diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2023-02-20 17:41:08 -0800 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2023-02-20 17:41:08 -0800 |
commit | 1f2d9ffc7a5f916935749ffc6e93fb33bfe94d2f (patch) | |
tree | a5dabaa924d50867cbe347e20a7643b2850f11c0 /kernel/time | |
parent | a2f0e7eee1344eb9f91b22bc72d9eb0a52b849c9 (diff) | |
parent | 7c4a5b89a0b5a57a64b601775b296abf77a9fe97 (diff) |
Merge tag 'sched-core-2023-02-20' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
- Improve the scalability of the CFS bandwidth unthrottling logic with
large number of CPUs.
- Fix & rework various cpuidle routines, simplify interaction with the
generic scheduler code. Add __cpuidle methods as noinstr to objtool's
noinstr detection and fix boatloads of cpuidle bugs & quirks.
- Add new ABI: introduce MEMBARRIER_CMD_GET_REGISTRATIONS, to query
previously issued registrations.
- Limit scheduler slice duration to the sysctl_sched_latency period, to
improve scheduling granularity with a large number of SCHED_IDLE
tasks.
- Debuggability enhancement on sys_exit(): warn about disabled IRQs,
but also enable them to prevent a cascade of followup problems and
repeat warnings.
- Fix the rescheduling logic in prio_changed_dl().
- Micro-optimize cpufreq and sched-util methods.
- Micro-optimize ttwu_runnable()
- Micro-optimize the idle-scanning in update_numa_stats(),
select_idle_capacity() and steal_cookie_task().
- Update the RSEQ code & self-tests
- Constify various scheduler methods
- Remove unused methods
- Refine __init tags
- Documentation updates
- Misc other cleanups, fixes
* tag 'sched-core-2023-02-20' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (110 commits)
sched/rt: pick_next_rt_entity(): check list_entry
sched/deadline: Add more reschedule cases to prio_changed_dl()
sched/fair: sanitize vruntime of entity being placed
sched/fair: Remove capacity inversion detection
sched/fair: unlink misfit task from cpu overutilized
objtool: mem*() are not uaccess safe
cpuidle: Fix poll_idle() noinstr annotation
sched/clock: Make local_clock() noinstr
sched/clock/x86: Mark sched_clock() noinstr
x86/pvclock: Improve atomic update of last_value in pvclock_clocksource_read()
x86/atomics: Always inline arch_atomic64*()
cpuidle: tracing, preempt: Squash _rcuidle tracing
cpuidle: tracing: Warn about !rcu_is_watching()
cpuidle: lib/bug: Disable rcu_is_watching() during WARN/BUG
cpuidle: drivers: firmware: psci: Dont instrument suspend code
KVM: selftests: Fix build of rseq test
exit: Detect and fix irq disabled state in oops
cpuidle, arm64: Fix the ARM64 cpuidle logic
cpuidle: mvebu: Fix duplicate flags assignment
sched/fair: Limit sched slice duration
...
Diffstat (limited to 'kernel/time')
-rw-r--r-- | kernel/time/tick-broadcast-hrtimer.c | 29 | ||||
-rw-r--r-- | kernel/time/tick-broadcast.c | 6 |
2 files changed, 17 insertions, 18 deletions
diff --git a/kernel/time/tick-broadcast-hrtimer.c b/kernel/time/tick-broadcast-hrtimer.c index 797eb93103ad..e28f9210f8a1 100644 --- a/kernel/time/tick-broadcast-hrtimer.c +++ b/kernel/time/tick-broadcast-hrtimer.c @@ -56,25 +56,20 @@ static int bc_set_next(ktime_t expires, struct clock_event_device *bc) * hrtimer callback function is currently running, then * hrtimer_start() cannot move it and the timer stays on the CPU on * which it is assigned at the moment. + */ + hrtimer_start(&bctimer, expires, HRTIMER_MODE_ABS_PINNED_HARD); + /* + * The core tick broadcast mode expects bc->bound_on to be set + * correctly to prevent a CPU which has the broadcast hrtimer + * armed from going deep idle. * - * As this can be called from idle code, the hrtimer_start() - * invocation has to be wrapped with RCU_NONIDLE() as - * hrtimer_start() can call into tracing. + * As tick_broadcast_lock is held, nothing can change the cpu + * base which was just established in hrtimer_start() above. So + * the below access is safe even without holding the hrtimer + * base lock. */ - RCU_NONIDLE( { - hrtimer_start(&bctimer, expires, HRTIMER_MODE_ABS_PINNED_HARD); - /* - * The core tick broadcast mode expects bc->bound_on to be set - * correctly to prevent a CPU which has the broadcast hrtimer - * armed from going deep idle. - * - * As tick_broadcast_lock is held, nothing can change the cpu - * base which was just established in hrtimer_start() above. So - * the below access is safe even without holding the hrtimer - * base lock. - */ - bc->bound_on = bctimer.base->cpu_base->cpu; - } ); + bc->bound_on = bctimer.base->cpu_base->cpu; + return 0; } diff --git a/kernel/time/tick-broadcast.c b/kernel/time/tick-broadcast.c index f7fe6fe36173..93bf2b4e47e5 100644 --- a/kernel/time/tick-broadcast.c +++ b/kernel/time/tick-broadcast.c @@ -622,9 +622,13 @@ struct cpumask *tick_get_broadcast_oneshot_mask(void) * to avoid a deep idle transition as we are about to get the * broadcast IPI right away. */ -int tick_check_broadcast_expired(void) +noinstr int tick_check_broadcast_expired(void) { +#ifdef _ASM_GENERIC_BITOPS_INSTRUMENTED_NON_ATOMIC_H + return arch_test_bit(smp_processor_id(), cpumask_bits(tick_broadcast_force_mask)); +#else return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask); +#endif } /* |