diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2016-06-10 10:53:46 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2016-06-10 10:53:46 -0700 |
commit | 02b07bde619e179bf7ac0e073d28e2e038dfab77 (patch) | |
tree | 47f3ce1a56cb4c7dd46f208d6c13208ef7ec900f /kernel | |
parent | 606c17f4e9b788ed9ce9d7849619498cc67b9072 (diff) | |
parent | 077fa7aed17de5022e44bf07dbaf732078b7b5b2 (diff) |
Merge branch 'locking-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking fixes from Ingo Molnar:
"Misc fixes:
- a file-based futex fix
- one more spin_unlock_wait() fix
- a ww-mutex deadlock detection improvement/fix
- and a raw_read_seqcount_latch() barrier fix"
* 'locking-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
futex: Calculate the futex key based on a tail page for file-based futexes
locking/qspinlock: Fix spin_unlock_wait() some more
locking/ww_mutex: Report recursive ww_mutex locking early
locking/seqcount: Re-fix raw_read_seqcount_latch()
Diffstat (limited to 'kernel')
-rw-r--r-- | kernel/futex.c | 14 | ||||
-rw-r--r-- | kernel/locking/mutex.c | 9 | ||||
-rw-r--r-- | kernel/locking/qspinlock.c | 60 |
3 files changed, 77 insertions, 6 deletions
diff --git a/kernel/futex.c b/kernel/futex.c index ee25f5ba4aca..33664f70e2d2 100644 --- a/kernel/futex.c +++ b/kernel/futex.c @@ -469,7 +469,7 @@ get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw) { unsigned long address = (unsigned long)uaddr; struct mm_struct *mm = current->mm; - struct page *page; + struct page *page, *tail; struct address_space *mapping; int err, ro = 0; @@ -530,7 +530,15 @@ again: * considered here and page lock forces unnecessarily serialization * From this point on, mapping will be re-verified if necessary and * page lock will be acquired only if it is unavoidable - */ + * + * Mapping checks require the head page for any compound page so the + * head page and mapping is looked up now. For anonymous pages, it + * does not matter if the page splits in the future as the key is + * based on the address. For filesystem-backed pages, the tail is + * required as the index of the page determines the key. For + * base pages, there is no tail page and tail == page. + */ + tail = page; page = compound_head(page); mapping = READ_ONCE(page->mapping); @@ -654,7 +662,7 @@ again: key->both.offset |= FUT_OFF_INODE; /* inode-based key */ key->shared.inode = inode; - key->shared.pgoff = basepage_index(page); + key->shared.pgoff = basepage_index(tail); rcu_read_unlock(); } diff --git a/kernel/locking/mutex.c b/kernel/locking/mutex.c index e364b424b019..79d2d765a75f 100644 --- a/kernel/locking/mutex.c +++ b/kernel/locking/mutex.c @@ -486,9 +486,6 @@ __ww_mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx) if (!hold_ctx) return 0; - if (unlikely(ctx == hold_ctx)) - return -EALREADY; - if (ctx->stamp - hold_ctx->stamp <= LONG_MAX && (ctx->stamp != hold_ctx->stamp || ctx > hold_ctx)) { #ifdef CONFIG_DEBUG_MUTEXES @@ -514,6 +511,12 @@ __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass, unsigned long flags; int ret; + if (use_ww_ctx) { + struct ww_mutex *ww = container_of(lock, struct ww_mutex, base); + if (unlikely(ww_ctx == READ_ONCE(ww->ctx))) + return -EALREADY; + } + preempt_disable(); mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip); diff --git a/kernel/locking/qspinlock.c b/kernel/locking/qspinlock.c index ce2f75e32ae1..5fc8c311b8fe 100644 --- a/kernel/locking/qspinlock.c +++ b/kernel/locking/qspinlock.c @@ -267,6 +267,66 @@ static __always_inline u32 __pv_wait_head_or_lock(struct qspinlock *lock, #define queued_spin_lock_slowpath native_queued_spin_lock_slowpath #endif +/* + * queued_spin_lock_slowpath() can (load-)ACQUIRE the lock before + * issuing an _unordered_ store to set _Q_LOCKED_VAL. + * + * This means that the store can be delayed, but no later than the + * store-release from the unlock. This means that simply observing + * _Q_LOCKED_VAL is not sufficient to determine if the lock is acquired. + * + * There are two paths that can issue the unordered store: + * + * (1) clear_pending_set_locked(): *,1,0 -> *,0,1 + * + * (2) set_locked(): t,0,0 -> t,0,1 ; t != 0 + * atomic_cmpxchg_relaxed(): t,0,0 -> 0,0,1 + * + * However, in both cases we have other !0 state we've set before to queue + * ourseves: + * + * For (1) we have the atomic_cmpxchg_acquire() that set _Q_PENDING_VAL, our + * load is constrained by that ACQUIRE to not pass before that, and thus must + * observe the store. + * + * For (2) we have a more intersting scenario. We enqueue ourselves using + * xchg_tail(), which ends up being a RELEASE. This in itself is not + * sufficient, however that is followed by an smp_cond_acquire() on the same + * word, giving a RELEASE->ACQUIRE ordering. This again constrains our load and + * guarantees we must observe that store. + * + * Therefore both cases have other !0 state that is observable before the + * unordered locked byte store comes through. This means we can use that to + * wait for the lock store, and then wait for an unlock. + */ +#ifndef queued_spin_unlock_wait +void queued_spin_unlock_wait(struct qspinlock *lock) +{ + u32 val; + + for (;;) { + val = atomic_read(&lock->val); + + if (!val) /* not locked, we're done */ + goto done; + + if (val & _Q_LOCKED_MASK) /* locked, go wait for unlock */ + break; + + /* not locked, but pending, wait until we observe the lock */ + cpu_relax(); + } + + /* any unlock is good */ + while (atomic_read(&lock->val) & _Q_LOCKED_MASK) + cpu_relax(); + +done: + smp_rmb(); /* CTRL + RMB -> ACQUIRE */ +} +EXPORT_SYMBOL(queued_spin_unlock_wait); +#endif + #endif /* _GEN_PV_LOCK_SLOWPATH */ /** |