diff options
author | David Vernet <void@manifault.com> | 2023-01-20 13:25:16 -0600 |
---|---|---|
committer | Alexei Starovoitov <ast@kernel.org> | 2023-01-24 20:15:13 -0800 |
commit | b613d335a743cf0e0ef0ccba9ad129904e2a26fb (patch) | |
tree | 5583ebfe507a4c728b764002b2defd61f39e7ce1 /include/linux/bpf.h | |
parent | 57539b1c0ac2dcccbe64a7675ff466be009c040f (diff) |
bpf: Allow trusted args to walk struct when checking BTF IDs
When validating BTF types for KF_TRUSTED_ARGS kfuncs, the verifier
currently enforces that the top-level type must match when calling
the kfunc. In other words, the verifier does not allow the BPF program
to pass a bitwise equivalent struct, despite it being allowed according
to the C standard.
For example, if you have the following type:
struct nf_conn___init {
struct nf_conn ct;
};
The C standard stipulates that it would be safe to pass a struct
nf_conn___init to a kfunc expecting a struct nf_conn. The verifier
currently disallows this, however, as semantically kfuncs may want to
enforce that structs that have equivalent types according to the C
standard, but have different BTF IDs, are not able to be passed to
kfuncs expecting one or the other. For example, struct nf_conn___init
may not be queried / looked up, as it is allocated but may not yet be
fully initialized.
On the other hand, being able to pass types that are equivalent
according to the C standard will be useful for other types of kfunc /
kptrs enabled by BPF. For example, in a follow-on patch, a series of
kfuncs will be added which allow programs to do bitwise queries on
cpumasks that are either allocated by the program (in which case they'll
be a 'struct bpf_cpumask' type that wraps a cpumask_t as its first
element), or a cpumask that was allocated by the main kernel (in which
case it will just be a straight cpumask_t, as in task->cpus_ptr).
Having the two types of cpumasks allows us to distinguish between the
two for when a cpumask is read-only vs. mutatable. A struct bpf_cpumask
can be mutated by e.g. bpf_cpumask_clear(), whereas a regular cpumask_t
cannot be. On the other hand, a struct bpf_cpumask can of course be
queried in the exact same manner as a cpumask_t, with e.g.
bpf_cpumask_test_cpu().
If we were to enforce that top level types match, then a user that's
passing a struct bpf_cpumask to a read-only cpumask_t argument would
have to cast with something like bpf_cast_to_kern_ctx() (which itself
would need to be updated to expect the alias, and currently it only
accommodates a single alias per prog type). Additionally, not specifying
KF_TRUSTED_ARGS is not an option, as some kfuncs take one argument as a
struct bpf_cpumask *, and another as a struct cpumask *
(i.e. cpumask_t).
In order to enable this, this patch relaxes the constraint that a
KF_TRUSTED_ARGS kfunc must have strict type matching, and instead only
enforces strict type matching if a type is observed to be a "no-cast
alias" (i.e., that the type names are equivalent, but one is suffixed
with ___init).
Additionally, in order to try and be conservative and match existing
behavior / expectations, this patch also enforces strict type checking
for acquire kfuncs. We were already enforcing it for release kfuncs, so
this should also improve the consistency of the semantics for kfuncs.
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230120192523.3650503-3-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Diffstat (limited to 'include/linux/bpf.h')
-rw-r--r-- | include/linux/bpf.h | 4 |
1 files changed, 4 insertions, 0 deletions
diff --git a/include/linux/bpf.h b/include/linux/bpf.h index 982213d97668..1bec48d9e5d9 100644 --- a/include/linux/bpf.h +++ b/include/linux/bpf.h @@ -2191,6 +2191,10 @@ bool btf_nested_type_is_trusted(struct bpf_verifier_log *log, const struct bpf_reg_state *reg, int off); +bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log, + const struct btf *reg_btf, u32 reg_id, + const struct btf *arg_btf, u32 arg_id); + int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, int relo_idx, void *insn); |