summaryrefslogtreecommitdiff
path: root/include/linux/sched
diff options
context:
space:
mode:
authorMel Gorman <mgorman@techsingularity.net>2022-02-08 09:43:34 +0000
committerPeter Zijlstra <peterz@infradead.org>2022-02-11 23:30:08 +0100
commite496132ebedd870b67f1f6d2428f9bb9d7ae27fd (patch)
treef97d5f64f5d6351fc178ac87c67d3df8f91db050 /include/linux/sched
parent2cfb7a1b031b0e816af7a6ee0c6ab83b0acdf05a (diff)
sched/fair: Adjust the allowed NUMA imbalance when SD_NUMA spans multiple LLCs
Commit 7d2b5dd0bcc4 ("sched/numa: Allow a floating imbalance between NUMA nodes") allowed an imbalance between NUMA nodes such that communicating tasks would not be pulled apart by the load balancer. This works fine when there is a 1:1 relationship between LLC and node but can be suboptimal for multiple LLCs if independent tasks prematurely use CPUs sharing cache. Zen* has multiple LLCs per node with local memory channels and due to the allowed imbalance, it's far harder to tune some workloads to run optimally than it is on hardware that has 1 LLC per node. This patch allows an imbalance to exist up to the point where LLCs should be balanced between nodes. On a Zen3 machine running STREAM parallelised with OMP to have on instance per LLC the results and without binding, the results are 5.17.0-rc0 5.17.0-rc0 vanilla sched-numaimb-v6 MB/sec copy-16 162596.94 ( 0.00%) 580559.74 ( 257.05%) MB/sec scale-16 136901.28 ( 0.00%) 374450.52 ( 173.52%) MB/sec add-16 157300.70 ( 0.00%) 564113.76 ( 258.62%) MB/sec triad-16 151446.88 ( 0.00%) 564304.24 ( 272.61%) STREAM can use directives to force the spread if the OpenMP is new enough but that doesn't help if an application uses threads and it's not known in advance how many threads will be created. Coremark is a CPU and cache intensive benchmark parallelised with threads. When running with 1 thread per core, the vanilla kernel allows threads to contend on cache. With the patch; 5.17.0-rc0 5.17.0-rc0 vanilla sched-numaimb-v5 Min Score-16 368239.36 ( 0.00%) 389816.06 ( 5.86%) Hmean Score-16 388607.33 ( 0.00%) 427877.08 * 10.11%* Max Score-16 408945.69 ( 0.00%) 481022.17 ( 17.62%) Stddev Score-16 15247.04 ( 0.00%) 24966.82 ( -63.75%) CoeffVar Score-16 3.92 ( 0.00%) 5.82 ( -48.48%) It can also make a big difference for semi-realistic workloads like specjbb which can execute arbitrary numbers of threads without advance knowledge of how they should be placed. Even in cases where the average performance is neutral, the results are more stable. 5.17.0-rc0 5.17.0-rc0 vanilla sched-numaimb-v6 Hmean tput-1 71631.55 ( 0.00%) 73065.57 ( 2.00%) Hmean tput-8 582758.78 ( 0.00%) 556777.23 ( -4.46%) Hmean tput-16 1020372.75 ( 0.00%) 1009995.26 ( -1.02%) Hmean tput-24 1416430.67 ( 0.00%) 1398700.11 ( -1.25%) Hmean tput-32 1687702.72 ( 0.00%) 1671357.04 ( -0.97%) Hmean tput-40 1798094.90 ( 0.00%) 2015616.46 * 12.10%* Hmean tput-48 1972731.77 ( 0.00%) 2333233.72 ( 18.27%) Hmean tput-56 2386872.38 ( 0.00%) 2759483.38 ( 15.61%) Hmean tput-64 2909475.33 ( 0.00%) 2925074.69 ( 0.54%) Hmean tput-72 2585071.36 ( 0.00%) 2962443.97 ( 14.60%) Hmean tput-80 2994387.24 ( 0.00%) 3015980.59 ( 0.72%) Hmean tput-88 3061408.57 ( 0.00%) 3010296.16 ( -1.67%) Hmean tput-96 3052394.82 ( 0.00%) 2784743.41 ( -8.77%) Hmean tput-104 2997814.76 ( 0.00%) 2758184.50 ( -7.99%) Hmean tput-112 2955353.29 ( 0.00%) 2859705.09 ( -3.24%) Hmean tput-120 2889770.71 ( 0.00%) 2764478.46 ( -4.34%) Hmean tput-128 2871713.84 ( 0.00%) 2750136.73 ( -4.23%) Stddev tput-1 5325.93 ( 0.00%) 2002.53 ( 62.40%) Stddev tput-8 6630.54 ( 0.00%) 10905.00 ( -64.47%) Stddev tput-16 25608.58 ( 0.00%) 6851.16 ( 73.25%) Stddev tput-24 12117.69 ( 0.00%) 4227.79 ( 65.11%) Stddev tput-32 27577.16 ( 0.00%) 8761.05 ( 68.23%) Stddev tput-40 59505.86 ( 0.00%) 2048.49 ( 96.56%) Stddev tput-48 168330.30 ( 0.00%) 93058.08 ( 44.72%) Stddev tput-56 219540.39 ( 0.00%) 30687.02 ( 86.02%) Stddev tput-64 121750.35 ( 0.00%) 9617.36 ( 92.10%) Stddev tput-72 223387.05 ( 0.00%) 34081.13 ( 84.74%) Stddev tput-80 128198.46 ( 0.00%) 22565.19 ( 82.40%) Stddev tput-88 136665.36 ( 0.00%) 27905.97 ( 79.58%) Stddev tput-96 111925.81 ( 0.00%) 99615.79 ( 11.00%) Stddev tput-104 146455.96 ( 0.00%) 28861.98 ( 80.29%) Stddev tput-112 88740.49 ( 0.00%) 58288.23 ( 34.32%) Stddev tput-120 186384.86 ( 0.00%) 45812.03 ( 75.42%) Stddev tput-128 78761.09 ( 0.00%) 57418.48 ( 27.10%) Similarly, for embarassingly parallel problems like NPB-ep, there are improvements due to better spreading across LLC when the machine is not fully utilised. vanilla sched-numaimb-v6 Min ep.D 31.79 ( 0.00%) 26.11 ( 17.87%) Amean ep.D 31.86 ( 0.00%) 26.17 * 17.86%* Stddev ep.D 0.07 ( 0.00%) 0.05 ( 24.41%) CoeffVar ep.D 0.22 ( 0.00%) 0.20 ( 7.97%) Max ep.D 31.93 ( 0.00%) 26.21 ( 17.91%) Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Gautham R. Shenoy <gautham.shenoy@amd.com> Tested-by: K Prateek Nayak <kprateek.nayak@amd.com> Link: https://lore.kernel.org/r/20220208094334.16379-3-mgorman@techsingularity.net
Diffstat (limited to 'include/linux/sched')
-rw-r--r--include/linux/sched/topology.h1
1 files changed, 1 insertions, 0 deletions
diff --git a/include/linux/sched/topology.h b/include/linux/sched/topology.h
index 8054641c0a7b..56cffe42abbc 100644
--- a/include/linux/sched/topology.h
+++ b/include/linux/sched/topology.h
@@ -93,6 +93,7 @@ struct sched_domain {
unsigned int busy_factor; /* less balancing by factor if busy */
unsigned int imbalance_pct; /* No balance until over watermark */
unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
+ unsigned int imb_numa_nr; /* Nr running tasks that allows a NUMA imbalance */
int nohz_idle; /* NOHZ IDLE status */
int flags; /* See SD_* */