- switch (event->state) {
- case PERF_EVENT_STATE_ACTIVE:
+ if (event->state == PERF_EVENT_STATE_ACTIVE)
event->pmu->read(event);
- /* fall-through */
-
- case PERF_EVENT_STATE_INACTIVE:
- update_event_times(event);
- break;
- default:
- break;
- }
+ perf_event_update_time(event);
/*
* In order to keep per-task stats reliable we need to flip the event
@@ -3112,10 +3000,6 @@ ctx_pinned_sched_in(struct perf_event_context *ctx,
if (!event_filter_match(event))
continue;
- /* may need to reset tstamp_enabled */
- if (is_cgroup_event(event))
- perf_cgroup_mark_enabled(event, ctx);
-
if (group_can_go_on(event, cpuctx, 1))
group_sched_in(event, cpuctx, ctx);
@@ -3123,10 +3007,8 @@ ctx_pinned_sched_in(struct perf_event_context *ctx,
* If this pinned group hasn't been scheduled,
* put it in error state.
*/
- if (event->state == PERF_EVENT_STATE_INACTIVE) {
- update_group_times(event);
- event->state = PERF_EVENT_STATE_ERROR;
- }
+ if (event->state == PERF_EVENT_STATE_INACTIVE)
+ perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
}
}
@@ -3148,10 +3030,6 @@ ctx_flexible_sched_in(struct perf_event_context *ctx,
if (!event_filter_match(event))
continue;
- /* may need to reset tstamp_enabled */
- if (is_cgroup_event(event))
- perf_cgroup_mark_enabled(event, ctx);
-
if (group_can_go_on(event, cpuctx, can_add_hw)) {
if (group_sched_in(event, cpuctx, ctx))
can_add_hw = 0;
@@ -3543,7 +3421,7 @@ static int event_enable_on_exec(struct perf_event *event,
if (event->state >= PERF_EVENT_STATE_INACTIVE)
return 0;
- __perf_event_mark_enabled(event);
+ perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
return 1;
}
@@ -3637,12 +3515,15 @@ static void __perf_event_read(void *info)
return;
raw_spin_lock(&ctx->lock);
- if (ctx->is_active) {
+ if (ctx->is_active & EVENT_TIME) {
update_context_time(ctx);
update_cgrp_time_from_event(event);
}
- update_event_times(event);
+ perf_event_update_time(event);
+ if (data->group)
+ perf_event_update_sibling_time(event);
+
if (event->state != PERF_EVENT_STATE_ACTIVE)
goto unlock;
@@ -3657,7 +3538,6 @@ static void __perf_event_read(void *info)
pmu->read(event);
list_for_each_entry(sub, &event->sibling_list, group_entry) {
- update_event_times(sub);
if (sub->state == PERF_EVENT_STATE_ACTIVE) {
/*
* Use sibling's PMU rather than @event's since
@@ -3686,7 +3566,8 @@ static inline u64 perf_event_count(struct perf_event *event)
* will not be local and we cannot read them atomically
* - must not have a pmu::count method
*/
-int perf_event_read_local(struct perf_event *event, u64 *value)
+int perf_event_read_local(struct perf_event *event, u64 *value,
+ u64 *enabled, u64 *running)
{
unsigned long flags;
int ret = 0;
@@ -3720,6 +3601,7 @@ int perf_event_read_local(struct perf_event *event, u64 *value)
goto out;
}
+
/*
* If the event is currently on this CPU, its either a per-task event,
* or local to this CPU. Furthermore it means its ACTIVE (otherwise
@@ -3729,6 +3611,16 @@ int perf_event_read_local(struct perf_event *event, u64 *value)
event->pmu->read(event);
*value = local64_read(&event->count);
+ if (enabled || running) {
+ u64 now = event->shadow_ctx_time + perf_clock();
+ u64 __enabled, __running;
+
+ __perf_update_times(event, now, &__enabled, &__running);
+ if (enabled)
+ *enabled = __enabled;
+ if (running)
+ *running = __running;
+ }
out:
local_irq_restore(flags);
@@ -3737,23 +3629,35 @@ out:
static int perf_event_read(struct perf_event *event, bool group)
{
+ enum perf_event_state state = READ_ONCE(event->state);
int event_cpu, ret = 0;
/*
* If event is enabled and currently active on a CPU, update the
* value in the event structure:
*/
- if (event->state == PERF_EVENT_STATE_ACTIVE) {
- struct perf_read_data data = {
- .event = event,
- .group = group,
- .ret = 0,
- };
+again:
+ if (state == PERF_EVENT_STATE_ACTIVE) {
+ struct perf_read_data data;
+
+ /*
+ * Orders the ->state and ->oncpu loads such that if we see
+ * ACTIVE we must also see the right ->oncpu.
+ *
+ * Matches the smp_wmb() from event_sched_in().
+ */
+ smp_rmb();
event_cpu = READ_ONCE(event->oncpu);
if ((unsigned)event_cpu >= nr_cpu_ids)
return 0;
+ data = (struct perf_read_data){
+ .event = event,
+ .group = group,
+ .ret = 0,
+ };
+
preempt_disable();
event_cpu = __perf_event_read_cpu(event, event_cpu);
@@ -3770,24 +3674,30 @@ static int perf_event_read(struct perf_event *event, bool group)
(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
preempt_enable();
ret = data.ret;
- } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
+
+ } else if (state == PERF_EVENT_STATE_INACTIVE) {
struct perf_event_context *ctx = event->ctx;
unsigned long flags;
raw_spin_lock_irqsave(&ctx->lock, flags);
+ state = event->state;
+ if (state != PERF_EVENT_STATE_INACTIVE) {
+ raw_spin_unlock_irqrestore(&ctx->lock, flags);
+ goto again;
+ }
+
/*
- * may read while context is not active
- * (e.g., thread is blocked), in that case
- * we cannot update context time
+ * May read while context is not active (e.g., thread is
+ * blocked), in that case we cannot update context time
*/
- if (ctx->is_active) {
+ if (ctx->is_active & EVENT_TIME) {
update_context_time(ctx);
update_cgrp_time_from_event(event);
}
+
+ perf_event_update_time(event);
if (group)
- update_group_times(event);
- else
- update_event_times(event);
+ perf_event_update_sibling_time(event);
raw_spin_unlock_irqrestore(&ctx->lock, flags);
}
@@ -4390,7 +4300,7 @@ static int perf_release(struct inode *inode, struct file *file)
return 0;
}
-u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
+static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
{
struct perf_event *child;
u64 total = 0;
@@ -4418,6 +4328,18 @@ u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
return total;
}
+
+u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
+{
+ struct perf_event_context *ctx;
+ u64 count;
+
+ ctx = perf_event_ctx_lock(event);
+ count = __perf_event_read_value(event, enabled, running);
+ perf_event_ctx_unlock(event, ctx);
+
+ return count;
+}
EXPORT_SYMBOL_GPL(perf_event_read_value);
static int __perf_read_group_add(struct perf_event *leader,
@@ -4433,6 +4355,8 @@ static int __perf_read_group_add(struct perf_event *leader,
if (ret)
return ret;
+ raw_spin_lock_irqsave(&ctx->lock, flags);
+
/*
* Since we co-schedule groups, {enabled,running} times of siblings
* will be identical to those of the leader, so we only publish one
@@ -4455,8 +4379,6 @@ static int __perf_read_group_add(struct perf_event *leader,
if (read_format & PERF_FORMAT_ID)
values[n++] = primary_event_id(leader);
- raw_spin_lock_irqsave(&ctx->lock, flags);
-
list_for_each_entry(sub, &leader->sibling_list, group_entry) {
values[n++] += perf_event_count(sub);
if (read_format & PERF_FORMAT_ID)
@@ -4520,7 +4442,7 @@ static int perf_read_one(struct perf_event *event,
u64 values[4];
int n = 0;
- values[n++] = perf_event_read_value(event, &enabled, &running);
+ values[n++] = __perf_event_read_value(event, &enabled, &running);
if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
values[n++] = enabled;
if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
@@ -4899,8 +4821,7 @@ static void calc_timer_values(struct perf_event *event,
*now = perf_clock();
ctx_time = event->shadow_ctx_time + *now;
- *enabled = ctx_time - event->tstamp_enabled;
- *running = ctx_time - event->tstamp_running;
+ __perf_update_times(event, ctx_time, enabled, running);
}
static void perf_event_init_userpage(struct perf_event *event)
@@ -8074,6 +7995,7 @@ static void bpf_overflow_handler(struct perf_event *event,
struct bpf_perf_event_data_kern ctx = {
.data = data,
.regs = regs,
+ .event = event,
};
int ret = 0;
@@ -9404,6 +9326,11 @@ static void account_event(struct perf_event *event)
inc = true;
if (inc) {
+ /*
+ * We need the mutex here because static_branch_enable()
+ * must complete *before* the perf_sched_count increment
+ * becomes visible.
+ */
if (atomic_inc_not_zero(&perf_sched_count))
goto enabled;
@@ -10529,7 +10456,7 @@ perf_event_exit_event(struct perf_event *child_event,
if (parent_event)
perf_group_detach(child_event);
list_del_event(child_event, child_ctx);
- child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
+ perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
raw_spin_unlock_irq(&child_ctx->lock);
/*
@@ -10767,7 +10694,7 @@ inherit_event(struct perf_event *parent_event,
struct perf_event *group_leader,
struct perf_event_context *child_ctx)
{
- enum perf_event_active_state parent_state = parent_event->state;
+ enum perf_event_state parent_state = parent_event->state;
struct perf_event *child_event;
unsigned long flags;
@@ -11103,6 +11030,7 @@ static void __perf_event_exit_context(void *__info)
struct perf_event *event;
raw_spin_lock(&ctx->lock);
+ ctx_sched_out(ctx, cpuctx, EVENT_TIME);
list_for_each_entry(event, &ctx->event_list, event_entry)
__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
raw_spin_unlock(&ctx->lock);
diff --git a/kernel/kprobes.c b/kernel/kprobes.c
index a1606a4224e1..da2ccf142358 100644
--- a/kernel/kprobes.c
+++ b/kernel/kprobes.c
@@ -117,7 +117,7 @@ enum kprobe_slot_state {
SLOT_USED = 2,
};
-static void *alloc_insn_page(void)
+void __weak *alloc_insn_page(void)
{
return module_alloc(PAGE_SIZE);
}
@@ -573,13 +573,15 @@ static void kprobe_optimizer(struct work_struct *work)
do_unoptimize_kprobes();
/*
- * Step 2: Wait for quiesence period to ensure all running interrupts
- * are done. Because optprobe may modify multiple instructions
- * there is a chance that Nth instruction is interrupted. In that
- * case, running interrupt can return to 2nd-Nth byte of jump
- * instruction. This wait is for avoiding it.
+ * Step 2: Wait for quiesence period to ensure all potentially
+ * preempted tasks to have normally scheduled. Because optprobe
+ * may modify multiple instructions, there is a chance that Nth
+ * instruction is preempted. In that case, such tasks can return
+ * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
+ * Note that on non-preemptive kernel, this is transparently converted
+ * to synchronoze_sched() to wait for all interrupts to have completed.
*/
- synchronize_sched();
+ synchronize_rcu_tasks();
/* Step 3: Optimize kprobes after quiesence period */
do_optimize_kprobes();
@@ -1769,6 +1771,7 @@ unsigned long __weak arch_deref_entry_point(void *entry)
return (unsigned long)entry;
}
+#if 0
int register_jprobes(struct jprobe **jps, int num)
{
int ret = 0, i;
@@ -1837,6 +1840,7 @@ void unregister_jprobes(struct jprobe **jps, int num)
}
}
EXPORT_SYMBOL_GPL(unregister_jprobes);
+#endif
#ifdef CONFIG_KRETPROBES
/*
diff --git a/kernel/test_kprobes.c b/kernel/test_kprobes.c
index 0dbab6d1acb4..dd53e354f630 100644
--- a/kernel/test_kprobes.c
+++ b/kernel/test_kprobes.c
@@ -22,7 +22,7 @@
#define div_factor 3
-static u32 rand1, preh_val, posth_val, jph_val;
+static u32 rand1, preh_val, posth_val;
static int errors, handler_errors, num_tests;
static u32 (*target)(u32 value);
static u32 (*target2)(u32 value);
@@ -34,6 +34,10 @@ static noinline u32 kprobe_target(u32 value)
static int kp_pre_handler(struct kprobe *p, struct pt_regs *regs)
{
+ if (preemptible()) {
+ handler_errors++;
+ pr_err("pre-handler is preemptible\n");
+ }
preh_val = (rand1 / div_factor);
return 0;
}
@@ -41,6 +45,10 @@ static int kp_pre_handler(struct kprobe *p, struct pt_regs *regs)
static void kp_post_handler(struct kprobe *p, struct pt_regs *regs,
unsigned long flags)
{
+ if (preemptible()) {
+ handler_errors++;
+ pr_err("post-handler is preemptible\n");
+ }
if (preh_val != (rand1 / div_factor)) {
handler_errors++;
pr_err("incorrect value in post_handler\n");
@@ -154,8 +162,15 @@ static int test_kprobes(void)
}
+#if 0
+static u32 jph_val;
+
static u32 j_kprobe_target(u32 value)
{
+ if (preemptible()) {
+ handler_errors++;
+ pr_err("jprobe-handler is preemptible\n");
+ }
if (value != rand1) {
handler_errors++;
pr_err("incorrect value in jprobe handler\n");
@@ -227,11 +242,19 @@ static int test_jprobes(void)
return 0;
}
+#else
+#define test_jprobe() (0)
+#define test_jprobes() (0)
+#endif
#ifdef CONFIG_KRETPROBES
static u32 krph_val;
static int entry_handler(struct kretprobe_instance *ri, struct pt_regs *regs)
{
+ if (preemptible()) {
+ handler_errors++;
+ pr_err("kretprobe entry handler is preemptible\n");
+ }
krph_val = (rand1 / div_factor);
return 0;
}
@@ -240,6 +263,10 @@ static int return_handler(struct kretprobe_instance *ri, struct pt_regs *regs)
{
unsigned long ret = regs_return_value(regs);
+ if (preemptible()) {
+ handler_errors++;
+ pr_err("kretprobe return handler is preemptible\n");
+ }
if (ret != (rand1 / div_factor)) {
handler_errors++;
pr_err("incorrect value in kretprobe handler\n");
diff --git a/kernel/trace/bpf_trace.c b/kernel/trace/bpf_trace.c
index dc498b605d5d..95888ae6c263 100644
--- a/kernel/trace/bpf_trace.c
+++ b/kernel/trace/bpf_trace.c
@@ -275,7 +275,7 @@ BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
if (!ee)
return -ENOENT;
- err = perf_event_read_local(ee->event, &value);
+ err = perf_event_read_local(ee->event, &value, NULL, NULL);
/*
* this api is ugly since we miss [-22..-2] range of valid
* counter values, but that's uapi