summaryrefslogtreecommitdiff
path: root/kernel/cpuset.c
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2015-04-14 16:49:17 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2015-04-14 16:49:17 -0700
commit1dcf58d6e6e6eb7ec10e9abc56887b040205b06f (patch)
treec03e7a25ef13eea62f1547914a76e5c68f3f4c28 /kernel/cpuset.c
parent80dcc31fbe55932ac9204daee5f2ebc0c49b6da3 (diff)
parente4b0db72be2487bae0e3251c22f82c104f7c1cfd (diff)
Merge branch 'akpm' (patches from Andrew)
Merge first patchbomb from Andrew Morton: - arch/sh updates - ocfs2 updates - kernel/watchdog feature - about half of mm/ * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (122 commits) Documentation: update arch list in the 'memtest' entry Kconfig: memtest: update number of test patterns up to 17 arm: add support for memtest arm64: add support for memtest memtest: use phys_addr_t for physical addresses mm: move memtest under mm mm, hugetlb: abort __get_user_pages if current has been oom killed mm, mempool: do not allow atomic resizing memcg: print cgroup information when system panics due to panic_on_oom mm: numa: remove migrate_ratelimited mm: fold arch_randomize_brk into ARCH_HAS_ELF_RANDOMIZE mm: split ET_DYN ASLR from mmap ASLR s390: redefine randomize_et_dyn for ELF_ET_DYN_BASE mm: expose arch_mmap_rnd when available s390: standardize mmap_rnd() usage powerpc: standardize mmap_rnd() usage mips: extract logic for mmap_rnd() arm64: standardize mmap_rnd() usage x86: standardize mmap_rnd() usage arm: factor out mmap ASLR into mmap_rnd ...
Diffstat (limited to 'kernel/cpuset.c')
-rw-r--r--kernel/cpuset.c18
1 files changed, 5 insertions, 13 deletions
diff --git a/kernel/cpuset.c b/kernel/cpuset.c
index c68f0721df10..ee14e3a35a29 100644
--- a/kernel/cpuset.c
+++ b/kernel/cpuset.c
@@ -2453,20 +2453,12 @@ static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
* @node: is this an allowed node?
* @gfp_mask: memory allocation flags
*
- * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
- * set, yes, we can always allocate. If node is in our task's mems_allowed,
- * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
- * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
- * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
- * flag, yes.
+ * If we're in interrupt, yes, we can always allocate. If @node is set in
+ * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this
+ * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
+ * yes. If current has access to memory reserves due to TIF_MEMDIE, yes.
* Otherwise, no.
*
- * The __GFP_THISNODE placement logic is really handled elsewhere,
- * by forcibly using a zonelist starting at a specified node, and by
- * (in get_page_from_freelist()) refusing to consider the zones for
- * any node on the zonelist except the first. By the time any such
- * calls get to this routine, we should just shut up and say 'yes'.
- *
* GFP_USER allocations are marked with the __GFP_HARDWALL bit,
* and do not allow allocations outside the current tasks cpuset
* unless the task has been OOM killed as is marked TIF_MEMDIE.
@@ -2502,7 +2494,7 @@ int __cpuset_node_allowed(int node, gfp_t gfp_mask)
int allowed; /* is allocation in zone z allowed? */
unsigned long flags;
- if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
+ if (in_interrupt())
return 1;
if (node_isset(node, current->mems_allowed))
return 1;