diff options
author | Yuchung Cheng <ycheng@google.com> | 2016-09-19 23:39:14 -0400 |
---|---|---|
committer | David S. Miller <davem@davemloft.net> | 2016-09-21 00:23:00 -0400 |
commit | b9f64820fb226a4e8ab10591f46cecd91ca56b30 (patch) | |
tree | 0486be41c1a85db592e675a182fa99f71605e018 /include/linux/tcp.h | |
parent | 0682e6902a52aca7caf6ad42551b16ea0f87bc31 (diff) |
tcp: track data delivery rate for a TCP connection
This patch generates data delivery rate (throughput) samples on a
per-ACK basis. These rate samples can be used by congestion control
modules, and specifically will be used by TCP BBR in later patches in
this series.
Key state:
tp->delivered: Tracks the total number of data packets (original or not)
delivered so far. This is an already-existing field.
tp->delivered_mstamp: the last time tp->delivered was updated.
Algorithm:
A rate sample is calculated as (d1 - d0)/(t1 - t0) on a per-ACK basis:
d1: the current tp->delivered after processing the ACK
t1: the current time after processing the ACK
d0: the prior tp->delivered when the acked skb was transmitted
t0: the prior tp->delivered_mstamp when the acked skb was transmitted
When an skb is transmitted, we snapshot d0 and t0 in its control
block in tcp_rate_skb_sent().
When an ACK arrives, it may SACK and ACK some skbs. For each SACKed
or ACKed skb, tcp_rate_skb_delivered() updates the rate_sample struct
to reflect the latest (d0, t0).
Finally, tcp_rate_gen() generates a rate sample by storing
(d1 - d0) in rs->delivered and (t1 - t0) in rs->interval_us.
One caveat: if an skb was sent with no packets in flight, then
tp->delivered_mstamp may be either invalid (if the connection is
starting) or outdated (if the connection was idle). In that case,
we'll re-stamp tp->delivered_mstamp.
At first glance it seems t0 should always be the time when an skb was
transmitted, but actually this could over-estimate the rate due to
phase mismatch between transmit and ACK events. To track the delivery
rate, we ensure that if packets are in flight then t0 and and t1 are
times at which packets were marked delivered.
If the initial and final RTTs are different then one may be corrupted
by some sort of noise. The noise we see most often is sending gaps
caused by delayed, compressed, or stretched acks. This either affects
both RTTs equally or artificially reduces the final RTT. We approach
this by recording the info we need to compute the initial RTT
(duration of the "send phase" of the window) when we recorded the
associated inflight. Then, for a filter to avoid bandwidth
overestimates, we generalize the per-sample bandwidth computation
from:
bw = delivered / ack_phase_rtt
to the following:
bw = delivered / max(send_phase_rtt, ack_phase_rtt)
In large-scale experiments, this filtering approach incorporating
send_phase_rtt is effective at avoiding bandwidth overestimates due to
ACK compression or stretched ACKs.
Signed-off-by: Van Jacobson <vanj@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Nandita Dukkipati <nanditad@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Diffstat (limited to 'include/linux/tcp.h')
-rw-r--r-- | include/linux/tcp.h | 2 |
1 files changed, 2 insertions, 0 deletions
diff --git a/include/linux/tcp.h b/include/linux/tcp.h index 38590fbc0ac5..c50e6aec005a 100644 --- a/include/linux/tcp.h +++ b/include/linux/tcp.h @@ -268,6 +268,8 @@ struct tcp_sock { u32 prr_out; /* Total number of pkts sent during Recovery. */ u32 delivered; /* Total data packets delivered incl. rexmits */ u32 lost; /* Total data packets lost incl. rexmits */ + struct skb_mstamp first_tx_mstamp; /* start of window send phase */ + struct skb_mstamp delivered_mstamp; /* time we reached "delivered" */ u32 rcv_wnd; /* Current receiver window */ u32 write_seq; /* Tail(+1) of data held in tcp send buffer */ |