diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2020-04-12 09:47:10 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2020-04-12 09:47:10 -0700 |
commit | 652fa53caa01dbfdef1b8c5997767e284ac21a5c (patch) | |
tree | d4a0998c9501a6f525ac269169865613a123be16 /include | |
parent | 4119bf9f1d093b495f5fe3fcb32bde3156d2ba6e (diff) | |
parent | 9a019db0b6bebc84d6b64636faf73ed6d64cd4bb (diff) |
Merge tag 'locking-urgent-2020-04-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking fixes from Thomas Gleixner:
"Three small fixes/updates for the locking core code:
- Plug a task struct reference leak in the percpu rswem
implementation.
- Document the refcount interaction with PID_MAX_LIMIT
- Improve the 'invalid wait context' data dump in lockdep so it
contains all information which is required to decode the problem"
* tag 'locking-urgent-2020-04-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
locking/lockdep: Improve 'invalid wait context' splat
locking/refcount: Document interaction with PID_MAX_LIMIT
locking/percpu-rwsem: Fix a task_struct refcount
Diffstat (limited to 'include')
-rw-r--r-- | include/linux/refcount.h | 23 |
1 files changed, 18 insertions, 5 deletions
diff --git a/include/linux/refcount.h b/include/linux/refcount.h index 0ac50cf62d06..0e3ee25eb156 100644 --- a/include/linux/refcount.h +++ b/include/linux/refcount.h @@ -38,11 +38,24 @@ * atomic operations, then the count will continue to edge closer to 0. If it * reaches a value of 1 before /any/ of the threads reset it to the saturated * value, then a concurrent refcount_dec_and_test() may erroneously free the - * underlying object. Given the precise timing details involved with the - * round-robin scheduling of each thread manipulating the refcount and the need - * to hit the race multiple times in succession, there doesn't appear to be a - * practical avenue of attack even if using refcount_add() operations with - * larger increments. + * underlying object. + * Linux limits the maximum number of tasks to PID_MAX_LIMIT, which is currently + * 0x400000 (and can't easily be raised in the future beyond FUTEX_TID_MASK). + * With the current PID limit, if no batched refcounting operations are used and + * the attacker can't repeatedly trigger kernel oopses in the middle of refcount + * operations, this makes it impossible for a saturated refcount to leave the + * saturation range, even if it is possible for multiple uses of the same + * refcount to nest in the context of a single task: + * + * (UINT_MAX+1-REFCOUNT_SATURATED) / PID_MAX_LIMIT = + * 0x40000000 / 0x400000 = 0x100 = 256 + * + * If hundreds of references are added/removed with a single refcounting + * operation, it may potentially be possible to leave the saturation range; but + * given the precise timing details involved with the round-robin scheduling of + * each thread manipulating the refcount and the need to hit the race multiple + * times in succession, there doesn't appear to be a practical avenue of attack + * even if using refcount_add() operations with larger increments. * * Memory ordering * =============== |