summaryrefslogtreecommitdiff
path: root/include/linux/gfp.h
diff options
context:
space:
mode:
authorDaniel Axtens <dja@axtens.net>2020-06-03 15:56:46 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2020-06-03 20:09:42 -0700
commit47227d27e2fcb01a9e8f5958d8997cf47a820afc (patch)
tree69c33bda1e21946cceb15604d55e4709212fc94e /include/linux/gfp.h
parentadb72ae1915db28f934e9e02c18bfcea2f3ed3b7 (diff)
string.h: fix incompatibility between FORTIFY_SOURCE and KASAN
The memcmp KASAN self-test fails on a kernel with both KASAN and FORTIFY_SOURCE. When FORTIFY_SOURCE is on, a number of functions are replaced with fortified versions, which attempt to check the sizes of the operands. However, these functions often directly invoke __builtin_foo() once they have performed the fortify check. Using __builtins may bypass KASAN checks if the compiler decides to inline it's own implementation as sequence of instructions, rather than emit a function call that goes out to a KASAN-instrumented implementation. Why is only memcmp affected? ============================ Of the string and string-like functions that kasan_test tests, only memcmp is replaced by an inline sequence of instructions in my testing on x86 with gcc version 9.2.1 20191008 (Ubuntu 9.2.1-9ubuntu2). I believe this is due to compiler heuristics. For example, if I annotate kmalloc calls with the alloc_size annotation (and disable some fortify compile-time checking!), the compiler will replace every memset except the one in kmalloc_uaf_memset with inline instructions. (I have some WIP patches to add this annotation.) Does this affect other functions in string.h? ============================================= Yes. Anything that uses __builtin_* rather than __real_* could be affected. This looks like: - strncpy - strcat - strlen - strlcpy maybe, under some circumstances? - strncat under some circumstances - memset - memcpy - memmove - memcmp (as noted) - memchr - strcpy Whether a function call is emitted always depends on the compiler. Most bugs should get caught by FORTIFY_SOURCE, but the missed memcmp test shows that this is not always the case. Isn't FORTIFY_SOURCE disabled with KASAN? ========================================- The string headers on all arches supporting KASAN disable fortify with kasan, but only when address sanitisation is _also_ disabled. For example from x86: #if defined(CONFIG_KASAN) && !defined(__SANITIZE_ADDRESS__) /* * For files that are not instrumented (e.g. mm/slub.c) we * should use not instrumented version of mem* functions. */ #define memcpy(dst, src, len) __memcpy(dst, src, len) #define memmove(dst, src, len) __memmove(dst, src, len) #define memset(s, c, n) __memset(s, c, n) #ifndef __NO_FORTIFY #define __NO_FORTIFY /* FORTIFY_SOURCE uses __builtin_memcpy, etc. */ #endif #endif This comes from commit 6974f0c4555e ("include/linux/string.h: add the option of fortified string.h functions"), and doesn't work when KASAN is enabled and the file is supposed to be sanitised - as with test_kasan.c I'm pretty sure this is not wrong, but not as expansive it should be: * we shouldn't use __builtin_memcpy etc in files where we don't have instrumentation - it could devolve into a function call to memcpy, which will be instrumented. Rather, we should use __memcpy which by convention is not instrumented. * we also shouldn't be using __builtin_memcpy when we have a KASAN instrumented file, because it could be replaced with inline asm that will not be instrumented. What is correct behaviour? ========================== Firstly, there is some overlap between fortification and KASAN: both provide some level of _runtime_ checking. Only fortify provides compile-time checking. KASAN and fortify can pick up different things at runtime: - Some fortify functions, notably the string functions, could easily be modified to consider sub-object sizes (e.g. members within a struct), and I have some WIP patches to do this. KASAN cannot detect these because it cannot insert poision between members of a struct. - KASAN can detect many over-reads/over-writes when the sizes of both operands are unknown, which fortify cannot. So there are a couple of options: 1) Flip the test: disable fortify in santised files and enable it in unsanitised files. This at least stops us missing KASAN checking, but we lose the fortify checking. 2) Make the fortify code always call out to real versions. Do this only for KASAN, for fear of losing the inlining opportunities we get from __builtin_*. (We can't use kasan_check_{read,write}: because the fortify functions are _extern inline_, you can't include _static_ inline functions without a compiler warning. kasan_check_{read,write} are static inline so we can't use them even when they would otherwise be suitable.) Take approach 2 and call out to real versions when KASAN is enabled. Use __underlying_foo to distinguish from __real_foo: __real_foo always refers to the kernel's implementation of foo, __underlying_foo could be either the kernel implementation or the __builtin_foo implementation. This is sometimes enough to make the memcmp test succeed with FORTIFY_SOURCE enabled. It is at least enough to get the function call into the module. One more fix is needed to make it reliable: see the next patch. Fixes: 6974f0c4555e ("include/linux/string.h: add the option of fortified string.h functions") Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: David Gow <davidgow@google.com> Reviewed-by: Dmitry Vyukov <dvyukov@google.com> Cc: Daniel Micay <danielmicay@gmail.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Alexander Potapenko <glider@google.com> Link: http://lkml.kernel.org/r/20200423154503.5103-3-dja@axtens.net Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'include/linux/gfp.h')
0 files changed, 0 insertions, 0 deletions