summaryrefslogtreecommitdiff
path: root/include/linux
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2015-11-07 14:32:45 -0800
committerLinus Torvalds <torvalds@linux-foundation.org>2015-11-07 14:32:45 -0800
commitad804a0b2a769a0eed29015c53fe395449c09d13 (patch)
tree3f96dd15fe24705cd8244bdb8fb81a7195f6ea04 /include/linux
parentab9f2faf8f40604551336e5b0a18e0910a57b92c (diff)
parent5f2a2d5d423d5337a1392fa016ec23a8a4206006 (diff)
Merge branch 'akpm' (patches from Andrew)
Merge second patch-bomb from Andrew Morton: - most of the rest of MM - procfs - lib/ updates - printk updates - bitops infrastructure tweaks - checkpatch updates - nilfs2 update - signals - various other misc bits: coredump, seqfile, kexec, pidns, zlib, ipc, dma-debug, dma-mapping, ... * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (102 commits) ipc,msg: drop dst nil validation in copy_msg include/linux/zutil.h: fix usage example of zlib_adler32() panic: release stale console lock to always get the logbuf printed out dma-debug: check nents in dma_sync_sg* dma-mapping: tidy up dma_parms default handling pidns: fix set/getpriority and ioprio_set/get in PRIO_USER mode kexec: use file name as the output message prefix fs, seqfile: always allow oom killer seq_file: reuse string_escape_str() fs/seq_file: use seq_* helpers in seq_hex_dump() coredump: change zap_threads() and zap_process() to use for_each_thread() coredump: ensure all coredumping tasks have SIGNAL_GROUP_COREDUMP signal: remove jffs2_garbage_collect_thread()->allow_signal(SIGCONT) signal: introduce kernel_signal_stop() to fix jffs2_garbage_collect_thread() signal: turn dequeue_signal_lock() into kernel_dequeue_signal() signals: kill block_all_signals() and unblock_all_signals() nilfs2: fix gcc uninitialized-variable warnings in powerpc build nilfs2: fix gcc unused-but-set-variable warnings MAINTAINERS: nilfs2: add header file for tracing nilfs2: add tracepoints for analyzing reading and writing metadata files ...
Diffstat (limited to 'include/linux')
-rw-r--r--include/linux/bitops.h13
-rw-r--r--include/linux/compiler-gcc.h5
-rw-r--r--include/linux/cpuset.h6
-rw-r--r--include/linux/dma-mapping.h18
-rw-r--r--include/linux/gfp.h286
-rw-r--r--include/linux/hugetlb_cgroup.h4
-rw-r--r--include/linux/kernel.h2
-rw-r--r--include/linux/mm.h82
-rw-r--r--include/linux/mm_types.h40
-rw-r--r--include/linux/mmzone.h101
-rw-r--r--include/linux/moduleparam.h1
-rw-r--r--include/linux/page-flags.h80
-rw-r--r--include/linux/pageblock-flags.h2
-rw-r--r--include/linux/pagemap.h7
-rw-r--r--include/linux/rbtree.h12
-rw-r--r--include/linux/sched.h28
-rw-r--r--include/linux/skbuff.h6
-rw-r--r--include/linux/zpool.h8
-rw-r--r--include/linux/zsmalloc.h2
-rw-r--r--include/linux/zutil.h4
20 files changed, 370 insertions, 337 deletions
diff --git a/include/linux/bitops.h b/include/linux/bitops.h
index e63553386ae7..2b8ed123ad36 100644
--- a/include/linux/bitops.h
+++ b/include/linux/bitops.h
@@ -164,6 +164,8 @@ static inline __u8 ror8(__u8 word, unsigned int shift)
* sign_extend32 - sign extend a 32-bit value using specified bit as sign-bit
* @value: value to sign extend
* @index: 0 based bit index (0<=index<32) to sign bit
+ *
+ * This is safe to use for 16- and 8-bit types as well.
*/
static inline __s32 sign_extend32(__u32 value, int index)
{
@@ -171,6 +173,17 @@ static inline __s32 sign_extend32(__u32 value, int index)
return (__s32)(value << shift) >> shift;
}
+/**
+ * sign_extend64 - sign extend a 64-bit value using specified bit as sign-bit
+ * @value: value to sign extend
+ * @index: 0 based bit index (0<=index<64) to sign bit
+ */
+static inline __s64 sign_extend64(__u64 value, int index)
+{
+ __u8 shift = 63 - index;
+ return (__s64)(value << shift) >> shift;
+}
+
static inline unsigned fls_long(unsigned long l)
{
if (sizeof(l) == 4)
diff --git a/include/linux/compiler-gcc.h b/include/linux/compiler-gcc.h
index 0e3110a0b771..22ab246feed3 100644
--- a/include/linux/compiler-gcc.h
+++ b/include/linux/compiler-gcc.h
@@ -205,7 +205,10 @@
#if GCC_VERSION >= 40600
/*
- * Tell the optimizer that something else uses this function or variable.
+ * When used with Link Time Optimization, gcc can optimize away C functions or
+ * variables which are referenced only from assembly code. __visible tells the
+ * optimizer that something else uses this function or variable, thus preventing
+ * this.
*/
#define __visible __attribute__((externally_visible))
#endif
diff --git a/include/linux/cpuset.h b/include/linux/cpuset.h
index 5a1311942358..85a868ccb493 100644
--- a/include/linux/cpuset.h
+++ b/include/linux/cpuset.h
@@ -104,6 +104,9 @@ extern void cpuset_print_current_mems_allowed(void);
*/
static inline unsigned int read_mems_allowed_begin(void)
{
+ if (!cpusets_enabled())
+ return 0;
+
return read_seqcount_begin(&current->mems_allowed_seq);
}
@@ -115,6 +118,9 @@ static inline unsigned int read_mems_allowed_begin(void)
*/
static inline bool read_mems_allowed_retry(unsigned int seq)
{
+ if (!cpusets_enabled())
+ return false;
+
return read_seqcount_retry(&current->mems_allowed_seq, seq);
}
diff --git a/include/linux/dma-mapping.h b/include/linux/dma-mapping.h
index ac07ff090919..2e551e2d2d03 100644
--- a/include/linux/dma-mapping.h
+++ b/include/linux/dma-mapping.h
@@ -1,6 +1,7 @@
#ifndef _LINUX_DMA_MAPPING_H
#define _LINUX_DMA_MAPPING_H
+#include <linux/sizes.h>
#include <linux/string.h>
#include <linux/device.h>
#include <linux/err.h>
@@ -145,7 +146,9 @@ static inline void arch_teardown_dma_ops(struct device *dev) { }
static inline unsigned int dma_get_max_seg_size(struct device *dev)
{
- return dev->dma_parms ? dev->dma_parms->max_segment_size : 65536;
+ if (dev->dma_parms && dev->dma_parms->max_segment_size)
+ return dev->dma_parms->max_segment_size;
+ return SZ_64K;
}
static inline unsigned int dma_set_max_seg_size(struct device *dev,
@@ -154,14 +157,15 @@ static inline unsigned int dma_set_max_seg_size(struct device *dev,
if (dev->dma_parms) {
dev->dma_parms->max_segment_size = size;
return 0;
- } else
- return -EIO;
+ }
+ return -EIO;
}
static inline unsigned long dma_get_seg_boundary(struct device *dev)
{
- return dev->dma_parms ?
- dev->dma_parms->segment_boundary_mask : 0xffffffff;
+ if (dev->dma_parms && dev->dma_parms->segment_boundary_mask)
+ return dev->dma_parms->segment_boundary_mask;
+ return DMA_BIT_MASK(32);
}
static inline int dma_set_seg_boundary(struct device *dev, unsigned long mask)
@@ -169,8 +173,8 @@ static inline int dma_set_seg_boundary(struct device *dev, unsigned long mask)
if (dev->dma_parms) {
dev->dma_parms->segment_boundary_mask = mask;
return 0;
- } else
- return -EIO;
+ }
+ return -EIO;
}
#ifndef dma_max_pfn
diff --git a/include/linux/gfp.h b/include/linux/gfp.h
index f92cbd2f4450..6523109e136d 100644
--- a/include/linux/gfp.h
+++ b/include/linux/gfp.h
@@ -14,7 +14,7 @@ struct vm_area_struct;
#define ___GFP_HIGHMEM 0x02u
#define ___GFP_DMA32 0x04u
#define ___GFP_MOVABLE 0x08u
-#define ___GFP_WAIT 0x10u
+#define ___GFP_RECLAIMABLE 0x10u
#define ___GFP_HIGH 0x20u
#define ___GFP_IO 0x40u
#define ___GFP_FS 0x80u
@@ -29,18 +29,17 @@ struct vm_area_struct;
#define ___GFP_NOMEMALLOC 0x10000u
#define ___GFP_HARDWALL 0x20000u
#define ___GFP_THISNODE 0x40000u
-#define ___GFP_RECLAIMABLE 0x80000u
+#define ___GFP_ATOMIC 0x80000u
#define ___GFP_NOACCOUNT 0x100000u
#define ___GFP_NOTRACK 0x200000u
-#define ___GFP_NO_KSWAPD 0x400000u
+#define ___GFP_DIRECT_RECLAIM 0x400000u
#define ___GFP_OTHER_NODE 0x800000u
#define ___GFP_WRITE 0x1000000u
+#define ___GFP_KSWAPD_RECLAIM 0x2000000u
/* If the above are modified, __GFP_BITS_SHIFT may need updating */
/*
- * GFP bitmasks..
- *
- * Zone modifiers (see linux/mmzone.h - low three bits)
+ * Physical address zone modifiers (see linux/mmzone.h - low four bits)
*
* Do not put any conditional on these. If necessary modify the definitions
* without the underscores and use them consistently. The definitions here may
@@ -50,116 +49,229 @@ struct vm_area_struct;
#define __GFP_HIGHMEM ((__force gfp_t)___GFP_HIGHMEM)
#define __GFP_DMA32 ((__force gfp_t)___GFP_DMA32)
#define __GFP_MOVABLE ((__force gfp_t)___GFP_MOVABLE) /* Page is movable */
+#define __GFP_MOVABLE ((__force gfp_t)___GFP_MOVABLE) /* ZONE_MOVABLE allowed */
#define GFP_ZONEMASK (__GFP_DMA|__GFP_HIGHMEM|__GFP_DMA32|__GFP_MOVABLE)
+
+/*
+ * Page mobility and placement hints
+ *
+ * These flags provide hints about how mobile the page is. Pages with similar
+ * mobility are placed within the same pageblocks to minimise problems due
+ * to external fragmentation.
+ *
+ * __GFP_MOVABLE (also a zone modifier) indicates that the page can be
+ * moved by page migration during memory compaction or can be reclaimed.
+ *
+ * __GFP_RECLAIMABLE is used for slab allocations that specify
+ * SLAB_RECLAIM_ACCOUNT and whose pages can be freed via shrinkers.
+ *
+ * __GFP_WRITE indicates the caller intends to dirty the page. Where possible,
+ * these pages will be spread between local zones to avoid all the dirty
+ * pages being in one zone (fair zone allocation policy).
+ *
+ * __GFP_HARDWALL enforces the cpuset memory allocation policy.
+ *
+ * __GFP_THISNODE forces the allocation to be satisified from the requested
+ * node with no fallbacks or placement policy enforcements.
+ */
+#define __GFP_RECLAIMABLE ((__force gfp_t)___GFP_RECLAIMABLE)
+#define __GFP_WRITE ((__force gfp_t)___GFP_WRITE)
+#define __GFP_HARDWALL ((__force gfp_t)___GFP_HARDWALL)
+#define __GFP_THISNODE ((__force gfp_t)___GFP_THISNODE)
+
/*
- * Action modifiers - doesn't change the zoning
+ * Watermark modifiers -- controls access to emergency reserves
+ *
+ * __GFP_HIGH indicates that the caller is high-priority and that granting
+ * the request is necessary before the system can make forward progress.
+ * For example, creating an IO context to clean pages.
+ *
+ * __GFP_ATOMIC indicates that the caller cannot reclaim or sleep and is
+ * high priority. Users are typically interrupt handlers. This may be
+ * used in conjunction with __GFP_HIGH
+ *
+ * __GFP_MEMALLOC allows access to all memory. This should only be used when
+ * the caller guarantees the allocation will allow more memory to be freed
+ * very shortly e.g. process exiting or swapping. Users either should
+ * be the MM or co-ordinating closely with the VM (e.g. swap over NFS).
+ *
+ * __GFP_NOMEMALLOC is used to explicitly forbid access to emergency reserves.
+ * This takes precedence over the __GFP_MEMALLOC flag if both are set.
+ *
+ * __GFP_NOACCOUNT ignores the accounting for kmemcg limit enforcement.
+ */
+#define __GFP_ATOMIC ((__force gfp_t)___GFP_ATOMIC)
+#define __GFP_HIGH ((__force gfp_t)___GFP_HIGH)
+#define __GFP_MEMALLOC ((__force gfp_t)___GFP_MEMALLOC)
+#define __GFP_NOMEMALLOC ((__force gfp_t)___GFP_NOMEMALLOC)
+#define __GFP_NOACCOUNT ((__force gfp_t)___GFP_NOACCOUNT)
+
+/*
+ * Reclaim modifiers
+ *
+ * __GFP_IO can start physical IO.
+ *
+ * __GFP_FS can call down to the low-level FS. Clearing the flag avoids the
+ * allocator recursing into the filesystem which might already be holding
+ * locks.
+ *
+ * __GFP_DIRECT_RECLAIM indicates that the caller may enter direct reclaim.
+ * This flag can be cleared to avoid unnecessary delays when a fallback
+ * option is available.
+ *
+ * __GFP_KSWAPD_RECLAIM indicates that the caller wants to wake kswapd when
+ * the low watermark is reached and have it reclaim pages until the high
+ * watermark is reached. A caller may wish to clear this flag when fallback
+ * options are available and the reclaim is likely to disrupt the system. The
+ * canonical example is THP allocation where a fallback is cheap but
+ * reclaim/compaction may cause indirect stalls.
+ *
+ * __GFP_RECLAIM is shorthand to allow/forbid both direct and kswapd reclaim.
*
* __GFP_REPEAT: Try hard to allocate the memory, but the allocation attempt
- * _might_ fail. This depends upon the particular VM implementation.
+ * _might_ fail. This depends upon the particular VM implementation.
*
* __GFP_NOFAIL: The VM implementation _must_ retry infinitely: the caller
- * cannot handle allocation failures. New users should be evaluated carefully
- * (and the flag should be used only when there is no reasonable failure policy)
- * but it is definitely preferable to use the flag rather than opencode endless
- * loop around allocator.
+ * cannot handle allocation failures. New users should be evaluated carefully
+ * (and the flag should be used only when there is no reasonable failure
+ * policy) but it is definitely preferable to use the flag rather than
+ * opencode endless loop around allocator.
*
* __GFP_NORETRY: The VM implementation must not retry indefinitely and will
- * return NULL when direct reclaim and memory compaction have failed to allow
- * the allocation to succeed. The OOM killer is not called with the current
- * implementation.
- *
- * __GFP_MOVABLE: Flag that this page will be movable by the page migration
- * mechanism or reclaimed
+ * return NULL when direct reclaim and memory compaction have failed to allow
+ * the allocation to succeed. The OOM killer is not called with the current
+ * implementation.
*/
-#define __GFP_WAIT ((__force gfp_t)___GFP_WAIT) /* Can wait and reschedule? */
-#define __GFP_HIGH ((__force gfp_t)___GFP_HIGH) /* Should access emergency pools? */
-#define __GFP_IO ((__force gfp_t)___GFP_IO) /* Can start physical IO? */
-#define __GFP_FS ((__force gfp_t)___GFP_FS) /* Can call down to low-level FS? */
-#define __GFP_COLD ((__force gfp_t)___GFP_COLD) /* Cache-cold page required */
-#define __GFP_NOWARN ((__force gfp_t)___GFP_NOWARN) /* Suppress page allocation failure warning */
-#define __GFP_REPEAT ((__force gfp_t)___GFP_REPEAT) /* See above */
-#define __GFP_NOFAIL ((__force gfp_t)___GFP_NOFAIL) /* See above */
-#define __GFP_NORETRY ((__force gfp_t)___GFP_NORETRY) /* See above */
-#define __GFP_MEMALLOC ((__force gfp_t)___GFP_MEMALLOC)/* Allow access to emergency reserves */
-#define __GFP_COMP ((__force gfp_t)___GFP_COMP) /* Add compound page metadata */
-#define __GFP_ZERO ((__force gfp_t)___GFP_ZERO) /* Return zeroed page on success */
-#define __GFP_NOMEMALLOC ((__force gfp_t)___GFP_NOMEMALLOC) /* Don't use emergency reserves.
- * This takes precedence over the
- * __GFP_MEMALLOC flag if both are
- * set
- */
-#define __GFP_HARDWALL ((__force gfp_t)___GFP_HARDWALL) /* Enforce hardwall cpuset memory allocs */
-#define __GFP_THISNODE ((__force gfp_t)___GFP_THISNODE)/* No fallback, no policies */
-#define __GFP_RECLAIMABLE ((__force gfp_t)___GFP_RECLAIMABLE) /* Page is reclaimable */
-#define __GFP_NOACCOUNT ((__force gfp_t)___GFP_NOACCOUNT) /* Don't account to kmemcg */
-#define __GFP_NOTRACK ((__force gfp_t)___GFP_NOTRACK) /* Don't track with kmemcheck */
-
-#define __GFP_NO_KSWAPD ((__force gfp_t)___GFP_NO_KSWAPD)
-#define __GFP_OTHER_NODE ((__force gfp_t)___GFP_OTHER_NODE) /* On behalf of other node */
-#define __GFP_WRITE ((__force gfp_t)___GFP_WRITE) /* Allocator intends to dirty page */
+#define __GFP_IO ((__force gfp_t)___GFP_IO)
+#define __GFP_FS ((__force gfp_t)___GFP_FS)
+#define __GFP_DIRECT_RECLAIM ((__force gfp_t)___GFP_DIRECT_RECLAIM) /* Caller can reclaim */
+#define __GFP_KSWAPD_RECLAIM ((__force gfp_t)___GFP_KSWAPD_RECLAIM) /* kswapd can wake */
+#define __GFP_RECLAIM ((__force gfp_t)(___GFP_DIRECT_RECLAIM|___GFP_KSWAPD_RECLAIM))
+#define __GFP_REPEAT ((__force gfp_t)___GFP_REPEAT)
+#define __GFP_NOFAIL ((__force gfp_t)___GFP_NOFAIL)
+#define __GFP_NORETRY ((__force gfp_t)___GFP_NORETRY)
/*
- * This may seem redundant, but it's a way of annotating false positives vs.
- * allocations that simply cannot be supported (e.g. page tables).
+ * Action modifiers
+ *
+ * __GFP_COLD indicates that the caller does not expect to be used in the near
+ * future. Where possible, a cache-cold page will be returned.
+ *
+ * __GFP_NOWARN suppresses allocation failure reports.
+ *
+ * __GFP_COMP address compound page metadata.
+ *
+ * __GFP_ZERO returns a zeroed page on success.
+ *
+ * __GFP_NOTRACK avoids tracking with kmemcheck.
+ *
+ * __GFP_NOTRACK_FALSE_POSITIVE is an alias of __GFP_NOTRACK. It's a means of
+ * distinguishing in the source between false positives and allocations that
+ * cannot be supported (e.g. page tables).
+ *
+ * __GFP_OTHER_NODE is for allocations that are on a remote node but that
+ * should not be accounted for as a remote allocation in vmstat. A
+ * typical user would be khugepaged collapsing a huge page on a remote
+ * node.
*/
+#define __GFP_COLD ((__force gfp_t)___GFP_COLD)
+#define __GFP_NOWARN ((__force gfp_t)___GFP_NOWARN)
+#define __GFP_COMP ((__force gfp_t)___GFP_COMP)
+#define __GFP_ZERO ((__force gfp_t)___GFP_ZERO)
+#define __GFP_NOTRACK ((__force gfp_t)___GFP_NOTRACK)
#define __GFP_NOTRACK_FALSE_POSITIVE (__GFP_NOTRACK)
+#define __GFP_OTHER_NODE ((__force gfp_t)___GFP_OTHER_NODE)
-#define __GFP_BITS_SHIFT 25 /* Room for N __GFP_FOO bits */
+/* Room for N __GFP_FOO bits */
+#define __GFP_BITS_SHIFT 26
#define __GFP_BITS_MASK ((__force gfp_t)((1 << __GFP_BITS_SHIFT) - 1))
-/* This equals 0, but use constants in case they ever change */
-#define GFP_NOWAIT (GFP_ATOMIC & ~__GFP_HIGH)
-/* GFP_ATOMIC means both !wait (__GFP_WAIT not set) and use emergency pool */
-#define GFP_ATOMIC (__GFP_HIGH)
-#define GFP_NOIO (__GFP_WAIT)
-#define GFP_NOFS (__GFP_WAIT | __GFP_IO)
-#define GFP_KERNEL (__GFP_WAIT | __GFP_IO | __GFP_FS)
-#define GFP_TEMPORARY (__GFP_WAIT | __GFP_IO | __GFP_FS | \
+/*
+ * Useful GFP flag combinations that are commonly used. It is recommended
+ * that subsystems start with one of these combinations and then set/clear
+ * __GFP_FOO flags as necessary.
+ *
+ * GFP_ATOMIC users can not sleep and need the allocation to succeed. A lower
+ * watermark is applied to allow access to "atomic reserves"
+ *
+ * GFP_KERNEL is typical for kernel-internal allocations. The caller requires
+ * ZONE_NORMAL or a lower zone for direct access but can direct reclaim.
+ *
+ * GFP_NOWAIT is for kernel allocations that should not stall for direct
+ * reclaim, start physical IO or use any filesystem callback.
+ *
+ * GFP_NOIO will use direct reclaim to discard clean pages or slab pages
+ * that do not require the starting of any physical IO.
+ *
+ * GFP_NOFS will use direct reclaim but will not use any filesystem interfaces.
+ *
+ * GFP_USER is for userspace allocations that also need to be directly
+ * accessibly by the kernel or hardware. It is typically used by hardware
+ * for buffers that are mapped to userspace (e.g. graphics) that hardware
+ * still must DMA to. cpuset limits are enforced for these allocations.
+ *
+ * GFP_DMA exists for historical reasons and should be avoided where possible.
+ * The flags indicates that the caller requires that the lowest zone be
+ * used (ZONE_DMA or 16M on x86-64). Ideally, this would be removed but
+ * it would require careful auditing as some users really require it and
+ * others use the flag to avoid lowmem reserves in ZONE_DMA and treat the
+ * lowest zone as a type of emergency reserve.
+ *
+ * GFP_DMA32 is similar to GFP_DMA except that the caller requires a 32-bit
+ * address.
+ *
+ * GFP_HIGHUSER is for userspace allocations that may be mapped to userspace,
+ * do not need to be directly accessible by the kernel but that cannot
+ * move once in use. An example may be a hardware allocation that maps
+ * data directly into userspace but has no addressing limitations.
+ *
+ * GFP_HIGHUSER_MOVABLE is for userspace allocations that the kernel does not
+ * need direct access to but can use kmap() when access is required. They
+ * are expected to be movable via page reclaim or page migration. Typically,
+ * pages on the LRU would also be allocated with GFP_HIGHUSER_MOVABLE.
+ *
+ * GFP_TRANSHUGE is used for THP allocations. They are compound allocations
+ * that will fail quickly if memory is not available and will not wake
+ * kswapd on failure.
+ */
+#define GFP_ATOMIC (__GFP_HIGH|__GFP_ATOMIC|__GFP_KSWAPD_RECLAIM)
+#define GFP_KERNEL (__GFP_RECLAIM | __GFP_IO | __GFP_FS)
+#define GFP_NOWAIT (__GFP_KSWAPD_RECLAIM)
+#define GFP_NOIO (__GFP_RECLAIM)
+#define GFP_NOFS (__GFP_RECLAIM | __GFP_IO)
+#define GFP_TEMPORARY (__GFP_RECLAIM | __GFP_IO | __GFP_FS | \
__GFP_RECLAIMABLE)
-#define GFP_USER (__GFP_WAIT | __GFP_IO | __GFP_FS | __GFP_HARDWALL)
+#define GFP_USER (__GFP_RECLAIM | __GFP_IO | __GFP_FS | __GFP_HARDWALL)
+#define GFP_DMA __GFP_DMA
+#define GFP_DMA32 __GFP_DMA32
#define GFP_HIGHUSER (GFP_USER | __GFP_HIGHMEM)
#define GFP_HIGHUSER_MOVABLE (GFP_HIGHUSER | __GFP_MOVABLE)
-#define GFP_IOFS (__GFP_IO | __GFP_FS)
-#define GFP_TRANSHUGE (GFP_HIGHUSER_MOVABLE | __GFP_COMP | \
- __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN | \
- __GFP_NO_KSWAPD)
+#define GFP_TRANSHUGE ((GFP_HIGHUSER_MOVABLE | __GFP_COMP | \
+ __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN) & \
+ ~__GFP_KSWAPD_RECLAIM)
-/* This mask makes up all the page movable related flags */
+/* Convert GFP flags to their corresponding migrate type */
#define GFP_MOVABLE_MASK (__GFP_RECLAIMABLE|__GFP_MOVABLE)
+#define GFP_MOVABLE_SHIFT 3
-/* Control page allocator reclaim behavior */
-#define GFP_RECLAIM_MASK (__GFP_WAIT|__GFP_HIGH|__GFP_IO|__GFP_FS|\
- __GFP_NOWARN|__GFP_REPEAT|__GFP_NOFAIL|\
- __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC)
-
-/* Control slab gfp mask during early boot */
-#define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_WAIT|__GFP_IO|__GFP_FS))
-
-/* Control allocation constraints */
-#define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
-
-/* Do not use these with a slab allocator */
-#define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
-
-/* Flag - indicates that the buffer will be suitable for DMA. Ignored on some
- platforms, used as appropriate on others */
-
-#define GFP_DMA __GFP_DMA
-
-/* 4GB DMA on some platforms */
-#define GFP_DMA32 __GFP_DMA32
-
-/* Convert GFP flags to their corresponding migrate type */
static inline int gfpflags_to_migratetype(const gfp_t gfp_flags)
{
- WARN_ON((gfp_flags & GFP_MOVABLE_MASK) == GFP_MOVABLE_MASK);
+ VM_WARN_ON((gfp_flags & GFP_MOVABLE_MASK) == GFP_MOVABLE_MASK);
+ BUILD_BUG_ON((1UL << GFP_MOVABLE_SHIFT) != ___GFP_MOVABLE);
+ BUILD_BUG_ON((___GFP_MOVABLE >> GFP_MOVABLE_SHIFT) != MIGRATE_MOVABLE);
if (unlikely(page_group_by_mobility_disabled))
return MIGRATE_UNMOVABLE;
/* Group based on mobility */
- return (((gfp_flags & __GFP_MOVABLE) != 0) << 1) |
- ((gfp_flags & __GFP_RECLAIMABLE) != 0);
+ return (gfp_flags & GFP_MOVABLE_MASK) >> GFP_MOVABLE_SHIFT;
+}
+#undef GFP_MOVABLE_MASK
+#undef GFP_MOVABLE_SHIFT
+
+static inline bool gfpflags_allow_blocking(const gfp_t gfp_flags)
+{
+ return gfp_flags & __GFP_DIRECT_RECLAIM;
}
#ifdef CONFIG_HIGHMEM
diff --git a/include/linux/hugetlb_cgroup.h b/include/linux/hugetlb_cgroup.h
index 7edd30515298..24154c26d469 100644
--- a/include/linux/hugetlb_cgroup.h
+++ b/include/linux/hugetlb_cgroup.h
@@ -32,7 +32,7 @@ static inline struct hugetlb_cgroup *hugetlb_cgroup_from_page(struct page *page)
if (compound_order(page) < HUGETLB_CGROUP_MIN_ORDER)
return NULL;
- return (struct hugetlb_cgroup *)page[2].lru.next;
+ return (struct hugetlb_cgroup *)page[2].private;
}
static inline
@@ -42,7 +42,7 @@ int set_hugetlb_cgroup(struct page *page, struct hugetlb_cgroup *h_cg)
if (compound_order(page) < HUGETLB_CGROUP_MIN_ORDER)
return -1;
- page[2].lru.next = (void *)h_cg;
+ page[2].private = (unsigned long)h_cg;
return 0;
}
diff --git a/include/linux/kernel.h b/include/linux/kernel.h
index 5582410727cb..2c13f747ac2e 100644
--- a/include/linux/kernel.h
+++ b/include/linux/kernel.h
@@ -413,6 +413,8 @@ extern __printf(2, 3)
char *kasprintf(gfp_t gfp, const char *fmt, ...);
extern __printf(2, 0)
char *kvasprintf(gfp_t gfp, const char *fmt, va_list args);
+extern __printf(2, 0)
+const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args);
extern __scanf(2, 3)
int sscanf(const char *, const char *, ...);
diff --git a/include/linux/mm.h b/include/linux/mm.h
index 906c46a05707..00bad7793788 100644
--- a/include/linux/mm.h
+++ b/include/linux/mm.h
@@ -430,46 +430,6 @@ static inline void compound_unlock_irqrestore(struct page *page,
#endif
}
-static inline struct page *compound_head_by_tail(struct page *tail)
-{
- struct page *head = tail->first_page;
-
- /*
- * page->first_page may be a dangling pointer to an old
- * compound page, so recheck that it is still a tail
- * page before returning.
- */
- smp_rmb();
- if (likely(PageTail(tail)))
- return head;
- return tail;
-}
-
-/*
- * Since either compound page could be dismantled asynchronously in THP
- * or we access asynchronously arbitrary positioned struct page, there
- * would be tail flag race. To handle this race, we should call
- * smp_rmb() before checking tail flag. compound_head_by_tail() did it.
- */
-static inline struct page *compound_head(struct page *page)
-{
- if (unlikely(PageTail(page)))
- return compound_head_by_tail(page);
- return page;
-}
-
-/*
- * If we access compound page synchronously such as access to
- * allocated page, there is no need to handle tail flag race, so we can
- * check tail flag directly without any synchronization primitive.
- */
-static inline struct page *compound_head_fast(struct page *page)
-{
- if (unlikely(PageTail(page)))
- return page->first_page;
- return page;
-}
-
/*
* The atomic page->_mapcount, starts from -1: so that transitions
* both from it and to it can be tracked, using atomic_inc_and_test
@@ -518,7 +478,7 @@ static inline void get_huge_page_tail(struct page *page)
VM_BUG_ON_PAGE(!PageTail(page), page);
VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
- if (compound_tail_refcounted(page->first_page))
+ if (compound_tail_refcounted(compound_head(page)))
atomic_inc(&page->_mapcount);
}
@@ -541,13 +501,7 @@ static inline struct page *virt_to_head_page(const void *x)
{
struct page *page = virt_to_page(x);
- /*
- * We don't need to worry about synchronization of tail flag
- * when we call virt_to_head_page() since it is only called for
- * already allocated page and this page won't be freed until
- * this virt_to_head_page() is finished. So use _fast variant.
- */
- return compound_head_fast(page);
+ return compound_head(page);
}
/*
@@ -568,28 +522,42 @@ int split_free_page(struct page *page);
/*
* Compound pages have a destructor function. Provide a
* prototype for that function and accessor functions.
- * These are _only_ valid on the head of a PG_compound page.
+ * These are _only_ valid on the head of a compound page.
*/
+typedef void compound_page_dtor(struct page *);
+
+/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
+enum compound_dtor_id {
+ NULL_COMPOUND_DTOR,
+ COMPOUND_PAGE_DTOR,
+#ifdef CONFIG_HUGETLB_PAGE
+ HUGETLB_PAGE_DTOR,
+#endif
+ NR_COMPOUND_DTORS,
+};
+extern compound_page_dtor * const compound_page_dtors[];
static inline void set_compound_page_dtor(struct page *page,
- compound_page_dtor *dtor)
+ enum compound_dtor_id compound_dtor)
{
- page[1].compound_dtor = dtor;
+ VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
+ page[1].compound_dtor = compound_dtor;
}
static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
{
- return page[1].compound_dtor;
+ VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
+ return compound_page_dtors[page[1].compound_dtor];
}
-static inline int compound_order(struct page *page)
+static inline unsigned int compound_order(struct page *page)
{
if (!PageHead(page))
return 0;
return page[1].compound_order;
}
-static inline void set_compound_order(struct page *page, unsigned long order)
+static inline void set_compound_order(struct page *page, unsigned int order)
{
page[1].compound_order = order;
}
@@ -1572,8 +1540,7 @@ static inline bool ptlock_init(struct page *page)
* with 0. Make sure nobody took it in use in between.
*
* It can happen if arch try to use slab for page table allocation:
- * slab code uses page->slab_cache and page->first_page (for tail
- * pages), which share storage with page->ptl.
+ * slab code uses page->slab_cache, which share storage with page->ptl.
*/
VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
if (!ptlock_alloc(page))
@@ -1843,7 +1810,8 @@ extern void si_meminfo(struct sysinfo * val);
extern void si_meminfo_node(struct sysinfo *val, int nid);
extern __printf(3, 4)
-void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
+void warn_alloc_failed(gfp_t gfp_mask, unsigned int order,
+ const char *fmt, ...);
extern void setup_per_cpu_pageset(void);
diff --git a/include/linux/mm_types.h b/include/linux/mm_types.h
index 0a85da25a822..f8d1492a114f 100644
--- a/include/linux/mm_types.h
+++ b/include/linux/mm_types.h
@@ -28,8 +28,6 @@ struct mem_cgroup;
IS_ENABLED(CONFIG_ARCH_ENABLE_SPLIT_PMD_PTLOCK))
#define ALLOC_SPLIT_PTLOCKS (SPINLOCK_SIZE > BITS_PER_LONG/8)
-typedef void compound_page_dtor(struct page *);
-
/*
* Each physical page in the system has a struct page associated with
* it to keep track of whatever it is we are using the page for at the
@@ -113,7 +111,13 @@ struct page {
};
};
- /* Third double word block */
+ /*
+ * Third double word block
+ *
+ * WARNING: bit 0 of the first word encode PageTail(). That means
+ * the rest users of the storage space MUST NOT use the bit to
+ * avoid collision and false-positive PageTail().
+ */
union {
struct list_head lru; /* Pageout list, eg. active_list
* protected by zone->lru_lock !
@@ -131,18 +135,37 @@ struct page {
#endif
};
- struct slab *slab_page; /* slab fields */
struct rcu_head rcu_head; /* Used by SLAB
* when destroying via RCU
*/
- /* First tail page of compound page */
+ /* Tail pages of compound page */
struct {
- compound_page_dtor *compound_dtor;
- unsigned long compound_order;
+ unsigned long compound_head; /* If bit zero is set */
+
+ /* First tail page only */
+#ifdef CONFIG_64BIT
+ /*
+ * On 64 bit system we have enough space in struct page
+ * to encode compound_dtor and compound_order with
+ * unsigned int. It can help compiler generate better or
+ * smaller code on some archtectures.
+ */
+ unsigned int compound_dtor;
+ unsigned int compound_order;
+#else
+ unsigned short int compound_dtor;
+ unsigned short int compound_order;
+#endif
};
#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && USE_SPLIT_PMD_PTLOCKS
- pgtable_t pmd_huge_pte; /* protected by page->ptl */
+ struct {
+ unsigned long __pad; /* do not overlay pmd_huge_pte
+ * with compound_head to avoid
+ * possible bit 0 collision.
+ */
+ pgtable_t pmd_huge_pte; /* protected by page->ptl */
+ };
#endif
};
@@ -163,7 +186,6 @@ struct page {
#endif
#endif
struct kmem_cache *slab_cache; /* SL[AU]B: Pointer to slab */
- struct page *first_page; /* Compound tail pages */
};
#ifdef CONFIG_MEMCG
diff --git a/include/linux/mmzone.h b/include/linux/mmzone.h
index 2d7e660cdefe..e23a9e704536 100644
--- a/include/linux/mmzone.h
+++ b/include/linux/mmzone.h
@@ -37,10 +37,10 @@
enum {
MIGRATE_UNMOVABLE,
- MIGRATE_RECLAIMABLE,
MIGRATE_MOVABLE,
+ MIGRATE_RECLAIMABLE,
MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
- MIGRATE_RESERVE = MIGRATE_PCPTYPES,
+ MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
#ifdef CONFIG_CMA
/*
* MIGRATE_CMA migration type is designed to mimic the way
@@ -334,13 +334,16 @@ struct zone {
/* zone watermarks, access with *_wmark_pages(zone) macros */
unsigned long watermark[NR_WMARK];
+ unsigned long nr_reserved_highatomic;
+
/*
- * We don't know if the memory that we're going to allocate will be freeable
- * or/and it will be released eventually, so to avoid totally wasting several
- * GB of ram we must reserve some of the lower zone memory (otherwise we risk
- * to run OOM on the lower zones despite there's tons of freeable ram
- * on the higher zones). This array is recalculated at runtime if the
- * sysctl_lowmem_reserve_ratio sysctl changes.
+ * We don't know if the memory that we're going to allocate will be
+ * freeable or/and it will be released eventually, so to avoid totally
+ * wasting several GB of ram we must reserve some of the lower zone
+ * memory (otherwise we risk to run OOM on the lower zones despite
+ * there being tons of freeable ram on the higher zones). This array is
+ * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
+ * changes.
*/
long lowmem_reserve[MAX_NR_ZONES];
@@ -429,12 +432,6 @@ struct zone {
const char *name;
- /*
- * Number of MIGRATE_RESERVE page block. To maintain for just
- * optimization. Protected by zone->lock.
- */
- int nr_migrate_reserve_block;
-
#ifdef CONFIG_MEMORY_ISOLATION
/*
* Number of isolated pageblock. It is used to solve incorrect
@@ -589,75 +586,8 @@ static inline bool zone_is_empty(struct zone *zone)
* [1] : No fallback (__GFP_THISNODE)
*/
#define MAX_ZONELISTS 2
-
-
-/*
- * We cache key information from each zonelist for smaller cache
- * footprint when scanning for free pages in get_page_from_freelist().
- *
- * 1) The BITMAP fullzones tracks which zones in a zonelist have come
- * up short of free memory since the last time (last_fullzone_zap)
- * we zero'd fullzones.
- * 2) The array z_to_n[] maps each zone in the zonelist to its node
- * id, so that we can efficiently evaluate whether that node is
- * set in the current tasks mems_allowed.
- *
- * Both fullzones and z_to_n[] are one-to-one with the zonelist,
- * indexed by a zones offset in the zonelist zones[] array.
- *
- * The get_page_from_freelist() routine does two scans. During the
- * first scan, we skip zones whose corresponding bit in 'fullzones'
- * is set or whose corresponding node in current->mems_allowed (which
- * comes from cpusets) is not set. During the second scan, we bypass
- * this zonelist_cache, to ensure we look methodically at each zone.
- *
- * Once per second, we zero out (zap) fullzones, forcing us to
- * reconsider nodes that might have regained more free memory.
- * The field last_full_zap is the time we last zapped fullzones.
- *
- * This mechanism reduces the amount of time we waste repeatedly
- * reexaming zones for free memory when they just came up low on
- * memory momentarilly ago.
- *
- * The zonelist_cache struct members logically belong in struct
- * zonelist. However, the mempolicy zonelists constructed for
- * MPOL_BIND are intentionally variable length (and usually much
- * shorter). A general purpose mechanism for handling structs with
- * multiple variable length members is more mechanism than we want
- * here. We resort to some special case hackery instead.
- *
- * The MPOL_BIND zonelists don't need this zonelist_cache (in good
- * part because they are shorter), so we put the fixed length stuff
- * at the front of the zonelist struct, ending in a variable length
- * zones[], as is needed by MPOL_BIND.
- *
- * Then we put the optional zonelist cache on the end of the zonelist
- * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
- * the fixed length portion at the front of the struct. This pointer
- * both enables us to find the zonelist cache, and in the case of
- * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
- * to know that the zonelist cache is not there.
- *
- * The end result is that struct zonelists come in two flavors:
- * 1) The full, fixed length version, shown below, and
- * 2) The custom zonelists for MPOL_BIND.
- * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
- *
- * Even though there may be multiple CPU cores on a node modifying
- * fullzones or last_full_zap in the same zonelist_cache at the same
- * time, we don't lock it. This is just hint data - if it is wrong now
- * and then, the allocator will still function, perhaps a bit slower.
- */
-
-
-struct zonelist_cache {
- unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
- DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
- unsigned long last_full_zap; /* when last zap'd (jiffies) */
-};
#else
#define MAX_ZONELISTS 1
-struct zonelist_cache;
#endif
/*
@@ -675,9 +605,6 @@ struct zoneref {
* allocation, the other zones are fallback zones, in decreasing
* priority.
*
- * If zlcache_ptr is not NULL, then it is just the address of zlcache,
- * as explained above. If zlcache_ptr is NULL, there is no zlcache.
- * *
* To speed the reading of the zonelist, the zonerefs contain the zone index
* of the entry being read. Helper functions to access information given
* a struct zoneref are
@@ -687,11 +614,7 @@ struct zoneref {
* zonelist_node_idx() - Return the index of the node for an entry
*/
struct zonelist {
- struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
-#ifdef CONFIG_NUMA
- struct zonelist_cache zlcache; // optional ...
-#endif
};
#ifndef CONFIG_DISCONTIGMEM
@@ -817,7 +740,7 @@ void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
bool zone_watermark_ok(struct zone *z, unsigned int order,
unsigned long mark, int classzone_idx, int alloc_flags);
bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
- unsigned long mark, int classzone_idx, int alloc_flags);
+ unsigned long mark, int classzone_idx);
enum memmap_context {
MEMMAP_EARLY,
MEMMAP_HOTPLUG,
diff --git a/include/linux/moduleparam.h b/include/linux/moduleparam.h
index c12f2147c350..52666d90ca94 100644
--- a/include/linux/moduleparam.h
+++ b/include/linux/moduleparam.h
@@ -386,6 +386,7 @@ extern int param_get_ullong(char *buffer, const struct kernel_param *kp);
extern const struct kernel_param_ops param_ops_charp;
extern int param_set_charp(const char *val, const struct kernel_param *kp);
extern int param_get_charp(char *buffer, const struct kernel_param *kp);
+extern void param_free_charp(void *arg);
#define param_check_charp(name, p) __param_check(name, p, char *)
/* We used to allow int as well as bool. We're taking that away! */
diff --git a/include/linux/page-flags.h b/include/linux/page-flags.h
index a525e5067484..bb53c7b86315 100644
--- a/include/linux/page-flags.h
+++ b/include/linux/page-flags.h
@@ -86,12 +86,7 @@ enum pageflags {
PG_private, /* If pagecache, has fs-private data */
PG_private_2, /* If pagecache, has fs aux data */
PG_writeback, /* Page is under writeback */
-#ifdef CONFIG_PAGEFLAGS_EXTENDED
PG_head, /* A head page */
- PG_tail, /* A tail page */
-#else
- PG_compound, /* A compound page */
-#endif
PG_swapcache, /* Swap page: swp_entry_t in private */
PG_mappedtodisk, /* Has blocks allocated on-disk */
PG_reclaim, /* To be reclaimed asap */
@@ -398,85 +393,46 @@ static inline void set_page_writeback_keepwrite(struct page *page)
test_set_page_writeback_keepwrite(page);
}
-#ifdef CONFIG_PAGEFLAGS_EXTENDED
-/*
- * System with lots of page flags available. This allows separate
- * flags for PageHead() and PageTail() checks of compound pages so that bit
- * tests can be used in performance sensitive paths. PageCompound is
- * generally not used in hot code paths except arch/powerpc/mm/init_64.c
- * and arch/powerpc/kvm/book3s_64_vio_hv.c which use it to detect huge pages
- * and avoid handling those in real mode.
- */
__PAGEFLAG(Head, head) CLEARPAGEFLAG(Head, head)
-__PAGEFLAG(Tail, tail)
-static inline int PageCompound(struct page *page)
-{
- return page->flags & ((1L << PG_head) | (1L << PG_tail));
-
-}
-#ifdef CONFIG_TRANSPARENT_HUGEPAGE
-static inline void ClearPageCompound(struct page *page)
+static inline int PageTail(struct page *page)
{
- BUG_ON(!PageHead(page));
- ClearPageHead(page);
+ return READ_ONCE(page->compound_head) & 1;
}
-#endif
-
-#define PG_head_mask ((1L << PG_head))
-#else
-/*
- * Reduce page flag use as much as possible by overlapping
- * compound page flags with the flags used for page cache pages. Possible
- * because PageCompound is always set for compound pages and not for
- * pages on the LRU and/or pagecache.
- */
-TESTPAGEFLAG(Compound, compound)
-__SETPAGEFLAG(Head, compound) __CLEARPAGEFLAG(Head, compound)
-
-/*
- * PG_reclaim is used in combination with PG_compound to mark the
- * head and tail of a compound page. This saves one page flag
- * but makes it impossible to use compound pages for the page cache.
- * The PG_reclaim bit would have to be used for reclaim or readahead
- * if compound pages enter the page cache.
- *
- * PG_compound & PG_reclaim => Tail page
- * PG_compound & ~PG_reclaim => Head page
- */
-#define PG_head_mask ((1L << PG_compound))
-#define PG_head_tail_mask ((1L << PG_compound) | (1L << PG_reclaim))
-
-static inline int PageHead(struct page *page)
+static inline void set_compound_head(struct page *page, struct page *head)
{
- return ((page->flags & PG_head_tail_mask) == PG_head_mask);
+ WRITE_ONCE(page->compound_head, (unsigned long)head + 1);
}
-static inline int PageTail(struct page *page)
+static inline void clear_compound_head(struct page *page)
{
- return ((page->flags & PG_head_tail_mask) == PG_head_tail_mask);
+ WRITE_ONCE(page->compound_head, 0);
}
-static inline void __SetPageTail(struct page *page)
+static inline struct page *compound_head(struct page *page)
{
- page->flags |= PG_head_tail_mask;
+ unsigned long head = READ_ONCE(page->compound_head);
+
+ if (unlikely(head & 1))
+ return (struct page *) (head - 1);
+ return page;
}
-static inline void __ClearPageTail(struct page *page)
+static inline int PageCompound(struct page *page)
{
- page->flags &= ~PG_head_tail_mask;
-}
+ return PageHead(page) || PageTail(page);
+}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static inline void ClearPageCompound(struct page *page)
{
- BUG_ON((page->flags & PG_head_tail_mask) != (1 << PG_compound));
- clear_bit(PG_compound, &page->flags);
+ BUG_ON(!PageHead(page));
+ ClearPageHead(page);
}
#endif
-#endif /* !PAGEFLAGS_EXTENDED */
+#define PG_head_mask ((1L << PG_head))
#ifdef CONFIG_HUGETLB_PAGE
int PageHuge(struct page *page);
diff --git a/include/linux/pageblock-flags.h b/include/linux/pageblock-flags.h
index 2baeee12f48e..e942558b3585 100644
--- a/include/linux/pageblock-flags.h
+++ b/include/linux/pageblock-flags.h
@@ -44,7 +44,7 @@ enum pageblock_bits {
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
/* Huge page sizes are variable */
-extern int pageblock_order;
+extern unsigned int pageblock_order;
#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
diff --git a/include/linux/pagemap.h b/include/linux/pagemap.h
index a6c78e00ea96..26eabf5ec718 100644
--- a/include/linux/pagemap.h
+++ b/include/linux/pagemap.h
@@ -69,6 +69,13 @@ static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
return (__force gfp_t)mapping->flags & __GFP_BITS_MASK;
}
+/* Restricts the given gfp_mask to what the mapping allows. */
+static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
+ gfp_t gfp_mask)
+{
+ return mapping_gfp_mask(mapping) & gfp_mask;
+}
+
/*
* This is non-atomic. Only to be used before the mapping is activated.
* Probably needs a barrier...
diff --git a/include/linux/rbtree.h b/include/linux/rbtree.h
index 830c4992088d..a5aa7ae671f4 100644
--- a/include/linux/rbtree.h
+++ b/include/linux/rbtree.h
@@ -101,13 +101,21 @@ static inline void rb_link_node_rcu(struct rb_node *node, struct rb_node *parent
})
/**
- * rbtree_postorder_for_each_entry_safe - iterate over rb_root in post order of
- * given type safe against removal of rb_node entry
+ * rbtree_postorder_for_each_entry_safe - iterate in post-order over rb_root of
+ * given type allowing the backing memory of @pos to be invalidated
*
* @pos: the 'type *' to use as a loop cursor.
* @n: another 'type *' to use as temporary storage
* @root: 'rb_root *' of the rbtree.
* @field: the name of the rb_node field within 'type'.
+ *
+ * rbtree_postorder_for_each_entry_safe() provides a similar guarantee as
+ * list_for_each_entry_safe() and allows the iteration to continue independent
+ * of changes to @pos by the body of the loop.
+ *
+ * Note, however, that it cannot handle other modifications that re-order the
+ * rbtree it is iterating over. This includes calling rb_erase() on @pos, as
+ * rb_erase() may rebalance the tree, causing us to miss some nodes.
*/
#define rbtree_postorder_for_each_entry_safe(pos, n, root, field) \
for (pos = rb_entry_safe(rb_first_postorder(root), typeof(*pos), field); \
diff --git a/include/linux/sched.h b/include/linux/sched.h
index eeb5066a44fb..4069febaa34a 100644
--- a/include/linux/sched.h
+++ b/include/linux/sched.h
@@ -1570,9 +1570,7 @@ struct task_struct {
unsigned long sas_ss_sp;
size_t sas_ss_size;
- int (*notifier)(void *priv);
- void *notifier_data;
- sigset_t *notifier_mask;
+
struct callback_head *task_works;
struct audit_context *audit_context;
@@ -2464,21 +2462,29 @@ extern void ignore_signals(struct task_struct *);
extern void flush_signal_handlers(struct task_struct *, int force_default);
extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
-static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
+static inline int kernel_dequeue_signal(siginfo_t *info)
{
- unsigned long flags;
+ struct task_struct *tsk = current;
+ siginfo_t __info;
int ret;
- spin_lock_irqsave(&tsk->sighand->siglock, flags);
- ret = dequeue_signal(tsk, mask, info);
- spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
+ spin_lock_irq(&tsk->sighand->siglock);
+ ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info);
+ spin_unlock_irq(&tsk->sighand->siglock);
return ret;
}
-extern void block_all_signals(int (*notifier)(void *priv), void *priv,
- sigset_t *mask);
-extern void unblock_all_signals(void);
+static inline void kernel_signal_stop(void)
+{
+ spin_lock_irq(&current->sighand->siglock);
+ if (current->jobctl & JOBCTL_STOP_DEQUEUED)
+ __set_current_state(TASK_STOPPED);
+ spin_unlock_irq(&current->sighand->siglock);
+
+ schedule();
+}
+
extern void release_task(struct task_struct * p);
extern int send_sig_info(int, struct siginfo *, struct task_struct *);
extern int force_sigsegv(int, struct task_struct *);
diff --git a/include/linux/skbuff.h b/include/linux/skbuff.h
index 24f4dfd94c51..4355129fff91 100644
--- a/include/linux/skbuff.h
+++ b/include/linux/skbuff.h
@@ -1224,7 +1224,7 @@ static inline int skb_cloned(const struct sk_buff *skb)
static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
{
- might_sleep_if(pri & __GFP_WAIT);
+ might_sleep_if(gfpflags_allow_blocking(pri));
if (skb_cloned(skb))
return pskb_expand_head(skb, 0, 0, pri);
@@ -1308,7 +1308,7 @@ static inline int skb_shared(const struct sk_buff *skb)
*/
static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
{
- might_sleep_if(pri & __GFP_WAIT);
+ might_sleep_if(gfpflags_allow_blocking(pri));
if (skb_shared(skb)) {
struct sk_buff *nskb = skb_clone(skb, pri);
@@ -1344,7 +1344,7 @@ static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
gfp_t pri)
{
- might_sleep_if(pri & __GFP_WAIT);
+ might_sleep_if(gfpflags_allow_blocking(pri));
if (skb_cloned(skb)) {
struct sk_buff *nskb = skb_copy(skb, pri);
diff --git a/include/linux/zpool.h b/include/linux/zpool.h
index 42f8ec992452..2e97b7707dff 100644
--- a/include/linux/zpool.h
+++ b/include/linux/zpool.h
@@ -38,10 +38,10 @@ enum zpool_mapmode {
bool zpool_has_pool(char *type);
-struct zpool *zpool_create_pool(char *type, char *name,
+struct zpool *zpool_create_pool(const char *type, const char *name,
gfp_t gfp, const struct zpool_ops *ops);
-char *zpool_get_type(struct zpool *pool);
+const char *zpool_get_type(struct zpool *pool);
void zpool_destroy_pool(struct zpool *pool);
@@ -83,7 +83,9 @@ struct zpool_driver {
atomic_t refcount;
struct list_head list;
- void *(*create)(char *name, gfp_t gfp, const struct zpool_ops *ops,
+ void *(*create)(const char *name,
+ gfp_t gfp,
+ const struct zpool_ops *ops,
struct zpool *zpool);
void (*destroy)(void *pool);
diff --git a/include/linux/zsmalloc.h b/include/linux/zsmalloc.h
index 6398dfae53f1..34eb16098a33 100644
--- a/include/linux/zsmalloc.h
+++ b/include/linux/zsmalloc.h
@@ -41,7 +41,7 @@ struct zs_pool_stats {
struct zs_pool;
-struct zs_pool *zs_create_pool(char *name, gfp_t flags);
+struct zs_pool *zs_create_pool(const char *name, gfp_t flags);
void zs_destroy_pool(struct zs_pool *pool);
unsigned long zs_malloc(struct zs_pool *pool, size_t size);
diff --git a/include/linux/zutil.h b/include/linux/zutil.h
index 6adfa9a6ffe9..663689521759 100644
--- a/include/linux/zutil.h
+++ b/include/linux/zutil.h
@@ -68,10 +68,10 @@ typedef uLong (*check_func) (uLong check, const Byte *buf,
An Adler-32 checksum is almost as reliable as a CRC32 but can be computed
much faster. Usage example:
- uLong adler = adler32(0L, NULL, 0);
+ uLong adler = zlib_adler32(0L, NULL, 0);
while (read_buffer(buffer, length) != EOF) {
- adler = adler32(adler, buffer, length);
+ adler = zlib_adler32(adler, buffer, length);
}
if (adler != original_adler) error();
*/