diff options
author | Dan Williams <dan.j.williams@intel.com> | 2018-03-09 17:44:31 -0800 |
---|---|---|
committer | Dan Williams <dan.j.williams@intel.com> | 2018-05-22 07:19:08 -0700 |
commit | 5fac7408d828719db6d3fdba63e3c3726a6d1ee5 (patch) | |
tree | 46d0b7891fa01a63292d9a2dd58012830160694d /include/linux/dax.h | |
parent | a9b6de77b1a3ff729f7bfc54b2e17711776a416c (diff) |
mm, fs, dax: handle layout changes to pinned dax mappings
Background:
get_user_pages() in the filesystem pins file backed memory pages for
access by devices performing dma. However, it only pins the memory pages
not the page-to-file offset association. If a file is truncated the
pages are mapped out of the file and dma may continue indefinitely into
a page that is owned by a device driver. This breaks coherency of the
file vs dma, but the assumption is that if userspace wants the
file-space truncated it does not matter what data is inbound from the
device, it is not relevant anymore. The only expectation is that dma can
safely continue while the filesystem reallocates the block(s).
Problem:
This expectation that dma can safely continue while the filesystem
changes the block map is broken by dax. With dax the target dma page
*is* the filesystem block. The model of leaving the page pinned for dma,
but truncating the file block out of the file, means that the filesytem
is free to reallocate a block under active dma to another file and now
the expected data-incoherency situation has turned into active
data-corruption.
Solution:
Defer all filesystem operations (fallocate(), truncate()) on a dax mode
file while any page/block in the file is under active dma. This solution
assumes that dma is transient. Cases where dma operations are known to
not be transient, like RDMA, have been explicitly disabled via
commits like 5f1d43de5416 "IB/core: disable memory registration of
filesystem-dax vmas".
The dax_layout_busy_page() routine is called by filesystems with a lock
held against mm faults (i_mmap_lock) to find pinned / busy dax pages.
The process of looking up a busy page invalidates all mappings
to trigger any subsequent get_user_pages() to block on i_mmap_lock.
The filesystem continues to call dax_layout_busy_page() until it finally
returns no more active pages. This approach assumes that the page
pinning is transient, if that assumption is violated the system would
have likely hung from the uncompleted I/O.
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: "Darrick J. Wong" <darrick.wong@oracle.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Reported-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Diffstat (limited to 'include/linux/dax.h')
-rw-r--r-- | include/linux/dax.h | 7 |
1 files changed, 7 insertions, 0 deletions
diff --git a/include/linux/dax.h b/include/linux/dax.h index f9eb22ad341e..25bab6abb695 100644 --- a/include/linux/dax.h +++ b/include/linux/dax.h @@ -83,6 +83,8 @@ static inline void fs_put_dax(struct dax_device *dax_dev) struct dax_device *fs_dax_get_by_bdev(struct block_device *bdev); int dax_writeback_mapping_range(struct address_space *mapping, struct block_device *bdev, struct writeback_control *wbc); + +struct page *dax_layout_busy_page(struct address_space *mapping); #else static inline int bdev_dax_supported(struct super_block *sb, int blocksize) { @@ -103,6 +105,11 @@ static inline struct dax_device *fs_dax_get_by_bdev(struct block_device *bdev) return NULL; } +static inline struct page *dax_layout_busy_page(struct address_space *mapping) +{ + return NULL; +} + static inline int dax_writeback_mapping_range(struct address_space *mapping, struct block_device *bdev, struct writeback_control *wbc) { |