diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2020-12-15 12:53:37 -0800 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2020-12-15 12:53:37 -0800 |
commit | ac73e3dc8acd0a3be292755db30388c3580f5674 (patch) | |
tree | 5abef6cb82b205b5dbbb69dca950b8a5aae716de /kernel/kthread.c | |
parent | 148842c98a24e508aecb929718818fbf4c2a6ff3 (diff) | |
parent | dfefd226b0bf7c435a58d75a0ce2f9273b9825f6 (diff) |
Merge branch 'akpm' (patches from Andrew)
Merge misc updates from Andrew Morton:
- a few random little subsystems
- almost all of the MM patches which are staged ahead of linux-next
material. I'll trickle to post-linux-next work in as the dependents
get merged up.
Subsystems affected by this patch series: kthread, kbuild, ide, ntfs,
ocfs2, arch, and mm (slab-generic, slab, slub, dax, debug, pagecache,
gup, swap, shmem, memcg, pagemap, mremap, hmm, vmalloc, documentation,
kasan, pagealloc, memory-failure, hugetlb, vmscan, z3fold, compaction,
oom-kill, migration, cma, page-poison, userfaultfd, zswap, zsmalloc,
uaccess, zram, and cleanups).
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (200 commits)
mm: cleanup kstrto*() usage
mm: fix fall-through warnings for Clang
mm: slub: convert sysfs sprintf family to sysfs_emit/sysfs_emit_at
mm: shmem: convert shmem_enabled_show to use sysfs_emit_at
mm:backing-dev: use sysfs_emit in macro defining functions
mm: huge_memory: convert remaining use of sprintf to sysfs_emit and neatening
mm: use sysfs_emit for struct kobject * uses
mm: fix kernel-doc markups
zram: break the strict dependency from lzo
zram: add stat to gather incompressible pages since zram set up
zram: support page writeback
mm/process_vm_access: remove redundant initialization of iov_r
mm/zsmalloc.c: rework the list_add code in insert_zspage()
mm/zswap: move to use crypto_acomp API for hardware acceleration
mm/zswap: fix passing zero to 'PTR_ERR' warning
mm/zswap: make struct kernel_param_ops definitions const
userfaultfd/selftests: hint the test runner on required privilege
userfaultfd/selftests: fix retval check for userfaultfd_open()
userfaultfd/selftests: always dump something in modes
userfaultfd: selftests: make __{s,u}64 format specifiers portable
...
Diffstat (limited to 'kernel/kthread.c')
-rw-r--r-- | kernel/kthread.c | 29 |
1 files changed, 28 insertions, 1 deletions
diff --git a/kernel/kthread.c b/kernel/kthread.c index e6aa66551241..a5eceecd4513 100644 --- a/kernel/kthread.c +++ b/kernel/kthread.c @@ -704,8 +704,15 @@ repeat: raw_spin_unlock_irq(&worker->lock); if (work) { + kthread_work_func_t func = work->func; __set_current_state(TASK_RUNNING); + trace_sched_kthread_work_execute_start(work); work->func(work); + /* + * Avoid dereferencing work after this point. The trace + * event only cares about the address. + */ + trace_sched_kthread_work_execute_end(work, func); } else if (!freezing(current)) schedule(); @@ -786,7 +793,25 @@ EXPORT_SYMBOL(kthread_create_worker); * A good practice is to add the cpu number also into the worker name. * For example, use kthread_create_worker_on_cpu(cpu, "helper/%d", cpu). * - * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM) + * CPU hotplug: + * The kthread worker API is simple and generic. It just provides a way + * to create, use, and destroy workers. + * + * It is up to the API user how to handle CPU hotplug. They have to decide + * how to handle pending work items, prevent queuing new ones, and + * restore the functionality when the CPU goes off and on. There are a + * few catches: + * + * - CPU affinity gets lost when it is scheduled on an offline CPU. + * + * - The worker might not exist when the CPU was off when the user + * created the workers. + * + * Good practice is to implement two CPU hotplug callbacks and to + * destroy/create the worker when the CPU goes down/up. + * + * Return: + * The pointer to the allocated worker on success, ERR_PTR(-ENOMEM) * when the needed structures could not get allocated, and ERR_PTR(-EINTR) * when the worker was SIGKILLed. */ @@ -834,6 +859,8 @@ static void kthread_insert_work(struct kthread_worker *worker, { kthread_insert_work_sanity_check(worker, work); + trace_sched_kthread_work_queue_work(worker, work); + list_add_tail(&work->node, pos); work->worker = worker; if (!worker->current_work && likely(worker->task)) |