diff options
author | Marco Elver <elver@google.com> | 2020-07-24 09:00:01 +0200 |
---|---|---|
committer | Paul E. McKenney <paulmck@kernel.org> | 2020-08-24 15:09:32 -0700 |
commit | 14e2ac8de0f91f12122a49f09897b0cd05256460 (patch) | |
tree | 938e24729e65eb3eed3403e7f084fbcfa8dbbcdc /include/linux/kcsan-checks.h | |
parent | f9ea63193135473ed6b6ff06f016eb6248100041 (diff) |
kcsan: Support compounded read-write instrumentation
Add support for compounded read-write instrumentation if supported by
the compiler. Adds the necessary instrumentation functions, and a new
type which is used to generate a more descriptive report.
Furthermore, such compounded memory access instrumentation is excluded
from the "assume aligned writes up to word size are atomic" rule,
because we cannot assume that the compiler emits code that is atomic for
compound ops.
LLVM/Clang added support for the feature in:
https://github.com/llvm/llvm-project/commit/785d41a261d136b64ab6c15c5d35f2adc5ad53e3
The new instrumentation is emitted for sets of memory accesses in the
same basic block to the same address with at least one read appearing
before a write. These typically result from compound operations such as
++, --, +=, -=, |=, &=, etc. but also equivalent forms such as "var =
var + 1". Where the compiler determines that it is equivalent to emit a
call to a single __tsan_read_write instead of separate __tsan_read and
__tsan_write, we can then benefit from improved performance and better
reporting for such access patterns.
The new reports now show that the ops are both reads and writes, for
example:
read-write to 0xffffffff90548a38 of 8 bytes by task 143 on cpu 3:
test_kernel_rmw_array+0x45/0xa0
access_thread+0x71/0xb0
kthread+0x21e/0x240
ret_from_fork+0x22/0x30
read-write to 0xffffffff90548a38 of 8 bytes by task 144 on cpu 2:
test_kernel_rmw_array+0x45/0xa0
access_thread+0x71/0xb0
kthread+0x21e/0x240
ret_from_fork+0x22/0x30
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Diffstat (limited to 'include/linux/kcsan-checks.h')
-rw-r--r-- | include/linux/kcsan-checks.h | 45 |
1 files changed, 30 insertions, 15 deletions
diff --git a/include/linux/kcsan-checks.h b/include/linux/kcsan-checks.h index c5f6c1dcf7e3..cf14840609ce 100644 --- a/include/linux/kcsan-checks.h +++ b/include/linux/kcsan-checks.h @@ -7,19 +7,13 @@ #include <linux/compiler_attributes.h> #include <linux/types.h> -/* - * ACCESS TYPE MODIFIERS - * - * <none>: normal read access; - * WRITE : write access; - * ATOMIC: access is atomic; - * ASSERT: access is not a regular access, but an assertion; - * SCOPED: access is a scoped access; - */ -#define KCSAN_ACCESS_WRITE 0x1 -#define KCSAN_ACCESS_ATOMIC 0x2 -#define KCSAN_ACCESS_ASSERT 0x4 -#define KCSAN_ACCESS_SCOPED 0x8 +/* Access types -- if KCSAN_ACCESS_WRITE is not set, the access is a read. */ +#define KCSAN_ACCESS_WRITE (1 << 0) /* Access is a write. */ +#define KCSAN_ACCESS_COMPOUND (1 << 1) /* Compounded read-write instrumentation. */ +#define KCSAN_ACCESS_ATOMIC (1 << 2) /* Access is atomic. */ +/* The following are special, and never due to compiler instrumentation. */ +#define KCSAN_ACCESS_ASSERT (1 << 3) /* Access is an assertion. */ +#define KCSAN_ACCESS_SCOPED (1 << 4) /* Access is a scoped access. */ /* * __kcsan_*: Always calls into the runtime when KCSAN is enabled. This may be used @@ -205,6 +199,15 @@ static inline void __kcsan_disable_current(void) { } __kcsan_check_access(ptr, size, KCSAN_ACCESS_WRITE) /** + * __kcsan_check_read_write - check regular read-write access for races + * + * @ptr: address of access + * @size: size of access + */ +#define __kcsan_check_read_write(ptr, size) \ + __kcsan_check_access(ptr, size, KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE) + +/** * kcsan_check_read - check regular read access for races * * @ptr: address of access @@ -221,18 +224,30 @@ static inline void __kcsan_disable_current(void) { } #define kcsan_check_write(ptr, size) \ kcsan_check_access(ptr, size, KCSAN_ACCESS_WRITE) +/** + * kcsan_check_read_write - check regular read-write access for races + * + * @ptr: address of access + * @size: size of access + */ +#define kcsan_check_read_write(ptr, size) \ + kcsan_check_access(ptr, size, KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE) + /* * Check for atomic accesses: if atomic accesses are not ignored, this simply * aliases to kcsan_check_access(), otherwise becomes a no-op. */ #ifdef CONFIG_KCSAN_IGNORE_ATOMICS -#define kcsan_check_atomic_read(...) do { } while (0) -#define kcsan_check_atomic_write(...) do { } while (0) +#define kcsan_check_atomic_read(...) do { } while (0) +#define kcsan_check_atomic_write(...) do { } while (0) +#define kcsan_check_atomic_read_write(...) do { } while (0) #else #define kcsan_check_atomic_read(ptr, size) \ kcsan_check_access(ptr, size, KCSAN_ACCESS_ATOMIC) #define kcsan_check_atomic_write(ptr, size) \ kcsan_check_access(ptr, size, KCSAN_ACCESS_ATOMIC | KCSAN_ACCESS_WRITE) +#define kcsan_check_atomic_read_write(ptr, size) \ + kcsan_check_access(ptr, size, KCSAN_ACCESS_ATOMIC | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_COMPOUND) #endif /** |