summaryrefslogtreecommitdiff
path: root/drivers/net/cxgb3/sge.c
diff options
context:
space:
mode:
authorJeff Kirsher <jeffrey.t.kirsher@intel.com>2011-04-07 06:57:17 -0700
committerJeff Kirsher <jeffrey.t.kirsher@intel.com>2011-08-10 19:54:52 -0700
commitf7917c009c28c941ba151ee66f04dc7f6a2e1e0b (patch)
tree91cd66b3b846b1113654de2ac31f085d0d7989ba /drivers/net/cxgb3/sge.c
parentadfc5217e9db68d3f0cec8dd847c1a6d3ab549ee (diff)
chelsio: Move the Chelsio drivers
Moves the drivers for the Chelsio chipsets into drivers/net/ethernet/chelsio/ and the necessary Kconfig and Makefile changes. CC: Divy Le Ray <divy@chelsio.com> CC: Dimitris Michailidis <dm@chelsio.com> CC: Casey Leedom <leedom@chelsio.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
Diffstat (limited to 'drivers/net/cxgb3/sge.c')
-rw-r--r--drivers/net/cxgb3/sge.c3303
1 files changed, 0 insertions, 3303 deletions
diff --git a/drivers/net/cxgb3/sge.c b/drivers/net/cxgb3/sge.c
deleted file mode 100644
index d6fa1777a343..000000000000
--- a/drivers/net/cxgb3/sge.c
+++ /dev/null
@@ -1,3303 +0,0 @@
-/*
- * Copyright (c) 2005-2008 Chelsio, Inc. All rights reserved.
- *
- * This software is available to you under a choice of one of two
- * licenses. You may choose to be licensed under the terms of the GNU
- * General Public License (GPL) Version 2, available from the file
- * COPYING in the main directory of this source tree, or the
- * OpenIB.org BSD license below:
- *
- * Redistribution and use in source and binary forms, with or
- * without modification, are permitted provided that the following
- * conditions are met:
- *
- * - Redistributions of source code must retain the above
- * copyright notice, this list of conditions and the following
- * disclaimer.
- *
- * - Redistributions in binary form must reproduce the above
- * copyright notice, this list of conditions and the following
- * disclaimer in the documentation and/or other materials
- * provided with the distribution.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
- * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
- * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
- * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
- * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
- * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
- * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-#include <linux/skbuff.h>
-#include <linux/netdevice.h>
-#include <linux/etherdevice.h>
-#include <linux/if_vlan.h>
-#include <linux/ip.h>
-#include <linux/tcp.h>
-#include <linux/dma-mapping.h>
-#include <linux/slab.h>
-#include <linux/prefetch.h>
-#include <net/arp.h>
-#include "common.h"
-#include "regs.h"
-#include "sge_defs.h"
-#include "t3_cpl.h"
-#include "firmware_exports.h"
-#include "cxgb3_offload.h"
-
-#define USE_GTS 0
-
-#define SGE_RX_SM_BUF_SIZE 1536
-
-#define SGE_RX_COPY_THRES 256
-#define SGE_RX_PULL_LEN 128
-
-#define SGE_PG_RSVD SMP_CACHE_BYTES
-/*
- * Page chunk size for FL0 buffers if FL0 is to be populated with page chunks.
- * It must be a divisor of PAGE_SIZE. If set to 0 FL0 will use sk_buffs
- * directly.
- */
-#define FL0_PG_CHUNK_SIZE 2048
-#define FL0_PG_ORDER 0
-#define FL0_PG_ALLOC_SIZE (PAGE_SIZE << FL0_PG_ORDER)
-#define FL1_PG_CHUNK_SIZE (PAGE_SIZE > 8192 ? 16384 : 8192)
-#define FL1_PG_ORDER (PAGE_SIZE > 8192 ? 0 : 1)
-#define FL1_PG_ALLOC_SIZE (PAGE_SIZE << FL1_PG_ORDER)
-
-#define SGE_RX_DROP_THRES 16
-#define RX_RECLAIM_PERIOD (HZ/4)
-
-/*
- * Max number of Rx buffers we replenish at a time.
- */
-#define MAX_RX_REFILL 16U
-/*
- * Period of the Tx buffer reclaim timer. This timer does not need to run
- * frequently as Tx buffers are usually reclaimed by new Tx packets.
- */
-#define TX_RECLAIM_PERIOD (HZ / 4)
-#define TX_RECLAIM_TIMER_CHUNK 64U
-#define TX_RECLAIM_CHUNK 16U
-
-/* WR size in bytes */
-#define WR_LEN (WR_FLITS * 8)
-
-/*
- * Types of Tx queues in each queue set. Order here matters, do not change.
- */
-enum { TXQ_ETH, TXQ_OFLD, TXQ_CTRL };
-
-/* Values for sge_txq.flags */
-enum {
- TXQ_RUNNING = 1 << 0, /* fetch engine is running */
- TXQ_LAST_PKT_DB = 1 << 1, /* last packet rang the doorbell */
-};
-
-struct tx_desc {
- __be64 flit[TX_DESC_FLITS];
-};
-
-struct rx_desc {
- __be32 addr_lo;
- __be32 len_gen;
- __be32 gen2;
- __be32 addr_hi;
-};
-
-struct tx_sw_desc { /* SW state per Tx descriptor */
- struct sk_buff *skb;
- u8 eop; /* set if last descriptor for packet */
- u8 addr_idx; /* buffer index of first SGL entry in descriptor */
- u8 fragidx; /* first page fragment associated with descriptor */
- s8 sflit; /* start flit of first SGL entry in descriptor */
-};
-
-struct rx_sw_desc { /* SW state per Rx descriptor */
- union {
- struct sk_buff *skb;
- struct fl_pg_chunk pg_chunk;
- };
- DEFINE_DMA_UNMAP_ADDR(dma_addr);
-};
-
-struct rsp_desc { /* response queue descriptor */
- struct rss_header rss_hdr;
- __be32 flags;
- __be32 len_cq;
- u8 imm_data[47];
- u8 intr_gen;
-};
-
-/*
- * Holds unmapping information for Tx packets that need deferred unmapping.
- * This structure lives at skb->head and must be allocated by callers.
- */
-struct deferred_unmap_info {
- struct pci_dev *pdev;
- dma_addr_t addr[MAX_SKB_FRAGS + 1];
-};
-
-/*
- * Maps a number of flits to the number of Tx descriptors that can hold them.
- * The formula is
- *
- * desc = 1 + (flits - 2) / (WR_FLITS - 1).
- *
- * HW allows up to 4 descriptors to be combined into a WR.
- */
-static u8 flit_desc_map[] = {
- 0,
-#if SGE_NUM_GENBITS == 1
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
- 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
- 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
-#elif SGE_NUM_GENBITS == 2
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
- 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
- 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
-#else
-# error "SGE_NUM_GENBITS must be 1 or 2"
-#endif
-};
-
-static inline struct sge_qset *fl_to_qset(const struct sge_fl *q, int qidx)
-{
- return container_of(q, struct sge_qset, fl[qidx]);
-}
-
-static inline struct sge_qset *rspq_to_qset(const struct sge_rspq *q)
-{
- return container_of(q, struct sge_qset, rspq);
-}
-
-static inline struct sge_qset *txq_to_qset(const struct sge_txq *q, int qidx)
-{
- return container_of(q, struct sge_qset, txq[qidx]);
-}
-
-/**
- * refill_rspq - replenish an SGE response queue
- * @adapter: the adapter
- * @q: the response queue to replenish
- * @credits: how many new responses to make available
- *
- * Replenishes a response queue by making the supplied number of responses
- * available to HW.
- */
-static inline void refill_rspq(struct adapter *adapter,
- const struct sge_rspq *q, unsigned int credits)
-{
- rmb();
- t3_write_reg(adapter, A_SG_RSPQ_CREDIT_RETURN,
- V_RSPQ(q->cntxt_id) | V_CREDITS(credits));
-}
-
-/**
- * need_skb_unmap - does the platform need unmapping of sk_buffs?
- *
- * Returns true if the platform needs sk_buff unmapping. The compiler
- * optimizes away unnecessary code if this returns true.
- */
-static inline int need_skb_unmap(void)
-{
-#ifdef CONFIG_NEED_DMA_MAP_STATE
- return 1;
-#else
- return 0;
-#endif
-}
-
-/**
- * unmap_skb - unmap a packet main body and its page fragments
- * @skb: the packet
- * @q: the Tx queue containing Tx descriptors for the packet
- * @cidx: index of Tx descriptor
- * @pdev: the PCI device
- *
- * Unmap the main body of an sk_buff and its page fragments, if any.
- * Because of the fairly complicated structure of our SGLs and the desire
- * to conserve space for metadata, the information necessary to unmap an
- * sk_buff is spread across the sk_buff itself (buffer lengths), the HW Tx
- * descriptors (the physical addresses of the various data buffers), and
- * the SW descriptor state (assorted indices). The send functions
- * initialize the indices for the first packet descriptor so we can unmap
- * the buffers held in the first Tx descriptor here, and we have enough
- * information at this point to set the state for the next Tx descriptor.
- *
- * Note that it is possible to clean up the first descriptor of a packet
- * before the send routines have written the next descriptors, but this
- * race does not cause any problem. We just end up writing the unmapping
- * info for the descriptor first.
- */
-static inline void unmap_skb(struct sk_buff *skb, struct sge_txq *q,
- unsigned int cidx, struct pci_dev *pdev)
-{
- const struct sg_ent *sgp;
- struct tx_sw_desc *d = &q->sdesc[cidx];
- int nfrags, frag_idx, curflit, j = d->addr_idx;
-
- sgp = (struct sg_ent *)&q->desc[cidx].flit[d->sflit];
- frag_idx = d->fragidx;
-
- if (frag_idx == 0 && skb_headlen(skb)) {
- pci_unmap_single(pdev, be64_to_cpu(sgp->addr[0]),
- skb_headlen(skb), PCI_DMA_TODEVICE);
- j = 1;
- }
-
- curflit = d->sflit + 1 + j;
- nfrags = skb_shinfo(skb)->nr_frags;
-
- while (frag_idx < nfrags && curflit < WR_FLITS) {
- pci_unmap_page(pdev, be64_to_cpu(sgp->addr[j]),
- skb_shinfo(skb)->frags[frag_idx].size,
- PCI_DMA_TODEVICE);
- j ^= 1;
- if (j == 0) {
- sgp++;
- curflit++;
- }
- curflit++;
- frag_idx++;
- }
-
- if (frag_idx < nfrags) { /* SGL continues into next Tx descriptor */
- d = cidx + 1 == q->size ? q->sdesc : d + 1;
- d->fragidx = frag_idx;
- d->addr_idx = j;
- d->sflit = curflit - WR_FLITS - j; /* sflit can be -1 */
- }
-}
-
-/**
- * free_tx_desc - reclaims Tx descriptors and their buffers
- * @adapter: the adapter
- * @q: the Tx queue to reclaim descriptors from
- * @n: the number of descriptors to reclaim
- *
- * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
- * Tx buffers. Called with the Tx queue lock held.
- */
-static void free_tx_desc(struct adapter *adapter, struct sge_txq *q,
- unsigned int n)
-{
- struct tx_sw_desc *d;
- struct pci_dev *pdev = adapter->pdev;
- unsigned int cidx = q->cidx;
-
- const int need_unmap = need_skb_unmap() &&
- q->cntxt_id >= FW_TUNNEL_SGEEC_START;
-
- d = &q->sdesc[cidx];
- while (n--) {
- if (d->skb) { /* an SGL is present */
- if (need_unmap)
- unmap_skb(d->skb, q, cidx, pdev);
- if (d->eop) {
- kfree_skb(d->skb);
- d->skb = NULL;
- }
- }
- ++d;
- if (++cidx == q->size) {
- cidx = 0;
- d = q->sdesc;
- }
- }
- q->cidx = cidx;
-}
-
-/**
- * reclaim_completed_tx - reclaims completed Tx descriptors
- * @adapter: the adapter
- * @q: the Tx queue to reclaim completed descriptors from
- * @chunk: maximum number of descriptors to reclaim
- *
- * Reclaims Tx descriptors that the SGE has indicated it has processed,
- * and frees the associated buffers if possible. Called with the Tx
- * queue's lock held.
- */
-static inline unsigned int reclaim_completed_tx(struct adapter *adapter,
- struct sge_txq *q,
- unsigned int chunk)
-{
- unsigned int reclaim = q->processed - q->cleaned;
-
- reclaim = min(chunk, reclaim);
- if (reclaim) {
- free_tx_desc(adapter, q, reclaim);
- q->cleaned += reclaim;
- q->in_use -= reclaim;
- }
- return q->processed - q->cleaned;
-}
-
-/**
- * should_restart_tx - are there enough resources to restart a Tx queue?
- * @q: the Tx queue
- *
- * Checks if there are enough descriptors to restart a suspended Tx queue.
- */
-static inline int should_restart_tx(const struct sge_txq *q)
-{
- unsigned int r = q->processed - q->cleaned;
-
- return q->in_use - r < (q->size >> 1);
-}
-
-static void clear_rx_desc(struct pci_dev *pdev, const struct sge_fl *q,
- struct rx_sw_desc *d)
-{
- if (q->use_pages && d->pg_chunk.page) {
- (*d->pg_chunk.p_cnt)--;
- if (!*d->pg_chunk.p_cnt)
- pci_unmap_page(pdev,
- d->pg_chunk.mapping,
- q->alloc_size, PCI_DMA_FROMDEVICE);
-
- put_page(d->pg_chunk.page);
- d->pg_chunk.page = NULL;
- } else {
- pci_unmap_single(pdev, dma_unmap_addr(d, dma_addr),
- q->buf_size, PCI_DMA_FROMDEVICE);
- kfree_skb(d->skb);
- d->skb = NULL;
- }
-}
-
-/**
- * free_rx_bufs - free the Rx buffers on an SGE free list
- * @pdev: the PCI device associated with the adapter
- * @rxq: the SGE free list to clean up
- *
- * Release the buffers on an SGE free-buffer Rx queue. HW fetching from
- * this queue should be stopped before calling this function.
- */
-static void free_rx_bufs(struct pci_dev *pdev, struct sge_fl *q)
-{
- unsigned int cidx = q->cidx;
-
- while (q->credits--) {
- struct rx_sw_desc *d = &q->sdesc[cidx];
-
-
- clear_rx_desc(pdev, q, d);
- if (++cidx == q->size)
- cidx = 0;
- }
-
- if (q->pg_chunk.page) {
- __free_pages(q->pg_chunk.page, q->order);
- q->pg_chunk.page = NULL;
- }
-}
-
-/**
- * add_one_rx_buf - add a packet buffer to a free-buffer list
- * @va: buffer start VA
- * @len: the buffer length
- * @d: the HW Rx descriptor to write
- * @sd: the SW Rx descriptor to write
- * @gen: the generation bit value
- * @pdev: the PCI device associated with the adapter
- *
- * Add a buffer of the given length to the supplied HW and SW Rx
- * descriptors.
- */
-static inline int add_one_rx_buf(void *va, unsigned int len,
- struct rx_desc *d, struct rx_sw_desc *sd,
- unsigned int gen, struct pci_dev *pdev)
-{
- dma_addr_t mapping;
-
- mapping = pci_map_single(pdev, va, len, PCI_DMA_FROMDEVICE);
- if (unlikely(pci_dma_mapping_error(pdev, mapping)))
- return -ENOMEM;
-
- dma_unmap_addr_set(sd, dma_addr, mapping);
-
- d->addr_lo = cpu_to_be32(mapping);
- d->addr_hi = cpu_to_be32((u64) mapping >> 32);
- wmb();
- d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
- d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
- return 0;
-}
-
-static inline int add_one_rx_chunk(dma_addr_t mapping, struct rx_desc *d,
- unsigned int gen)
-{
- d->addr_lo = cpu_to_be32(mapping);
- d->addr_hi = cpu_to_be32((u64) mapping >> 32);
- wmb();
- d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
- d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
- return 0;
-}
-
-static int alloc_pg_chunk(struct adapter *adapter, struct sge_fl *q,
- struct rx_sw_desc *sd, gfp_t gfp,
- unsigned int order)
-{
- if (!q->pg_chunk.page) {
- dma_addr_t mapping;
-
- q->pg_chunk.page = alloc_pages(gfp, order);
- if (unlikely(!q->pg_chunk.page))
- return -ENOMEM;
- q->pg_chunk.va = page_address(q->pg_chunk.page);
- q->pg_chunk.p_cnt = q->pg_chunk.va + (PAGE_SIZE << order) -
- SGE_PG_RSVD;
- q->pg_chunk.offset = 0;
- mapping = pci_map_page(adapter->pdev, q->pg_chunk.page,
- 0, q->alloc_size, PCI_DMA_FROMDEVICE);
- q->pg_chunk.mapping = mapping;
- }
- sd->pg_chunk = q->pg_chunk;
-
- prefetch(sd->pg_chunk.p_cnt);
-
- q->pg_chunk.offset += q->buf_size;
- if (q->pg_chunk.offset == (PAGE_SIZE << order))
- q->pg_chunk.page = NULL;
- else {
- q->pg_chunk.va += q->buf_size;
- get_page(q->pg_chunk.page);
- }
-
- if (sd->pg_chunk.offset == 0)
- *sd->pg_chunk.p_cnt = 1;
- else
- *sd->pg_chunk.p_cnt += 1;
-
- return 0;
-}
-
-static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
-{
- if (q->pend_cred >= q->credits / 4) {
- q->pend_cred = 0;
- wmb();
- t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
- }
-}
-
-/**
- * refill_fl - refill an SGE free-buffer list
- * @adapter: the adapter
- * @q: the free-list to refill
- * @n: the number of new buffers to allocate
- * @gfp: the gfp flags for allocating new buffers
- *
- * (Re)populate an SGE free-buffer list with up to @n new packet buffers,
- * allocated with the supplied gfp flags. The caller must assure that
- * @n does not exceed the queue's capacity.
- */
-static int refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp)
-{
- struct rx_sw_desc *sd = &q->sdesc[q->pidx];
- struct rx_desc *d = &q->desc[q->pidx];
- unsigned int count = 0;
-
- while (n--) {
- dma_addr_t mapping;
- int err;
-
- if (q->use_pages) {
- if (unlikely(alloc_pg_chunk(adap, q, sd, gfp,
- q->order))) {
-nomem: q->alloc_failed++;
- break;
- }
- mapping = sd->pg_chunk.mapping + sd->pg_chunk.offset;
- dma_unmap_addr_set(sd, dma_addr, mapping);
-
- add_one_rx_chunk(mapping, d, q->gen);
- pci_dma_sync_single_for_device(adap->pdev, mapping,
- q->buf_size - SGE_PG_RSVD,
- PCI_DMA_FROMDEVICE);
- } else {
- void *buf_start;
-
- struct sk_buff *skb = alloc_skb(q->buf_size, gfp);
- if (!skb)
- goto nomem;
-
- sd->skb = skb;
- buf_start = skb->data;
- err = add_one_rx_buf(buf_start, q->buf_size, d, sd,
- q->gen, adap->pdev);
- if (unlikely(err)) {
- clear_rx_desc(adap->pdev, q, sd);
- break;
- }
- }
-
- d++;
- sd++;
- if (++q->pidx == q->size) {
- q->pidx = 0;
- q->gen ^= 1;
- sd = q->sdesc;
- d = q->desc;
- }
- count++;
- }
-
- q->credits += count;
- q->pend_cred += count;
- ring_fl_db(adap, q);
-
- return count;
-}
-
-static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
-{
- refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits),
- GFP_ATOMIC | __GFP_COMP);
-}
-
-/**
- * recycle_rx_buf - recycle a receive buffer
- * @adapter: the adapter
- * @q: the SGE free list
- * @idx: index of buffer to recycle
- *
- * Recycles the specified buffer on the given free list by adding it at
- * the next available slot on the list.
- */
-static void recycle_rx_buf(struct adapter *adap, struct sge_fl *q,
- unsigned int idx)
-{
- struct rx_desc *from = &q->desc[idx];
- struct rx_desc *to = &q->desc[q->pidx];
-
- q->sdesc[q->pidx] = q->sdesc[idx];
- to->addr_lo = from->addr_lo; /* already big endian */
- to->addr_hi = from->addr_hi; /* likewise */
- wmb();
- to->len_gen = cpu_to_be32(V_FLD_GEN1(q->gen));
- to->gen2 = cpu_to_be32(V_FLD_GEN2(q->gen));
-
- if (++q->pidx == q->size) {
- q->pidx = 0;
- q->gen ^= 1;
- }
-
- q->credits++;
- q->pend_cred++;
- ring_fl_db(adap, q);
-}
-
-/**
- * alloc_ring - allocate resources for an SGE descriptor ring
- * @pdev: the PCI device
- * @nelem: the number of descriptors
- * @elem_size: the size of each descriptor
- * @sw_size: the size of the SW state associated with each ring element
- * @phys: the physical address of the allocated ring
- * @metadata: address of the array holding the SW state for the ring
- *
- * Allocates resources for an SGE descriptor ring, such as Tx queues,
- * free buffer lists, or response queues. Each SGE ring requires
- * space for its HW descriptors plus, optionally, space for the SW state
- * associated with each HW entry (the metadata). The function returns
- * three values: the virtual address for the HW ring (the return value
- * of the function), the physical address of the HW ring, and the address
- * of the SW ring.
- */
-static void *alloc_ring(struct pci_dev *pdev, size_t nelem, size_t elem_size,
- size_t sw_size, dma_addr_t * phys, void *metadata)
-{
- size_t len = nelem * elem_size;
- void *s = NULL;
- void *p = dma_alloc_coherent(&pdev->dev, len, phys, GFP_KERNEL);
-
- if (!p)
- return NULL;
- if (sw_size && metadata) {
- s = kcalloc(nelem, sw_size, GFP_KERNEL);
-
- if (!s) {
- dma_free_coherent(&pdev->dev, len, p, *phys);
- return NULL;
- }
- *(void **)metadata = s;
- }
- memset(p, 0, len);
- return p;
-}
-
-/**
- * t3_reset_qset - reset a sge qset
- * @q: the queue set
- *
- * Reset the qset structure.
- * the NAPI structure is preserved in the event of
- * the qset's reincarnation, for example during EEH recovery.
- */
-static void t3_reset_qset(struct sge_qset *q)
-{
- if (q->adap &&
- !(q->adap->flags & NAPI_INIT)) {
- memset(q, 0, sizeof(*q));
- return;
- }
-
- q->adap = NULL;
- memset(&q->rspq, 0, sizeof(q->rspq));
- memset(q->fl, 0, sizeof(struct sge_fl) * SGE_RXQ_PER_SET);
- memset(q->txq, 0, sizeof(struct sge_txq) * SGE_TXQ_PER_SET);
- q->txq_stopped = 0;
- q->tx_reclaim_timer.function = NULL; /* for t3_stop_sge_timers() */
- q->rx_reclaim_timer.function = NULL;
- q->nomem = 0;
- napi_free_frags(&q->napi);
-}
-
-
-/**
- * free_qset - free the resources of an SGE queue set
- * @adapter: the adapter owning the queue set
- * @q: the queue set
- *
- * Release the HW and SW resources associated with an SGE queue set, such
- * as HW contexts, packet buffers, and descriptor rings. Traffic to the
- * queue set must be quiesced prior to calling this.
- */
-static void t3_free_qset(struct adapter *adapter, struct sge_qset *q)
-{
- int i;
- struct pci_dev *pdev = adapter->pdev;
-
- for (i = 0; i < SGE_RXQ_PER_SET; ++i)
- if (q->fl[i].desc) {
- spin_lock_irq(&adapter->sge.reg_lock);
- t3_sge_disable_fl(adapter, q->fl[i].cntxt_id);
- spin_unlock_irq(&adapter->sge.reg_lock);
- free_rx_bufs(pdev, &q->fl[i]);
- kfree(q->fl[i].sdesc);
- dma_free_coherent(&pdev->dev,
- q->fl[i].size *
- sizeof(struct rx_desc), q->fl[i].desc,
- q->fl[i].phys_addr);
- }
-
- for (i = 0; i < SGE_TXQ_PER_SET; ++i)
- if (q->txq[i].desc) {
- spin_lock_irq(&adapter->sge.reg_lock);
- t3_sge_enable_ecntxt(adapter, q->txq[i].cntxt_id, 0);
- spin_unlock_irq(&adapter->sge.reg_lock);
- if (q->txq[i].sdesc) {
- free_tx_desc(adapter, &q->txq[i],
- q->txq[i].in_use);
- kfree(q->txq[i].sdesc);
- }
- dma_free_coherent(&pdev->dev,
- q->txq[i].size *
- sizeof(struct tx_desc),
- q->txq[i].desc, q->txq[i].phys_addr);
- __skb_queue_purge(&q->txq[i].sendq);
- }
-
- if (q->rspq.desc) {
- spin_lock_irq(&adapter->sge.reg_lock);
- t3_sge_disable_rspcntxt(adapter, q->rspq.cntxt_id);
- spin_unlock_irq(&adapter->sge.reg_lock);
- dma_free_coherent(&pdev->dev,
- q->rspq.size * sizeof(struct rsp_desc),
- q->rspq.desc, q->rspq.phys_addr);
- }
-
- t3_reset_qset(q);
-}
-
-/**
- * init_qset_cntxt - initialize an SGE queue set context info
- * @qs: the queue set
- * @id: the queue set id
- *
- * Initializes the TIDs and context ids for the queues of a queue set.
- */
-static void init_qset_cntxt(struct sge_qset *qs, unsigned int id)
-{
- qs->rspq.cntxt_id = id;
- qs->fl[0].cntxt_id = 2 * id;
- qs->fl[1].cntxt_id = 2 * id + 1;
- qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id;
- qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id;
- qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id;
- qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id;
- qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id;
-}
-
-/**
- * sgl_len - calculates the size of an SGL of the given capacity
- * @n: the number of SGL entries
- *
- * Calculates the number of flits needed for a scatter/gather list that
- * can hold the given number of entries.
- */
-static inline unsigned int sgl_len(unsigned int n)
-{
- /* alternatively: 3 * (n / 2) + 2 * (n & 1) */
- return (3 * n) / 2 + (n & 1);
-}
-
-/**
- * flits_to_desc - returns the num of Tx descriptors for the given flits
- * @n: the number of flits
- *
- * Calculates the number of Tx descriptors needed for the supplied number
- * of flits.
- */
-static inline unsigned int flits_to_desc(unsigned int n)
-{
- BUG_ON(n >= ARRAY_SIZE(flit_desc_map));
- return flit_desc_map[n];
-}
-
-/**
- * get_packet - return the next ingress packet buffer from a free list
- * @adap: the adapter that received the packet
- * @fl: the SGE free list holding the packet
- * @len: the packet length including any SGE padding
- * @drop_thres: # of remaining buffers before we start dropping packets
- *
- * Get the next packet from a free list and complete setup of the
- * sk_buff. If the packet is small we make a copy and recycle the
- * original buffer, otherwise we use the original buffer itself. If a
- * positive drop threshold is supplied packets are dropped and their
- * buffers recycled if (a) the number of remaining buffers is under the
- * threshold and the packet is too big to copy, or (b) the packet should
- * be copied but there is no memory for the copy.
- */
-static struct sk_buff *get_packet(struct adapter *adap, struct sge_fl *fl,
- unsigned int len, unsigned int drop_thres)
-{
- struct sk_buff *skb = NULL;
- struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
-
- prefetch(sd->skb->data);
- fl->credits--;
-
- if (len <= SGE_RX_COPY_THRES) {
- skb = alloc_skb(len, GFP_ATOMIC);
- if (likely(skb != NULL)) {
- __skb_put(skb, len);
- pci_dma_sync_single_for_cpu(adap->pdev,
- dma_unmap_addr(sd, dma_addr), len,
- PCI_DMA_FROMDEVICE);
- memcpy(skb->data, sd->skb->data, len);
- pci_dma_sync_single_for_device(adap->pdev,
- dma_unmap_addr(sd, dma_addr), len,
- PCI_DMA_FROMDEVICE);
- } else if (!drop_thres)
- goto use_orig_buf;
-recycle:
- recycle_rx_buf(adap, fl, fl->cidx);
- return skb;
- }
-
- if (unlikely(fl->credits < drop_thres) &&
- refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits - 1),
- GFP_ATOMIC | __GFP_COMP) == 0)
- goto recycle;
-
-use_orig_buf:
- pci_unmap_single(adap->pdev, dma_unmap_addr(sd, dma_addr),
- fl->buf_size, PCI_DMA_FROMDEVICE);
- skb = sd->skb;
- skb_put(skb, len);
- __refill_fl(adap, fl);
- return skb;
-}
-
-/**
- * get_packet_pg - return the next ingress packet buffer from a free list
- * @adap: the adapter that received the packet
- * @fl: the SGE free list holding the packet
- * @len: the packet length including any SGE padding
- * @drop_thres: # of remaining buffers before we start dropping packets
- *
- * Get the next packet from a free list populated with page chunks.
- * If the packet is small we make a copy and recycle the original buffer,
- * otherwise we attach the original buffer as a page fragment to a fresh
- * sk_buff. If a positive drop threshold is supplied packets are dropped
- * and their buffers recycled if (a) the number of remaining buffers is
- * under the threshold and the packet is too big to copy, or (b) there's
- * no system memory.
- *
- * Note: this function is similar to @get_packet but deals with Rx buffers
- * that are page chunks rather than sk_buffs.
- */
-static struct sk_buff *get_packet_pg(struct adapter *adap, struct sge_fl *fl,
- struct sge_rspq *q, unsigned int len,
- unsigned int drop_thres)
-{
- struct sk_buff *newskb, *skb;
- struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
-
- dma_addr_t dma_addr = dma_unmap_addr(sd, dma_addr);
-
- newskb = skb = q->pg_skb;
- if (!skb && (len <= SGE_RX_COPY_THRES)) {
- newskb = alloc_skb(len, GFP_ATOMIC);
- if (likely(newskb != NULL)) {
- __skb_put(newskb, len);
- pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len,
- PCI_DMA_FROMDEVICE);
- memcpy(newskb->data, sd->pg_chunk.va, len);
- pci_dma_sync_single_for_device(adap->pdev, dma_addr,
- len,
- PCI_DMA_FROMDEVICE);
- } else if (!drop_thres)
- return NULL;
-recycle:
- fl->credits--;
- recycle_rx_buf(adap, fl, fl->cidx);
- q->rx_recycle_buf++;
- return newskb;
- }
-
- if (unlikely(q->rx_recycle_buf || (!skb && fl->credits <= drop_thres)))
- goto recycle;
-
- prefetch(sd->pg_chunk.p_cnt);
-
- if (!skb)
- newskb = alloc_skb(SGE_RX_PULL_LEN, GFP_ATOMIC);
-
- if (unlikely(!newskb)) {
- if (!drop_thres)
- return NULL;
- goto recycle;
- }
-
- pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len,
- PCI_DMA_FROMDEVICE);
- (*sd->pg_chunk.p_cnt)--;
- if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page)
- pci_unmap_page(adap->pdev,
- sd->pg_chunk.mapping,
- fl->alloc_size,
- PCI_DMA_FROMDEVICE);
- if (!skb) {
- __skb_put(newskb, SGE_RX_PULL_LEN);
- memcpy(newskb->data, sd->pg_chunk.va, SGE_RX_PULL_LEN);
- skb_fill_page_desc(newskb, 0, sd->pg_chunk.page,
- sd->pg_chunk.offset + SGE_RX_PULL_LEN,
- len - SGE_RX_PULL_LEN);
- newskb->len = len;
- newskb->data_len = len - SGE_RX_PULL_LEN;
- newskb->truesize += newskb->data_len;
- } else {
- skb_fill_page_desc(newskb, skb_shinfo(newskb)->nr_frags,
- sd->pg_chunk.page,
- sd->pg_chunk.offset, len);
- newskb->len += len;
- newskb->data_len += len;
- newskb->truesize += len;
- }
-
- fl->credits--;
- /*
- * We do not refill FLs here, we let the caller do it to overlap a
- * prefetch.
- */
- return newskb;
-}
-
-/**
- * get_imm_packet - return the next ingress packet buffer from a response
- * @resp: the response descriptor containing the packet data
- *
- * Return a packet containing the immediate data of the given response.
- */
-static inline struct sk_buff *get_imm_packet(const struct rsp_desc *resp)
-{
- struct sk_buff *skb = alloc_skb(IMMED_PKT_SIZE, GFP_ATOMIC);
-
- if (skb) {
- __skb_put(skb, IMMED_PKT_SIZE);
- skb_copy_to_linear_data(skb, resp->imm_data, IMMED_PKT_SIZE);
- }
- return skb;
-}
-
-/**
- * calc_tx_descs - calculate the number of Tx descriptors for a packet
- * @skb: the packet
- *
- * Returns the number of Tx descriptors needed for the given Ethernet
- * packet. Ethernet packets require addition of WR and CPL headers.
- */
-static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
-{
- unsigned int flits;
-
- if (skb->len <= WR_LEN - sizeof(struct cpl_tx_pkt))
- return 1;
-
- flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 2;
- if (skb_shinfo(skb)->gso_size)
- flits++;
- return flits_to_desc(flits);
-}
-
-/**
- * make_sgl - populate a scatter/gather list for a packet
- * @skb: the packet
- * @sgp: the SGL to populate
- * @start: start address of skb main body data to include in the SGL
- * @len: length of skb main body data to include in the SGL
- * @pdev: the PCI device
- *
- * Generates a scatter/gather list for the buffers that make up a packet
- * and returns the SGL size in 8-byte words. The caller must size the SGL
- * appropriately.
- */
-static inline unsigned int make_sgl(const struct sk_buff *skb,
- struct sg_ent *sgp, unsigned char *start,
- unsigned int len, struct pci_dev *pdev)
-{
- dma_addr_t mapping;
- unsigned int i, j = 0, nfrags;
-
- if (len) {
- mapping = pci_map_single(pdev, start, len, PCI_DMA_TODEVICE);
- sgp->len[0] = cpu_to_be32(len);
- sgp->addr[0] = cpu_to_be64(mapping);
- j = 1;
- }
-
- nfrags = skb_shinfo(skb)->nr_frags;
- for (i = 0; i < nfrags; i++) {
- skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
-
- mapping = pci_map_page(pdev, frag->page, frag->page_offset,
- frag->size, PCI_DMA_TODEVICE);
- sgp->len[j] = cpu_to_be32(frag->size);
- sgp->addr[j] = cpu_to_be64(mapping);
- j ^= 1;
- if (j == 0)
- ++sgp;
- }
- if (j)
- sgp->len[j] = 0;
- return ((nfrags + (len != 0)) * 3) / 2 + j;
-}
-
-/**
- * check_ring_tx_db - check and potentially ring a Tx queue's doorbell
- * @adap: the adapter
- * @q: the Tx queue
- *
- * Ring the doorbel if a Tx queue is asleep. There is a natural race,
- * where the HW is going to sleep just after we checked, however,
- * then the interrupt handler will detect the outstanding TX packet
- * and ring the doorbell for us.
- *
- * When GTS is disabled we unconditionally ring the doorbell.
- */
-static inline void check_ring_tx_db(struct adapter *adap, struct sge_txq *q)
-{
-#if USE_GTS
- clear_bit(TXQ_LAST_PKT_DB, &q->flags);
- if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) {
- set_bit(TXQ_LAST_PKT_DB, &q->flags);
- t3_write_reg(adap, A_SG_KDOORBELL,
- F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
- }
-#else
- wmb(); /* write descriptors before telling HW */
- t3_write_reg(adap, A_SG_KDOORBELL,
- F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
-#endif
-}
-
-static inline void wr_gen2(struct tx_desc *d, unsigned int gen)
-{
-#if SGE_NUM_GENBITS == 2
- d->flit[TX_DESC_FLITS - 1] = cpu_to_be64(gen);
-#endif
-}
-
-/**
- * write_wr_hdr_sgl - write a WR header and, optionally, SGL
- * @ndesc: number of Tx descriptors spanned by the SGL
- * @skb: the packet corresponding to the WR
- * @d: first Tx descriptor to be written
- * @pidx: index of above descriptors
- * @q: the SGE Tx queue
- * @sgl: the SGL
- * @flits: number of flits to the start of the SGL in the first descriptor
- * @sgl_flits: the SGL size in flits
- * @gen: the Tx descriptor generation
- * @wr_hi: top 32 bits of WR header based on WR type (big endian)
- * @wr_lo: low 32 bits of WR header based on WR type (big endian)
- *
- * Write a work request header and an associated SGL. If the SGL is
- * small enough to fit into one Tx descriptor it has already been written
- * and we just need to write the WR header. Otherwise we distribute the
- * SGL across the number of descriptors it spans.
- */
-static void write_wr_hdr_sgl(unsigned int ndesc, struct sk_buff *skb,
- struct tx_desc *d, unsigned int pidx,
- const struct sge_txq *q,
- const struct sg_ent *sgl,
- unsigned int flits, unsigned int sgl_flits,
- unsigned int gen, __be32 wr_hi,
- __be32 wr_lo)
-{
- struct work_request_hdr *wrp = (struct work_request_hdr *)d;
- struct tx_sw_desc *sd = &q->sdesc[pidx];
-
- sd->skb = skb;
- if (need_skb_unmap()) {
- sd->fragidx = 0;
- sd->addr_idx = 0;
- sd->sflit = flits;
- }
-
- if (likely(ndesc == 1)) {
- sd->eop = 1;
- wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) |
- V_WR_SGLSFLT(flits)) | wr_hi;
- wmb();
- wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) |
- V_WR_GEN(gen)) | wr_lo;
- wr_gen2(d, gen);
- } else {
- unsigned int ogen = gen;
- const u64 *fp = (const u64 *)sgl;
- struct work_request_hdr *wp = wrp;
-
- wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) |
- V_WR_SGLSFLT(flits)) | wr_hi;
-
- while (sgl_flits) {
- unsigned int avail = WR_FLITS - flits;
-
- if (avail > sgl_flits)
- avail = sgl_flits;
- memcpy(&d->flit[flits], fp, avail * sizeof(*fp));
- sgl_flits -= avail;
- ndesc--;
- if (!sgl_flits)
- break;
-
- fp += avail;
- d++;
- sd->eop = 0;
- sd++;
- if (++pidx == q->size) {
- pidx = 0;
- gen ^= 1;
- d = q->desc;
- sd = q->sdesc;
- }
-
- sd->skb = skb;
- wrp = (struct work_request_hdr *)d;
- wrp->wr_hi = htonl(V_WR_DATATYPE(1) |
- V_WR_SGLSFLT(1)) | wr_hi;
- wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS,
- sgl_flits + 1)) |
- V_WR_GEN(gen)) | wr_lo;
- wr_gen2(d, gen);
- flits = 1;
- }
- sd->eop = 1;
- wrp->wr_hi |= htonl(F_WR_EOP);
- wmb();
- wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo;
- wr_gen2((struct tx_desc *)wp, ogen);
- WARN_ON(ndesc != 0);
- }
-}
-
-/**
- * write_tx_pkt_wr - write a TX_PKT work request
- * @adap: the adapter
- * @skb: the packet to send
- * @pi: the egress interface
- * @pidx: index of the first Tx descriptor to write
- * @gen: the generation value to use
- * @q: the Tx queue
- * @ndesc: number of descriptors the packet will occupy
- * @compl: the value of the COMPL bit to use
- *
- * Generate a TX_PKT work request to send the supplied packet.
- */
-static void write_tx_pkt_wr(struct adapter *adap, struct sk_buff *skb,
- const struct port_info *pi,
- unsigned int pidx, unsigned int gen,
- struct sge_txq *q, unsigned int ndesc,
- unsigned int compl)
-{
- unsigned int flits, sgl_flits, cntrl, tso_info;
- struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
- struct tx_desc *d = &q->desc[pidx];
- struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)d;
-
- cpl->len = htonl(skb->len);
- cntrl = V_TXPKT_INTF(pi->port_id);
-
- if (vlan_tx_tag_present(skb))
- cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(vlan_tx_tag_get(skb));
-
- tso_info = V_LSO_MSS(skb_shinfo(skb)->gso_size);
- if (tso_info) {
- int eth_type;
- struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)cpl;
-
- d->flit[2] = 0;
- cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO);
- hdr->cntrl = htonl(cntrl);
- eth_type = skb_network_offset(skb) == ETH_HLEN ?
- CPL_ETH_II : CPL_ETH_II_VLAN;
- tso_info |= V_LSO_ETH_TYPE(eth_type) |
- V_LSO_IPHDR_WORDS(ip_hdr(skb)->ihl) |
- V_LSO_TCPHDR_WORDS(tcp_hdr(skb)->doff);
- hdr->lso_info = htonl(tso_info);
- flits = 3;
- } else {
- cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT);
- cntrl |= F_TXPKT_IPCSUM_DIS; /* SW calculates IP csum */
- cntrl |= V_TXPKT_L4CSUM_DIS(skb->ip_summed != CHECKSUM_PARTIAL);
- cpl->cntrl = htonl(cntrl);
-
- if (skb->len <= WR_LEN - sizeof(*cpl)) {
- q->sdesc[pidx].skb = NULL;
- if (!skb->data_len)
- skb_copy_from_linear_data(skb, &d->flit[2],
- skb->len);
- else
- skb_copy_bits(skb, 0, &d->flit[2], skb->len);
-
- flits = (skb->len + 7) / 8 + 2;
- cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(skb->len & 7) |
- V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT)
- | F_WR_SOP | F_WR_EOP | compl);
- wmb();
- cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | V_WR_GEN(gen) |
- V_WR_TID(q->token));
- wr_gen2(d, gen);
- kfree_skb(skb);
- return;
- }
-
- flits = 2;
- }
-
- sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
- sgl_flits = make_sgl(skb, sgp, skb->data, skb_headlen(skb), adap->pdev);
-
- write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen,
- htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | compl),
- htonl(V_WR_TID(q->token)));
-}
-
-static inline void t3_stop_tx_queue(struct netdev_queue *txq,
- struct sge_qset *qs, struct sge_txq *q)
-{
- netif_tx_stop_queue(txq);
- set_bit(TXQ_ETH, &qs->txq_stopped);
- q->stops++;
-}
-
-/**
- * eth_xmit - add a packet to the Ethernet Tx queue
- * @skb: the packet
- * @dev: the egress net device
- *
- * Add a packet to an SGE Tx queue. Runs with softirqs disabled.
- */
-netdev_tx_t t3_eth_xmit(struct sk_buff *skb, struct net_device *dev)
-{
- int qidx;
- unsigned int ndesc, pidx, credits, gen, compl;
- const struct port_info *pi = netdev_priv(dev);
- struct adapter *adap = pi->adapter;
- struct netdev_queue *txq;
- struct sge_qset *qs;
- struct sge_txq *q;
-
- /*
- * The chip min packet length is 9 octets but play safe and reject
- * anything shorter than an Ethernet header.
- */
- if (unlikely(skb->len < ETH_HLEN)) {
- dev_kfree_skb(skb);
- return NETDEV_TX_OK;
- }
-
- qidx = skb_get_queue_mapping(skb);
- qs = &pi->qs[qidx];
- q = &qs->txq[TXQ_ETH];
- txq = netdev_get_tx_queue(dev, qidx);
-
- reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
-
- credits = q->size - q->in_use;
- ndesc = calc_tx_descs(skb);
-
- if (unlikely(credits < ndesc)) {
- t3_stop_tx_queue(txq, qs, q);
- dev_err(&adap->pdev->dev,
- "%s: Tx ring %u full while queue awake!\n",
- dev->name, q->cntxt_id & 7);
- return NETDEV_TX_BUSY;
- }
-
- q->in_use += ndesc;
- if (unlikely(credits - ndesc < q->stop_thres)) {
- t3_stop_tx_queue(txq, qs, q);
-
- if (should_restart_tx(q) &&
- test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
- q->restarts++;
- netif_tx_start_queue(txq);
- }
- }
-
- gen = q->gen;
- q->unacked += ndesc;
- compl = (q->unacked & 8) << (S_WR_COMPL - 3);
- q->unacked &= 7;
- pidx = q->pidx;
- q->pidx += ndesc;
- if (q->pidx >= q->size) {
- q->pidx -= q->size;
- q->gen ^= 1;
- }
-
- /* update port statistics */
- if (skb->ip_summed == CHECKSUM_COMPLETE)
- qs->port_stats[SGE_PSTAT_TX_CSUM]++;
- if (skb_shinfo(skb)->gso_size)
- qs->port_stats[SGE_PSTAT_TSO]++;
- if (vlan_tx_tag_present(skb))
- qs->port_stats[SGE_PSTAT_VLANINS]++;
-
- /*
- * We do not use Tx completion interrupts to free DMAd Tx packets.
- * This is good for performance but means that we rely on new Tx
- * packets arriving to run the destructors of completed packets,
- * which open up space in their sockets' send queues. Sometimes
- * we do not get such new packets causing Tx to stall. A single
- * UDP transmitter is a good example of this situation. We have
- * a clean up timer that periodically reclaims completed packets
- * but it doesn't run often enough (nor do we want it to) to prevent
- * lengthy stalls. A solution to this problem is to run the
- * destructor early, after the packet is queued but before it's DMAd.
- * A cons is that we lie to socket memory accounting, but the amount
- * of extra memory is reasonable (limited by the number of Tx
- * descriptors), the packets do actually get freed quickly by new
- * packets almost always, and for protocols like TCP that wait for
- * acks to really free up the data the extra memory is even less.
- * On the positive side we run the destructors on the sending CPU
- * rather than on a potentially different completing CPU, usually a
- * good thing. We also run them without holding our Tx queue lock,
- * unlike what reclaim_completed_tx() would otherwise do.
- *
- * Run the destructor before telling the DMA engine about the packet
- * to make sure it doesn't complete and get freed prematurely.
- */
- if (likely(!skb_shared(skb)))
- skb_orphan(skb);
-
- write_tx_pkt_wr(adap, skb, pi, pidx, gen, q, ndesc, compl);
- check_ring_tx_db(adap, q);
- return NETDEV_TX_OK;
-}
-
-/**
- * write_imm - write a packet into a Tx descriptor as immediate data
- * @d: the Tx descriptor to write
- * @skb: the packet
- * @len: the length of packet data to write as immediate data
- * @gen: the generation bit value to write
- *
- * Writes a packet as immediate data into a Tx descriptor. The packet
- * contains a work request at its beginning. We must write the packet
- * carefully so the SGE doesn't read it accidentally before it's written
- * in its entirety.
- */
-static inline void write_imm(struct tx_desc *d, struct sk_buff *skb,
- unsigned int len, unsigned int gen)
-{
- struct work_request_hdr *from = (struct work_request_hdr *)skb->data;
- struct work_request_hdr *to = (struct work_request_hdr *)d;
-
- if (likely(!skb->data_len))
- memcpy(&to[1], &from[1], len - sizeof(*from));
- else
- skb_copy_bits(skb, sizeof(*from), &to[1], len - sizeof(*from));
-
- to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP |
- V_WR_BCNTLFLT(len & 7));
- wmb();
- to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) |
- V_WR_LEN((len + 7) / 8));
- wr_gen2(d, gen);
- kfree_skb(skb);
-}
-
-/**
- * check_desc_avail - check descriptor availability on a send queue
- * @adap: the adapter
- * @q: the send queue
- * @skb: the packet needing the descriptors
- * @ndesc: the number of Tx descriptors needed
- * @qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL)
- *
- * Checks if the requested number of Tx descriptors is available on an
- * SGE send queue. If the queue is already suspended or not enough
- * descriptors are available the packet is queued for later transmission.
- * Must be called with the Tx queue locked.
- *
- * Returns 0 if enough descriptors are available, 1 if there aren't
- * enough descriptors and the packet has been queued, and 2 if the caller
- * needs to retry because there weren't enough descriptors at the
- * beginning of the call but some freed up in the mean time.
- */
-static inline int check_desc_avail(struct adapter *adap, struct sge_txq *q,
- struct sk_buff *skb, unsigned int ndesc,
- unsigned int qid)
-{
- if (unlikely(!skb_queue_empty(&q->sendq))) {
- addq_exit:__skb_queue_tail(&q->sendq, skb);
- return 1;
- }
- if (unlikely(q->size - q->in_use < ndesc)) {
- struct sge_qset *qs = txq_to_qset(q, qid);
-
- set_bit(qid, &qs->txq_stopped);
- smp_mb__after_clear_bit();
-
- if (should_restart_tx(q) &&
- test_and_clear_bit(qid, &qs->txq_stopped))
- return 2;
-
- q->stops++;
- goto addq_exit;
- }
- return 0;
-}
-
-/**
- * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
- * @q: the SGE control Tx queue
- *
- * This is a variant of reclaim_completed_tx() that is used for Tx queues
- * that send only immediate data (presently just the control queues) and
- * thus do not have any sk_buffs to release.
- */
-static inline void reclaim_completed_tx_imm(struct sge_txq *q)
-{
- unsigned int reclaim = q->processed - q->cleaned;
-
- q->in_use -= reclaim;
- q->cleaned += reclaim;
-}
-
-static inline int immediate(const struct sk_buff *skb)
-{
- return skb->len <= WR_LEN;
-}
-
-/**
- * ctrl_xmit - send a packet through an SGE control Tx queue
- * @adap: the adapter
- * @q: the control queue
- * @skb: the packet
- *
- * Send a packet through an SGE control Tx queue. Packets sent through
- * a control queue must fit entirely as immediate data in a single Tx
- * descriptor and have no page fragments.
- */
-static int ctrl_xmit(struct adapter *adap, struct sge_txq *q,
- struct sk_buff *skb)
-{
- int ret;
- struct work_request_hdr *wrp = (struct work_request_hdr *)skb->data;
-
- if (unlikely(!immediate(skb))) {
- WARN_ON(1);
- dev_kfree_skb(skb);
- return NET_XMIT_SUCCESS;
- }
-
- wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP);
- wrp->wr_lo = htonl(V_WR_TID(q->token));
-
- spin_lock(&q->lock);
- again:reclaim_completed_tx_imm(q);
-
- ret = check_desc_avail(adap, q, skb, 1, TXQ_CTRL);
- if (unlikely(ret)) {
- if (ret == 1) {
- spin_unlock(&q->lock);
- return NET_XMIT_CN;
- }
- goto again;
- }
-
- write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
-
- q->in_use++;
- if (++q->pidx >= q->size) {
- q->pidx = 0;
- q->gen ^= 1;
- }
- spin_unlock(&q->lock);
- wmb();
- t3_write_reg(adap, A_SG_KDOORBELL,
- F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
- return NET_XMIT_SUCCESS;
-}
-
-/**
- * restart_ctrlq - restart a suspended control queue
- * @qs: the queue set cotaining the control queue
- *
- * Resumes transmission on a suspended Tx control queue.
- */
-static void restart_ctrlq(unsigned long data)
-{
- struct sk_buff *skb;
- struct sge_qset *qs = (struct sge_qset *)data;
- struct sge_txq *q = &qs->txq[TXQ_CTRL];
-
- spin_lock(&q->lock);
- again:reclaim_completed_tx_imm(q);
-
- while (q->in_use < q->size &&
- (skb = __skb_dequeue(&q->sendq)) != NULL) {
-
- write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
-
- if (++q->pidx >= q->size) {
- q->pidx = 0;
- q->gen ^= 1;
- }
- q->in_use++;
- }
-
- if (!skb_queue_empty(&q->sendq)) {
- set_bit(TXQ_CTRL, &qs->txq_stopped);
- smp_mb__after_clear_bit();
-
- if (should_restart_tx(q) &&
- test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped))
- goto again;
- q->stops++;
- }
-
- spin_unlock(&q->lock);
- wmb();
- t3_write_reg(qs->adap, A_SG_KDOORBELL,
- F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
-}
-
-/*
- * Send a management message through control queue 0
- */
-int t3_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
-{
- int ret;
- local_bh_disable();
- ret = ctrl_xmit(adap, &adap->sge.qs[0].txq[TXQ_CTRL], skb);
- local_bh_enable();
-
- return ret;
-}
-
-/**
- * deferred_unmap_destructor - unmap a packet when it is freed
- * @skb: the packet
- *
- * This is the packet destructor used for Tx packets that need to remain
- * mapped until they are freed rather than until their Tx descriptors are
- * freed.
- */
-static void deferred_unmap_destructor(struct sk_buff *skb)
-{
- int i;
- const dma_addr_t *p;
- const struct skb_shared_info *si;
- const struct deferred_unmap_info *dui;
-
- dui = (struct deferred_unmap_info *)skb->head;
- p = dui->addr;
-
- if (skb->tail - skb->transport_header)
- pci_unmap_single(dui->pdev, *p++,
- skb->tail - skb->transport_header,
- PCI_DMA_TODEVICE);
-
- si = skb_shinfo(skb);
- for (i = 0; i < si->nr_frags; i++)
- pci_unmap_page(dui->pdev, *p++, si->frags[i].size,
- PCI_DMA_TODEVICE);
-}
-
-static void setup_deferred_unmapping(struct sk_buff *skb, struct pci_dev *pdev,
- const struct sg_ent *sgl, int sgl_flits)
-{
- dma_addr_t *p;
- struct deferred_unmap_info *dui;
-
- dui = (struct deferred_unmap_info *)skb->head;
- dui->pdev = pdev;
- for (p = dui->addr; sgl_flits >= 3; sgl++, sgl_flits -= 3) {
- *p++ = be64_to_cpu(sgl->addr[0]);
- *p++ = be64_to_cpu(sgl->addr[1]);
- }
- if (sgl_flits)
- *p = be64_to_cpu(sgl->addr[0]);
-}
-
-/**
- * write_ofld_wr - write an offload work request
- * @adap: the adapter
- * @skb: the packet to send
- * @q: the Tx queue
- * @pidx: index of the first Tx descriptor to write
- * @gen: the generation value to use
- * @ndesc: number of descriptors the packet will occupy
- *
- * Write an offload work request to send the supplied packet. The packet
- * data already carry the work request with most fields populated.
- */
-static void write_ofld_wr(struct adapter *adap, struct sk_buff *skb,
- struct sge_txq *q, unsigned int pidx,
- unsigned int gen, unsigned int ndesc)
-{
- unsigned int sgl_flits, flits;
- struct work_request_hdr *from;
- struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
- struct tx_desc *d = &q->desc[pidx];
-
- if (immediate(skb)) {
- q->sdesc[pidx].skb = NULL;
- write_imm(d, skb, skb->len, gen);
- return;
- }
-
- /* Only TX_DATA builds SGLs */
-
- from = (struct work_request_hdr *)skb->data;
- memcpy(&d->flit[1], &from[1],
- skb_transport_offset(skb) - sizeof(*from));
-
- flits = skb_transport_offset(skb) / 8;
- sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
- sgl_flits = make_sgl(skb, sgp, skb_transport_header(skb),
- skb->tail - skb->transport_header,
- adap->pdev);
- if (need_skb_unmap()) {
- setup_deferred_unmapping(skb, adap->pdev, sgp, sgl_flits);
- skb->destructor = deferred_unmap_destructor;
- }
-
- write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits,
- gen, from->wr_hi, from->wr_lo);
-}
-
-/**
- * calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet
- * @skb: the packet
- *
- * Returns the number of Tx descriptors needed for the given offload
- * packet. These packets are already fully constructed.
- */
-static inline unsigned int calc_tx_descs_ofld(const struct sk_buff *skb)
-{
- unsigned int flits, cnt;
-
- if (skb->len <= WR_LEN)
- return 1; /* packet fits as immediate data */
-
- flits = skb_transport_offset(skb) / 8; /* headers */
- cnt = skb_shinfo(skb)->nr_frags;
- if (skb->tail != skb->transport_header)
- cnt++;
- return flits_to_desc(flits + sgl_len(cnt));
-}
-
-/**
- * ofld_xmit - send a packet through an offload queue
- * @adap: the adapter
- * @q: the Tx offload queue
- * @skb: the packet
- *
- * Send an offload packet through an SGE offload queue.
- */
-static int ofld_xmit(struct adapter *adap, struct sge_txq *q,
- struct sk_buff *skb)
-{
- int ret;
- unsigned int ndesc = calc_tx_descs_ofld(skb), pidx, gen;
-
- spin_lock(&q->lock);
-again: reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
-
- ret = check_desc_avail(adap, q, skb, ndesc, TXQ_OFLD);
- if (unlikely(ret)) {
- if (ret == 1) {
- skb->priority = ndesc; /* save for restart */
- spin_unlock(&q->lock);
- return NET_XMIT_CN;
- }
- goto again;
- }
-
- gen = q->gen;
- q->in_use += ndesc;
- pidx = q->pidx;
- q->pidx += ndesc;
- if (q->pidx >= q->size) {
- q->pidx -= q->size;
- q->gen ^= 1;
- }
- spin_unlock(&q->lock);
-
- write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
- check_ring_tx_db(adap, q);
- return NET_XMIT_SUCCESS;
-}
-
-/**
- * restart_offloadq - restart a suspended offload queue
- * @qs: the queue set cotaining the offload queue
- *
- * Resumes transmission on a suspended Tx offload queue.
- */
-static void restart_offloadq(unsigned long data)
-{
- struct sk_buff *skb;
- struct sge_qset *qs = (struct sge_qset *)data;
- struct sge_txq *q = &qs->txq[TXQ_OFLD];
- const struct port_info *pi = netdev_priv(qs->netdev);
- struct adapter *adap = pi->adapter;
-
- spin_lock(&q->lock);
-again: reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
-
- while ((skb = skb_peek(&q->sendq)) != NULL) {
- unsigned int gen, pidx;
- unsigned int ndesc = skb->priority;
-
- if (unlikely(q->size - q->in_use < ndesc)) {
- set_bit(TXQ_OFLD, &qs->txq_stopped);
- smp_mb__after_clear_bit();
-
- if (should_restart_tx(q) &&
- test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped))
- goto again;
- q->stops++;
- break;
- }
-
- gen = q->gen;
- q->in_use += ndesc;
- pidx = q->pidx;
- q->pidx += ndesc;
- if (q->pidx >= q->size) {
- q->pidx -= q->size;
- q->gen ^= 1;
- }
- __skb_unlink(skb, &q->sendq);
- spin_unlock(&q->lock);
-
- write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
- spin_lock(&q->lock);
- }
- spin_unlock(&q->lock);
-
-#if USE_GTS
- set_bit(TXQ_RUNNING, &q->flags);
- set_bit(TXQ_LAST_PKT_DB, &q->flags);
-#endif
- wmb();
- t3_write_reg(adap, A_SG_KDOORBELL,
- F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
-}
-
-/**
- * queue_set - return the queue set a packet should use
- * @skb: the packet
- *
- * Maps a packet to the SGE queue set it should use. The desired queue
- * set is carried in bits 1-3 in the packet's priority.
- */
-static inline int queue_set(const struct sk_buff *skb)
-{
- return skb->priority >> 1;
-}
-
-/**
- * is_ctrl_pkt - return whether an offload packet is a control packet
- * @skb: the packet
- *
- * Determines whether an offload packet should use an OFLD or a CTRL
- * Tx queue. This is indicated by bit 0 in the packet's priority.
- */
-static inline int is_ctrl_pkt(const struct sk_buff *skb)
-{
- return skb->priority & 1;
-}
-
-/**
- * t3_offload_tx - send an offload packet
- * @tdev: the offload device to send to
- * @skb: the packet
- *
- * Sends an offload packet. We use the packet priority to select the
- * appropriate Tx queue as follows: bit 0 indicates whether the packet
- * should be sent as regular or control, bits 1-3 select the queue set.
- */
-int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
-{
- struct adapter *adap = tdev2adap(tdev);
- struct sge_qset *qs = &adap->sge.qs[queue_set(skb)];
-
- if (unlikely(is_ctrl_pkt(skb)))
- return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], skb);
-
- return ofld_xmit(adap, &qs->txq[TXQ_OFLD], skb);
-}
-
-/**
- * offload_enqueue - add an offload packet to an SGE offload receive queue
- * @q: the SGE response queue
- * @skb: the packet
- *
- * Add a new offload packet to an SGE response queue's offload packet
- * queue. If the packet is the first on the queue it schedules the RX
- * softirq to process the queue.
- */
-static inline void offload_enqueue(struct sge_rspq *q, struct sk_buff *skb)
-{
- int was_empty = skb_queue_empty(&q->rx_queue);
-
- __skb_queue_tail(&q->rx_queue, skb);
-
- if (was_empty) {
- struct sge_qset *qs = rspq_to_qset(q);
-
- napi_schedule(&qs->napi);
- }
-}
-
-/**
- * deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts
- * @tdev: the offload device that will be receiving the packets
- * @q: the SGE response queue that assembled the bundle
- * @skbs: the partial bundle
- * @n: the number of packets in the bundle
- *
- * Delivers a (partial) bundle of Rx offload packets to an offload device.
- */
-static inline void deliver_partial_bundle(struct t3cdev *tdev,
- struct sge_rspq *q,
- struct sk_buff *skbs[], int n)
-{
- if (n) {
- q->offload_bundles++;
- tdev->recv(tdev, skbs, n);
- }
-}
-
-/**
- * ofld_poll - NAPI handler for offload packets in interrupt mode
- * @dev: the network device doing the polling
- * @budget: polling budget
- *
- * The NAPI handler for offload packets when a response queue is serviced
- * by the hard interrupt handler, i.e., when it's operating in non-polling
- * mode. Creates small packet batches and sends them through the offload
- * receive handler. Batches need to be of modest size as we do prefetches
- * on the packets in each.
- */
-static int ofld_poll(struct napi_struct *napi, int budget)
-{
- struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
- struct sge_rspq *q = &qs->rspq;
- struct adapter *adapter = qs->adap;
- int work_done = 0;
-
- while (work_done < budget) {
- struct sk_buff *skb, *tmp, *skbs[RX_BUNDLE_SIZE];
- struct sk_buff_head queue;
- int ngathered;
-
- spin_lock_irq(&q->lock);
- __skb_queue_head_init(&queue);
- skb_queue_splice_init(&q->rx_queue, &queue);
- if (skb_queue_empty(&queue)) {
- napi_complete(napi);
- spin_unlock_irq(&q->lock);
- return work_done;
- }
- spin_unlock_irq(&q->lock);
-
- ngathered = 0;
- skb_queue_walk_safe(&queue, skb, tmp) {
- if (work_done >= budget)
- break;
- work_done++;
-
- __skb_unlink(skb, &queue);
- prefetch(skb->data);
- skbs[ngathered] = skb;
- if (++ngathered == RX_BUNDLE_SIZE) {
- q->offload_bundles++;
- adapter->tdev.recv(&adapter->tdev, skbs,
- ngathered);
- ngathered = 0;
- }
- }
- if (!skb_queue_empty(&queue)) {
- /* splice remaining packets back onto Rx queue */
- spin_lock_irq(&q->lock);
- skb_queue_splice(&queue, &q->rx_queue);
- spin_unlock_irq(&q->lock);
- }
- deliver_partial_bundle(&adapter->tdev, q, skbs, ngathered);
- }
-
- return work_done;
-}
-
-/**
- * rx_offload - process a received offload packet
- * @tdev: the offload device receiving the packet
- * @rq: the response queue that received the packet
- * @skb: the packet
- * @rx_gather: a gather list of packets if we are building a bundle
- * @gather_idx: index of the next available slot in the bundle
- *
- * Process an ingress offload pakcet and add it to the offload ingress
- * queue. Returns the index of the next available slot in the bundle.
- */
-static inline int rx_offload(struct t3cdev *tdev, struct sge_rspq *rq,
- struct sk_buff *skb, struct sk_buff *rx_gather[],
- unsigned int gather_idx)
-{
- skb_reset_mac_header(skb);
- skb_reset_network_header(skb);
- skb_reset_transport_header(skb);
-
- if (rq->polling) {
- rx_gather[gather_idx++] = skb;
- if (gather_idx == RX_BUNDLE_SIZE) {
- tdev->recv(tdev, rx_gather, RX_BUNDLE_SIZE);
- gather_idx = 0;
- rq->offload_bundles++;
- }
- } else
- offload_enqueue(rq, skb);
-
- return gather_idx;
-}
-
-/**
- * restart_tx - check whether to restart suspended Tx queues
- * @qs: the queue set to resume
- *
- * Restarts suspended Tx queues of an SGE queue set if they have enough
- * free resources to resume operation.
- */
-static void restart_tx(struct sge_qset *qs)
-{
- if (test_bit(TXQ_ETH, &qs->txq_stopped) &&
- should_restart_tx(&qs->txq[TXQ_ETH]) &&
- test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
- qs->txq[TXQ_ETH].restarts++;
- if (netif_running(qs->netdev))
- netif_tx_wake_queue(qs->tx_q);
- }
-
- if (test_bit(TXQ_OFLD, &qs->txq_stopped) &&
- should_restart_tx(&qs->txq[TXQ_OFLD]) &&
- test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) {
- qs->txq[TXQ_OFLD].restarts++;
- tasklet_schedule(&qs->txq[TXQ_OFLD].qresume_tsk);
- }
- if (test_bit(TXQ_CTRL, &qs->txq_stopped) &&
- should_restart_tx(&qs->txq[TXQ_CTRL]) &&
- test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) {
- qs->txq[TXQ_CTRL].restarts++;
- tasklet_schedule(&qs->txq[TXQ_CTRL].qresume_tsk);
- }
-}
-
-/**
- * cxgb3_arp_process - process an ARP request probing a private IP address
- * @adapter: the adapter
- * @skb: the skbuff containing the ARP request
- *
- * Check if the ARP request is probing the private IP address
- * dedicated to iSCSI, generate an ARP reply if so.
- */
-static void cxgb3_arp_process(struct port_info *pi, struct sk_buff *skb)
-{
- struct net_device *dev = skb->dev;
- struct arphdr *arp;
- unsigned char *arp_ptr;
- unsigned char *sha;
- __be32 sip, tip;
-
- if (!dev)
- return;
-
- skb_reset_network_header(skb);
- arp = arp_hdr(skb);
-
- if (arp->ar_op != htons(ARPOP_REQUEST))
- return;
-
- arp_ptr = (unsigned char *)(arp + 1);
- sha = arp_ptr;
- arp_ptr += dev->addr_len;
- memcpy(&sip, arp_ptr, sizeof(sip));
- arp_ptr += sizeof(sip);
- arp_ptr += dev->addr_len;
- memcpy(&tip, arp_ptr, sizeof(tip));
-
- if (tip != pi->iscsi_ipv4addr)
- return;
-
- arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
- pi->iscsic.mac_addr, sha);
-
-}
-
-static inline int is_arp(struct sk_buff *skb)
-{
- return skb->protocol == htons(ETH_P_ARP);
-}
-
-static void cxgb3_process_iscsi_prov_pack(struct port_info *pi,
- struct sk_buff *skb)
-{
- if (is_arp(skb)) {
- cxgb3_arp_process(pi, skb);
- return;
- }
-
- if (pi->iscsic.recv)
- pi->iscsic.recv(pi, skb);
-
-}
-
-/**
- * rx_eth - process an ingress ethernet packet
- * @adap: the adapter
- * @rq: the response queue that received the packet
- * @skb: the packet
- * @pad: amount of padding at the start of the buffer
- *
- * Process an ingress ethernet pakcet and deliver it to the stack.
- * The padding is 2 if the packet was delivered in an Rx buffer and 0
- * if it was immediate data in a response.
- */
-static void rx_eth(struct adapter *adap, struct sge_rspq *rq,
- struct sk_buff *skb, int pad, int lro)
-{
- struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)(skb->data + pad);
- struct sge_qset *qs = rspq_to_qset(rq);
- struct port_info *pi;
-
- skb_pull(skb, sizeof(*p) + pad);
- skb->protocol = eth_type_trans(skb, adap->port[p->iff]);
- pi = netdev_priv(skb->dev);
- if ((skb->dev->features & NETIF_F_RXCSUM) && p->csum_valid &&
- p->csum == htons(0xffff) && !p->fragment) {
- qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
- skb->ip_summed = CHECKSUM_UNNECESSARY;
- } else
- skb_checksum_none_assert(skb);
- skb_record_rx_queue(skb, qs - &adap->sge.qs[pi->first_qset]);
-
- if (p->vlan_valid) {
- qs->port_stats[SGE_PSTAT_VLANEX]++;
- __vlan_hwaccel_put_tag(skb, ntohs(p->vlan));
- }
- if (rq->polling) {
- if (lro)
- napi_gro_receive(&qs->napi, skb);
- else {
- if (unlikely(pi->iscsic.flags))
- cxgb3_process_iscsi_prov_pack(pi, skb);
- netif_receive_skb(skb);
- }
- } else
- netif_rx(skb);
-}
-
-static inline int is_eth_tcp(u32 rss)
-{
- return G_HASHTYPE(ntohl(rss)) == RSS_HASH_4_TUPLE;
-}
-
-/**
- * lro_add_page - add a page chunk to an LRO session
- * @adap: the adapter
- * @qs: the associated queue set
- * @fl: the free list containing the page chunk to add
- * @len: packet length
- * @complete: Indicates the last fragment of a frame
- *
- * Add a received packet contained in a page chunk to an existing LRO
- * session.
- */
-static void lro_add_page(struct adapter *adap, struct sge_qset *qs,
- struct sge_fl *fl, int len, int complete)
-{
- struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
- struct port_info *pi = netdev_priv(qs->netdev);
- struct sk_buff *skb = NULL;
- struct cpl_rx_pkt *cpl;
- struct skb_frag_struct *rx_frag;
- int nr_frags;
- int offset = 0;
-
- if (!qs->nomem) {
- skb = napi_get_frags(&qs->napi);
- qs->nomem = !skb;
- }
-
- fl->credits--;
-
- pci_dma_sync_single_for_cpu(adap->pdev,
- dma_unmap_addr(sd, dma_addr),
- fl->buf_size - SGE_PG_RSVD,
- PCI_DMA_FROMDEVICE);
-
- (*sd->pg_chunk.p_cnt)--;
- if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page)
- pci_unmap_page(adap->pdev,
- sd->pg_chunk.mapping,
- fl->alloc_size,
- PCI_DMA_FROMDEVICE);
-
- if (!skb) {
- put_page(sd->pg_chunk.page);
- if (complete)
- qs->nomem = 0;
- return;
- }
-
- rx_frag = skb_shinfo(skb)->frags;
- nr_frags = skb_shinfo(skb)->nr_frags;
-
- if (!nr_frags) {
- offset = 2 + sizeof(struct cpl_rx_pkt);
- cpl = qs->lro_va = sd->pg_chunk.va + 2;
-
- if ((qs->netdev->features & NETIF_F_RXCSUM) &&
- cpl->csum_valid && cpl->csum == htons(0xffff)) {
- skb->ip_summed = CHECKSUM_UNNECESSARY;
- qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
- } else
- skb->ip_summed = CHECKSUM_NONE;
- } else
- cpl = qs->lro_va;
-
- len -= offset;
-
- rx_frag += nr_frags;
- rx_frag->page = sd->pg_chunk.page;
- rx_frag->page_offset = sd->pg_chunk.offset + offset;
- rx_frag->size = len;
-
- skb->len += len;
- skb->data_len += len;
- skb->truesize += len;
- skb_shinfo(skb)->nr_frags++;
-
- if (!complete)
- return;
-
- skb_record_rx_queue(skb, qs - &adap->sge.qs[pi->first_qset]);
-
- if (cpl->vlan_valid)
- __vlan_hwaccel_put_tag(skb, ntohs(cpl->vlan));
- napi_gro_frags(&qs->napi);
-}
-
-/**
- * handle_rsp_cntrl_info - handles control information in a response
- * @qs: the queue set corresponding to the response
- * @flags: the response control flags
- *
- * Handles the control information of an SGE response, such as GTS
- * indications and completion credits for the queue set's Tx queues.
- * HW coalesces credits, we don't do any extra SW coalescing.
- */
-static inline void handle_rsp_cntrl_info(struct sge_qset *qs, u32 flags)
-{
- unsigned int credits;
-
-#if USE_GTS
- if (flags & F_RSPD_TXQ0_GTS)
- clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags);
-#endif
-
- credits = G_RSPD_TXQ0_CR(flags);
- if (credits)
- qs->txq[TXQ_ETH].processed += credits;
-
- credits = G_RSPD_TXQ2_CR(flags);
- if (credits)
- qs->txq[TXQ_CTRL].processed += credits;
-
-# if USE_GTS
- if (flags & F_RSPD_TXQ1_GTS)
- clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags);
-# endif
- credits = G_RSPD_TXQ1_CR(flags);
- if (credits)
- qs->txq[TXQ_OFLD].processed += credits;
-}
-
-/**
- * check_ring_db - check if we need to ring any doorbells
- * @adapter: the adapter
- * @qs: the queue set whose Tx queues are to be examined
- * @sleeping: indicates which Tx queue sent GTS
- *
- * Checks if some of a queue set's Tx queues need to ring their doorbells
- * to resume transmission after idling while they still have unprocessed
- * descriptors.
- */
-static void check_ring_db(struct adapter *adap, struct sge_qset *qs,
- unsigned int sleeping)
-{
- if (sleeping & F_RSPD_TXQ0_GTS) {
- struct sge_txq *txq = &qs->txq[TXQ_ETH];
-
- if (txq->cleaned + txq->in_use != txq->processed &&
- !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
- set_bit(TXQ_RUNNING, &txq->flags);
- t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
- V_EGRCNTX(txq->cntxt_id));
- }
- }
-
- if (sleeping & F_RSPD_TXQ1_GTS) {
- struct sge_txq *txq = &qs->txq[TXQ_OFLD];
-
- if (txq->cleaned + txq->in_use != txq->processed &&
- !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
- set_bit(TXQ_RUNNING, &txq->flags);
- t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
- V_EGRCNTX(txq->cntxt_id));
- }
- }
-}
-
-/**
- * is_new_response - check if a response is newly written
- * @r: the response descriptor
- * @q: the response queue
- *
- * Returns true if a response descriptor contains a yet unprocessed
- * response.
- */
-static inline int is_new_response(const struct rsp_desc *r,
- const struct sge_rspq *q)
-{
- return (r->intr_gen & F_RSPD_GEN2) == q->gen;
-}
-
-static inline void clear_rspq_bufstate(struct sge_rspq * const q)
-{
- q->pg_skb = NULL;
- q->rx_recycle_buf = 0;
-}
-
-#define RSPD_GTS_MASK (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS)
-#define RSPD_CTRL_MASK (RSPD_GTS_MASK | \
- V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \
- V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \
- V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR))
-
-/* How long to delay the next interrupt in case of memory shortage, in 0.1us. */
-#define NOMEM_INTR_DELAY 2500
-
-/**
- * process_responses - process responses from an SGE response queue
- * @adap: the adapter
- * @qs: the queue set to which the response queue belongs
- * @budget: how many responses can be processed in this round
- *
- * Process responses from an SGE response queue up to the supplied budget.
- * Responses include received packets as well as credits and other events
- * for the queues that belong to the response queue's queue set.
- * A negative budget is effectively unlimited.
- *
- * Additionally choose the interrupt holdoff time for the next interrupt
- * on this queue. If the system is under memory shortage use a fairly
- * long delay to help recovery.
- */
-static int process_responses(struct adapter *adap, struct sge_qset *qs,
- int budget)
-{
- struct sge_rspq *q = &qs->rspq;
- struct rsp_desc *r = &q->desc[q->cidx];
- int budget_left = budget;
- unsigned int sleeping = 0;
- struct sk_buff *offload_skbs[RX_BUNDLE_SIZE];
- int ngathered = 0;
-
- q->next_holdoff = q->holdoff_tmr;
-
- while (likely(budget_left && is_new_response(r, q))) {
- int packet_complete, eth, ethpad = 2;
- int lro = !!(qs->netdev->features & NETIF_F_GRO);
- struct sk_buff *skb = NULL;
- u32 len, flags;
- __be32 rss_hi, rss_lo;
-
- rmb();
- eth = r->rss_hdr.opcode == CPL_RX_PKT;
- rss_hi = *(const __be32 *)r;
- rss_lo = r->rss_hdr.rss_hash_val;
- flags = ntohl(r->flags);
-
- if (unlikely(flags & F_RSPD_ASYNC_NOTIF)) {
- skb = alloc_skb(AN_PKT_SIZE, GFP_ATOMIC);
- if (!skb)
- goto no_mem;
-
- memcpy(__skb_put(skb, AN_PKT_SIZE), r, AN_PKT_SIZE);
- skb->data[0] = CPL_ASYNC_NOTIF;
- rss_hi = htonl(CPL_ASYNC_NOTIF << 24);
- q->async_notif++;
- } else if (flags & F_RSPD_IMM_DATA_VALID) {
- skb = get_imm_packet(r);
- if (unlikely(!skb)) {
-no_mem:
- q->next_holdoff = NOMEM_INTR_DELAY;
- q->nomem++;
- /* consume one credit since we tried */
- budget_left--;
- break;
- }
- q->imm_data++;
- ethpad = 0;
- } else if ((len = ntohl(r->len_cq)) != 0) {
- struct sge_fl *fl;
-
- lro &= eth && is_eth_tcp(rss_hi);
-
- fl = (len & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0];
- if (fl->use_pages) {
- void *addr = fl->sdesc[fl->cidx].pg_chunk.va;
-
- prefetch(addr);
-#if L1_CACHE_BYTES < 128
- prefetch(addr + L1_CACHE_BYTES);
-#endif
- __refill_fl(adap, fl);
- if (lro > 0) {
- lro_add_page(adap, qs, fl,
- G_RSPD_LEN(len),
- flags & F_RSPD_EOP);
- goto next_fl;
- }
-
- skb = get_packet_pg(adap, fl, q,
- G_RSPD_LEN(len),
- eth ?
- SGE_RX_DROP_THRES : 0);
- q->pg_skb = skb;
- } else
- skb = get_packet(adap, fl, G_RSPD_LEN(len),
- eth ? SGE_RX_DROP_THRES : 0);
- if (unlikely(!skb)) {
- if (!eth)
- goto no_mem;
- q->rx_drops++;
- } else if (unlikely(r->rss_hdr.opcode == CPL_TRACE_PKT))
- __skb_pull(skb, 2);
-next_fl:
- if (++fl->cidx == fl->size)
- fl->cidx = 0;
- } else
- q->pure_rsps++;
-
- if (flags & RSPD_CTRL_MASK) {
- sleeping |= flags & RSPD_GTS_MASK;
- handle_rsp_cntrl_info(qs, flags);
- }
-
- r++;
- if (unlikely(++q->cidx == q->size)) {
- q->cidx = 0;
- q->gen ^= 1;
- r = q->desc;
- }
- prefetch(r);
-
- if (++q->credits >= (q->size / 4)) {
- refill_rspq(adap, q, q->credits);
- q->credits = 0;
- }
-
- packet_complete = flags &
- (F_RSPD_EOP | F_RSPD_IMM_DATA_VALID |
- F_RSPD_ASYNC_NOTIF);
-
- if (skb != NULL && packet_complete) {
- if (eth)
- rx_eth(adap, q, skb, ethpad, lro);
- else {
- q->offload_pkts++;
- /* Preserve the RSS info in csum & priority */
- skb->csum = rss_hi;
- skb->priority = rss_lo;
- ngathered = rx_offload(&adap->tdev, q, skb,
- offload_skbs,
- ngathered);
- }
-
- if (flags & F_RSPD_EOP)
- clear_rspq_bufstate(q);
- }
- --budget_left;
- }
-
- deliver_partial_bundle(&adap->tdev, q, offload_skbs, ngathered);
-
- if (sleeping)
- check_ring_db(adap, qs, sleeping);
-
- smp_mb(); /* commit Tx queue .processed updates */
- if (unlikely(qs->txq_stopped != 0))
- restart_tx(qs);
-
- budget -= budget_left;
- return budget;
-}
-
-static inline int is_pure_response(const struct rsp_desc *r)
-{
- __be32 n = r->flags & htonl(F_RSPD_ASYNC_NOTIF | F_RSPD_IMM_DATA_VALID);
-
- return (n | r->len_cq) == 0;
-}
-
-/**
- * napi_rx_handler - the NAPI handler for Rx processing
- * @napi: the napi instance
- * @budget: how many packets we can process in this round
- *
- * Handler for new data events when using NAPI.
- */
-static int napi_rx_handler(struct napi_struct *napi, int budget)
-{
- struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
- struct adapter *adap = qs->adap;
- int work_done = process_responses(adap, qs, budget);
-
- if (likely(work_done < budget)) {
- napi_complete(napi);
-
- /*
- * Because we don't atomically flush the following
- * write it is possible that in very rare cases it can
- * reach the device in a way that races with a new
- * response being written plus an error interrupt
- * causing the NAPI interrupt handler below to return
- * unhandled status to the OS. To protect against
- * this would require flushing the write and doing
- * both the write and the flush with interrupts off.
- * Way too expensive and unjustifiable given the
- * rarity of the race.
- *
- * The race cannot happen at all with MSI-X.
- */
- t3_write_reg(adap, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) |
- V_NEWTIMER(qs->rspq.next_holdoff) |
- V_NEWINDEX(qs->rspq.cidx));
- }
- return work_done;
-}
-
-/*
- * Returns true if the device is already scheduled for polling.
- */
-static inline int napi_is_scheduled(struct napi_struct *napi)
-{
- return test_bit(NAPI_STATE_SCHED, &napi->state);
-}
-
-/**
- * process_pure_responses - process pure responses from a response queue
- * @adap: the adapter
- * @qs: the queue set owning the response queue
- * @r: the first pure response to process
- *
- * A simpler version of process_responses() that handles only pure (i.e.,
- * non data-carrying) responses. Such respones are too light-weight to
- * justify calling a softirq under NAPI, so we handle them specially in
- * the interrupt handler. The function is called with a pointer to a
- * response, which the caller must ensure is a valid pure response.
- *
- * Returns 1 if it encounters a valid data-carrying response, 0 otherwise.
- */
-static int process_pure_responses(struct adapter *adap, struct sge_qset *qs,
- struct rsp_desc *r)
-{
- struct sge_rspq *q = &qs->rspq;
- unsigned int sleeping = 0;
-
- do {
- u32 flags = ntohl(r->flags);
-
- r++;
- if (unlikely(++q->cidx == q->size)) {
- q->cidx = 0;
- q->gen ^= 1;
- r = q->desc;
- }
- prefetch(r);
-
- if (flags & RSPD_CTRL_MASK) {
- sleeping |= flags & RSPD_GTS_MASK;
- handle_rsp_cntrl_info(qs, flags);
- }
-
- q->pure_rsps++;
- if (++q->credits >= (q->size / 4)) {
- refill_rspq(adap, q, q->credits);
- q->credits = 0;
- }
- if (!is_new_response(r, q))
- break;
- rmb();
- } while (is_pure_response(r));
-
- if (sleeping)
- check_ring_db(adap, qs, sleeping);
-
- smp_mb(); /* commit Tx queue .processed updates */
- if (unlikely(qs->txq_stopped != 0))
- restart_tx(qs);
-
- return is_new_response(r, q);
-}
-
-/**
- * handle_responses - decide what to do with new responses in NAPI mode
- * @adap: the adapter
- * @q: the response queue
- *
- * This is used by the NAPI interrupt handlers to decide what to do with
- * new SGE responses. If there are no new responses it returns -1. If
- * there are new responses and they are pure (i.e., non-data carrying)
- * it handles them straight in hard interrupt context as they are very
- * cheap and don't deliver any packets. Finally, if there are any data
- * signaling responses it schedules the NAPI handler. Returns 1 if it
- * schedules NAPI, 0 if all new responses were pure.
- *
- * The caller must ascertain NAPI is not already running.
- */
-static inline int handle_responses(struct adapter *adap, struct sge_rspq *q)
-{
- struct sge_qset *qs = rspq_to_qset(q);
- struct rsp_desc *r = &q->desc[q->cidx];
-
- if (!is_new_response(r, q))
- return -1;
- rmb();
- if (is_pure_response(r) && process_pure_responses(adap, qs, r) == 0) {
- t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
- V_NEWTIMER(q->holdoff_tmr) | V_NEWINDEX(q->cidx));
- return 0;
- }
- napi_schedule(&qs->napi);
- return 1;
-}
-
-/*
- * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case
- * (i.e., response queue serviced in hard interrupt).
- */
-static irqreturn_t t3_sge_intr_msix(int irq, void *cookie)
-{
- struct sge_qset *qs = cookie;
- struct adapter *adap = qs->adap;
- struct sge_rspq *q = &qs->rspq;
-
- spin_lock(&q->lock);
- if (process_responses(adap, qs, -1) == 0)
- q->unhandled_irqs++;
- t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
- V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
- spin_unlock(&q->lock);
- return IRQ_HANDLED;
-}
-
-/*
- * The MSI-X interrupt handler for an SGE response queue for the NAPI case
- * (i.e., response queue serviced by NAPI polling).
- */
-static irqreturn_t t3_sge_intr_msix_napi(int irq, void *cookie)
-{
- struct sge_qset *qs = cookie;
- struct sge_rspq *q = &qs->rspq;
-
- spin_lock(&q->lock);
-
- if (handle_responses(qs->adap, q) < 0)
- q->unhandled_irqs++;
- spin_unlock(&q->lock);
- return IRQ_HANDLED;
-}
-
-/*
- * The non-NAPI MSI interrupt handler. This needs to handle data events from
- * SGE response queues as well as error and other async events as they all use
- * the same MSI vector. We use one SGE response queue per port in this mode
- * and protect all response queues with queue 0's lock.
- */
-static irqreturn_t t3_intr_msi(int irq, void *cookie)
-{
- int new_packets = 0;
- struct adapter *adap = cookie;
- struct sge_rspq *q = &adap->sge.qs[0].rspq;
-
- spin_lock(&q->lock);
-
- if (process_responses(adap, &adap->sge.qs[0], -1)) {
- t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
- V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
- new_packets = 1;
- }
-
- if (adap->params.nports == 2 &&
- process_responses(adap, &adap->sge.qs[1], -1)) {
- struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
-
- t3_write_reg(adap, A_SG_GTS, V_RSPQ(q1->cntxt_id) |
- V_NEWTIMER(q1->next_holdoff) |
- V_NEWINDEX(q1->cidx));
- new_packets = 1;
- }
-
- if (!new_packets && t3_slow_intr_handler(adap) == 0)
- q->unhandled_irqs++;
-
- spin_unlock(&q->lock);
- return IRQ_HANDLED;
-}
-
-static int rspq_check_napi(struct sge_qset *qs)
-{
- struct sge_rspq *q = &qs->rspq;
-
- if (!napi_is_scheduled(&qs->napi) &&
- is_new_response(&q->desc[q->cidx], q)) {
- napi_schedule(&qs->napi);
- return 1;
- }
- return 0;
-}
-
-/*
- * The MSI interrupt handler for the NAPI case (i.e., response queues serviced
- * by NAPI polling). Handles data events from SGE response queues as well as
- * error and other async events as they all use the same MSI vector. We use
- * one SGE response queue per port in this mode and protect all response
- * queues with queue 0's lock.
- */
-static irqreturn_t t3_intr_msi_napi(int irq, void *cookie)
-{
- int new_packets;
- struct adapter *adap = cookie;
- struct sge_rspq *q = &adap->sge.qs[0].rspq;
-
- spin_lock(&q->lock);
-
- new_packets = rspq_check_napi(&adap->sge.qs[0]);
- if (adap->params.nports == 2)
- new_packets += rspq_check_napi(&adap->sge.qs[1]);
- if (!new_packets && t3_slow_intr_handler(adap) == 0)
- q->unhandled_irqs++;
-
- spin_unlock(&q->lock);
- return IRQ_HANDLED;
-}
-
-/*
- * A helper function that processes responses and issues GTS.
- */
-static inline int process_responses_gts(struct adapter *adap,
- struct sge_rspq *rq)
-{
- int work;
-
- work = process_responses(adap, rspq_to_qset(rq), -1);
- t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) |
- V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx));
- return work;
-}
-
-/*
- * The legacy INTx interrupt handler. This needs to handle data events from
- * SGE response queues as well as error and other async events as they all use
- * the same interrupt pin. We use one SGE response queue per port in this mode
- * and protect all response queues with queue 0's lock.
- */
-static irqreturn_t t3_intr(int irq, void *cookie)
-{
- int work_done, w0, w1;
- struct adapter *adap = cookie;
- struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
- struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
-
- spin_lock(&q0->lock);
-
- w0 = is_new_response(&q0->desc[q0->cidx], q0);
- w1 = adap->params.nports == 2 &&
- is_new_response(&q1->desc[q1->cidx], q1);
-
- if (likely(w0 | w1)) {
- t3_write_reg(adap, A_PL_CLI, 0);
- t3_read_reg(adap, A_PL_CLI); /* flush */
-
- if (likely(w0))
- process_responses_gts(adap, q0);
-
- if (w1)
- process_responses_gts(adap, q1);
-
- work_done = w0 | w1;
- } else
- work_done = t3_slow_intr_handler(adap);
-
- spin_unlock(&q0->lock);
- return IRQ_RETVAL(work_done != 0);
-}
-
-/*
- * Interrupt handler for legacy INTx interrupts for T3B-based cards.
- * Handles data events from SGE response queues as well as error and other
- * async events as they all use the same interrupt pin. We use one SGE
- * response queue per port in this mode and protect all response queues with
- * queue 0's lock.
- */
-static irqreturn_t t3b_intr(int irq, void *cookie)
-{
- u32 map;
- struct adapter *adap = cookie;
- struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
-
- t3_write_reg(adap, A_PL_CLI, 0);
- map = t3_read_reg(adap, A_SG_DATA_INTR);
-
- if (unlikely(!map)) /* shared interrupt, most likely */
- return IRQ_NONE;
-
- spin_lock(&q0->lock);
-
- if (unlikely(map & F_ERRINTR))
- t3_slow_intr_handler(adap);
-
- if (likely(map & 1))
- process_responses_gts(adap, q0);
-
- if (map & 2)
- process_responses_gts(adap, &adap->sge.qs[1].rspq);
-
- spin_unlock(&q0->lock);
- return IRQ_HANDLED;
-}
-
-/*
- * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards.
- * Handles data events from SGE response queues as well as error and other
- * async events as they all use the same interrupt pin. We use one SGE
- * response queue per port in this mode and protect all response queues with
- * queue 0's lock.
- */
-static irqreturn_t t3b_intr_napi(int irq, void *cookie)
-{
- u32 map;
- struct adapter *adap = cookie;
- struct sge_qset *qs0 = &adap->sge.qs[0];
- struct sge_rspq *q0 = &qs0->rspq;
-
- t3_write_reg(adap, A_PL_CLI, 0);
- map = t3_read_reg(adap, A_SG_DATA_INTR);
-
- if (unlikely(!map)) /* shared interrupt, most likely */
- return IRQ_NONE;
-
- spin_lock(&q0->lock);
-
- if (unlikely(map & F_ERRINTR))
- t3_slow_intr_handler(adap);
-
- if (likely(map & 1))
- napi_schedule(&qs0->napi);
-
- if (map & 2)
- napi_schedule(&adap->sge.qs[1].napi);
-
- spin_unlock(&q0->lock);
- return IRQ_HANDLED;
-}
-
-/**
- * t3_intr_handler - select the top-level interrupt handler
- * @adap: the adapter
- * @polling: whether using NAPI to service response queues
- *
- * Selects the top-level interrupt handler based on the type of interrupts
- * (MSI-X, MSI, or legacy) and whether NAPI will be used to service the
- * response queues.
- */
-irq_handler_t t3_intr_handler(struct adapter *adap, int polling)
-{
- if (adap->flags & USING_MSIX)
- return polling ? t3_sge_intr_msix_napi : t3_sge_intr_msix;
- if (adap->flags & USING_MSI)
- return polling ? t3_intr_msi_napi : t3_intr_msi;
- if (adap->params.rev > 0)
- return polling ? t3b_intr_napi : t3b_intr;
- return t3_intr;
-}
-
-#define SGE_PARERR (F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
- F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
- V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
- F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
- F_HIRCQPARITYERROR)
-#define SGE_FRAMINGERR (F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR)
-#define SGE_FATALERR (SGE_PARERR | SGE_FRAMINGERR | F_RSPQCREDITOVERFOW | \
- F_RSPQDISABLED)
-
-/**
- * t3_sge_err_intr_handler - SGE async event interrupt handler
- * @adapter: the adapter
- *
- * Interrupt handler for SGE asynchronous (non-data) events.
- */
-void t3_sge_err_intr_handler(struct adapter *adapter)
-{
- unsigned int v, status = t3_read_reg(adapter, A_SG_INT_CAUSE) &
- ~F_FLEMPTY;
-
- if (status & SGE_PARERR)
- CH_ALERT(adapter, "SGE parity error (0x%x)\n",
- status & SGE_PARERR);
- if (status & SGE_FRAMINGERR)
- CH_ALERT(adapter, "SGE framing error (0x%x)\n",
- status & SGE_FRAMINGERR);
-
- if (status & F_RSPQCREDITOVERFOW)
- CH_ALERT(adapter, "SGE response queue credit overflow\n");
-
- if (status & F_RSPQDISABLED) {
- v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS);
-
- CH_ALERT(adapter,
- "packet delivered to disabled response queue "
- "(0x%x)\n", (v >> S_RSPQ0DISABLED) & 0xff);
- }
-
- if (status & (F_HIPIODRBDROPERR | F_LOPIODRBDROPERR))
- queue_work(cxgb3_wq, &adapter->db_drop_task);
-
- if (status & (F_HIPRIORITYDBFULL | F_LOPRIORITYDBFULL))
- queue_work(cxgb3_wq, &adapter->db_full_task);
-
- if (status & (F_HIPRIORITYDBEMPTY | F_LOPRIORITYDBEMPTY))
- queue_work(cxgb3_wq, &adapter->db_empty_task);
-
- t3_write_reg(adapter, A_SG_INT_CAUSE, status);
- if (status & SGE_FATALERR)
- t3_fatal_err(adapter);
-}
-
-/**
- * sge_timer_tx - perform periodic maintenance of an SGE qset
- * @data: the SGE queue set to maintain
- *
- * Runs periodically from a timer to perform maintenance of an SGE queue
- * set. It performs two tasks:
- *
- * Cleans up any completed Tx descriptors that may still be pending.
- * Normal descriptor cleanup happens when new packets are added to a Tx
- * queue so this timer is relatively infrequent and does any cleanup only
- * if the Tx queue has not seen any new packets in a while. We make a
- * best effort attempt to reclaim descriptors, in that we don't wait
- * around if we cannot get a queue's lock (which most likely is because
- * someone else is queueing new packets and so will also handle the clean
- * up). Since control queues use immediate data exclusively we don't
- * bother cleaning them up here.
- *
- */
-static void sge_timer_tx(unsigned long data)
-{
- struct sge_qset *qs = (struct sge_qset *)data;
- struct port_info *pi = netdev_priv(qs->netdev);
- struct adapter *adap = pi->adapter;
- unsigned int tbd[SGE_TXQ_PER_SET] = {0, 0};
- unsigned long next_period;
-
- if (__netif_tx_trylock(qs->tx_q)) {
- tbd[TXQ_ETH] = reclaim_completed_tx(adap, &qs->txq[TXQ_ETH],
- TX_RECLAIM_TIMER_CHUNK);
- __netif_tx_unlock(qs->tx_q);
- }
-
- if (spin_trylock(&qs->txq[TXQ_OFLD].lock)) {
- tbd[TXQ_OFLD] = reclaim_completed_tx(adap, &qs->txq[TXQ_OFLD],
- TX_RECLAIM_TIMER_CHUNK);
- spin_unlock(&qs->txq[TXQ_OFLD].lock);
- }
-
- next_period = TX_RECLAIM_PERIOD >>
- (max(tbd[TXQ_ETH], tbd[TXQ_OFLD]) /
- TX_RECLAIM_TIMER_CHUNK);
- mod_timer(&qs->tx_reclaim_timer, jiffies + next_period);
-}
-
-/*
- * sge_timer_rx - perform periodic maintenance of an SGE qset
- * @data: the SGE queue set to maintain
- *
- * a) Replenishes Rx queues that have run out due to memory shortage.
- * Normally new Rx buffers are added when existing ones are consumed but
- * when out of memory a queue can become empty. We try to add only a few
- * buffers here, the queue will be replenished fully as these new buffers
- * are used up if memory shortage has subsided.
- *
- * b) Return coalesced response queue credits in case a response queue is
- * starved.
- *
- */
-static void sge_timer_rx(unsigned long data)
-{
- spinlock_t *lock;
- struct sge_qset *qs = (struct sge_qset *)data;
- struct port_info *pi = netdev_priv(qs->netdev);
- struct adapter *adap = pi->adapter;
- u32 status;
-
- lock = adap->params.rev > 0 ?
- &qs->rspq.lock : &adap->sge.qs[0].rspq.lock;
-
- if (!spin_trylock_irq(lock))
- goto out;
-
- if (napi_is_scheduled(&qs->napi))
- goto unlock;
-
- if (adap->params.rev < 4) {
- status = t3_read_reg(adap, A_SG_RSPQ_FL_STATUS);
-
- if (status & (1 << qs->rspq.cntxt_id)) {
- qs->rspq.starved++;
- if (qs->rspq.credits) {
- qs->rspq.credits--;
- refill_rspq(adap, &qs->rspq, 1);
- qs->rspq.restarted++;
- t3_write_reg(adap, A_SG_RSPQ_FL_STATUS,
- 1 << qs->rspq.cntxt_id);
- }
- }
- }
-
- if (qs->fl[0].credits < qs->fl[0].size)
- __refill_fl(adap, &qs->fl[0]);
- if (qs->fl[1].credits < qs->fl[1].size)
- __refill_fl(adap, &qs->fl[1]);
-
-unlock:
- spin_unlock_irq(lock);
-out:
- mod_timer(&qs->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD);
-}
-
-/**
- * t3_update_qset_coalesce - update coalescing settings for a queue set
- * @qs: the SGE queue set
- * @p: new queue set parameters
- *
- * Update the coalescing settings for an SGE queue set. Nothing is done
- * if the queue set is not initialized yet.
- */
-void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p)
-{
- qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);/* can't be 0 */
- qs->rspq.polling = p->polling;
- qs->napi.poll = p->polling ? napi_rx_handler : ofld_poll;
-}
-
-/**
- * t3_sge_alloc_qset - initialize an SGE queue set
- * @adapter: the adapter
- * @id: the queue set id
- * @nports: how many Ethernet ports will be using this queue set
- * @irq_vec_idx: the IRQ vector index for response queue interrupts
- * @p: configuration parameters for this queue set
- * @ntxq: number of Tx queues for the queue set
- * @netdev: net device associated with this queue set
- * @netdevq: net device TX queue associated with this queue set
- *
- * Allocate resources and initialize an SGE queue set. A queue set
- * comprises a response queue, two Rx free-buffer queues, and up to 3
- * Tx queues. The Tx queues are assigned roles in the order Ethernet
- * queue, offload queue, and control queue.
- */
-int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports,
- int irq_vec_idx, const struct qset_params *p,
- int ntxq, struct net_device *dev,
- struct netdev_queue *netdevq)
-{
- int i, avail, ret = -ENOMEM;
- struct sge_qset *q = &adapter->sge.qs[id];
-
- init_qset_cntxt(q, id);
- setup_timer(&q->tx_reclaim_timer, sge_timer_tx, (unsigned long)q);
- setup_timer(&q->rx_reclaim_timer, sge_timer_rx, (unsigned long)q);
-
- q->fl[0].desc = alloc_ring(adapter->pdev, p->fl_size,
- sizeof(struct rx_desc),
- sizeof(struct rx_sw_desc),
- &q->fl[0].phys_addr, &q->fl[0].sdesc);
- if (!q->fl[0].desc)
- goto err;
-
- q->fl[1].desc = alloc_ring(adapter->pdev, p->jumbo_size,
- sizeof(struct rx_desc),
- sizeof(struct rx_sw_desc),
- &q->fl[1].phys_addr, &q->fl[1].sdesc);
- if (!q->fl[1].desc)
- goto err;
-
- q->rspq.desc = alloc_ring(adapter->pdev, p->rspq_size,
- sizeof(struct rsp_desc), 0,
- &q->rspq.phys_addr, NULL);
- if (!q->rspq.desc)
- goto err;
-
- for (i = 0; i < ntxq; ++i) {
- /*
- * The control queue always uses immediate data so does not
- * need to keep track of any sk_buffs.
- */
- size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc);
-
- q->txq[i].desc = alloc_ring(adapter->pdev, p->txq_size[i],
- sizeof(struct tx_desc), sz,
- &q->txq[i].phys_addr,
- &q->txq[i].sdesc);
- if (!q->txq[i].desc)
- goto err;
-
- q->txq[i].gen = 1;
- q->txq[i].size = p->txq_size[i];
- spin_lock_init(&q->txq[i].lock);
- skb_queue_head_init(&q->txq[i].sendq);
- }
-
- tasklet_init(&q->txq[TXQ_OFLD].qresume_tsk, restart_offloadq,
- (unsigned long)q);
- tasklet_init(&q->txq[TXQ_CTRL].qresume_tsk, restart_ctrlq,
- (unsigned long)q);
-
- q->fl[0].gen = q->fl[1].gen = 1;
- q->fl[0].size = p->fl_size;
- q->fl[1].size = p->jumbo_size;
-
- q->rspq.gen = 1;
- q->rspq.size = p->rspq_size;
- spin_lock_init(&q->rspq.lock);
- skb_queue_head_init(&q->rspq.rx_queue);
-
- q->txq[TXQ_ETH].stop_thres = nports *
- flits_to_desc(sgl_len(MAX_SKB_FRAGS + 1) + 3);
-
-#if FL0_PG_CHUNK_SIZE > 0
- q->fl[0].buf_size = FL0_PG_CHUNK_SIZE;
-#else
- q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + sizeof(struct cpl_rx_data);
-#endif
-#if FL1_PG_CHUNK_SIZE > 0
- q->fl[1].buf_size = FL1_PG_CHUNK_SIZE;
-#else
- q->fl[1].buf_size = is_offload(adapter) ?
- (16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
- MAX_FRAME_SIZE + 2 + sizeof(struct cpl_rx_pkt);
-#endif
-
- q->fl[0].use_pages = FL0_PG_CHUNK_SIZE > 0;
- q->fl[1].use_pages = FL1_PG_CHUNK_SIZE > 0;
- q->fl[0].order = FL0_PG_ORDER;
- q->fl[1].order = FL1_PG_ORDER;
- q->fl[0].alloc_size = FL0_PG_ALLOC_SIZE;
- q->fl[1].alloc_size = FL1_PG_ALLOC_SIZE;
-
- spin_lock_irq(&adapter->sge.reg_lock);
-
- /* FL threshold comparison uses < */
- ret = t3_sge_init_rspcntxt(adapter, q->rspq.cntxt_id, irq_vec_idx,
- q->rspq.phys_addr, q->rspq.size,
- q->fl[0].buf_size - SGE_PG_RSVD, 1, 0);
- if (ret)
- goto err_unlock;
-
- for (i = 0; i < SGE_RXQ_PER_SET; ++i) {
- ret = t3_sge_init_flcntxt(adapter, q->fl[i].cntxt_id, 0,
- q->fl[i].phys_addr, q->fl[i].size,
- q->fl[i].buf_size - SGE_PG_RSVD,
- p->cong_thres, 1, 0);
- if (ret)
- goto err_unlock;
- }
-
- ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_ETH].cntxt_id, USE_GTS,
- SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr,
- q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token,
- 1, 0);
- if (ret)
- goto err_unlock;
-
- if (ntxq > 1) {
- ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_OFLD].cntxt_id,
- USE_GTS, SGE_CNTXT_OFLD, id,
- q->txq[TXQ_OFLD].phys_addr,
- q->txq[TXQ_OFLD].size, 0, 1, 0);
- if (ret)
- goto err_unlock;
- }
-
- if (ntxq > 2) {
- ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_CTRL].cntxt_id, 0,
- SGE_CNTXT_CTRL, id,
- q->txq[TXQ_CTRL].phys_addr,
- q->txq[TXQ_CTRL].size,
- q->txq[TXQ_CTRL].token, 1, 0);
- if (ret)
- goto err_unlock;
- }
-
- spin_unlock_irq(&adapter->sge.reg_lock);
-
- q->adap = adapter;
- q->netdev = dev;
- q->tx_q = netdevq;
- t3_update_qset_coalesce(q, p);
-
- avail = refill_fl(adapter, &q->fl[0], q->fl[0].size,
- GFP_KERNEL | __GFP_COMP);
- if (!avail) {
- CH_ALERT(adapter, "free list queue 0 initialization failed\n");
- goto err;
- }
- if (avail < q->fl[0].size)
- CH_WARN(adapter, "free list queue 0 enabled with %d credits\n",
- avail);
-
- avail = refill_fl(adapter, &q->fl[1], q->fl[1].size,
- GFP_KERNEL | __GFP_COMP);
- if (avail < q->fl[1].size)
- CH_WARN(adapter, "free list queue 1 enabled with %d credits\n",
- avail);
- refill_rspq(adapter, &q->rspq, q->rspq.size - 1);
-
- t3_write_reg(adapter, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) |
- V_NEWTIMER(q->rspq.holdoff_tmr));
-
- return 0;
-
-err_unlock:
- spin_unlock_irq(&adapter->sge.reg_lock);
-err:
- t3_free_qset(adapter, q);
- return ret;
-}
-
-/**
- * t3_start_sge_timers - start SGE timer call backs
- * @adap: the adapter
- *
- * Starts each SGE queue set's timer call back
- */
-void t3_start_sge_timers(struct adapter *adap)
-{
- int i;
-
- for (i = 0; i < SGE_QSETS; ++i) {
- struct sge_qset *q = &adap->sge.qs[i];
-
- if (q->tx_reclaim_timer.function)
- mod_timer(&q->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
-
- if (q->rx_reclaim_timer.function)
- mod_timer(&q->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD);
- }
-}
-
-/**
- * t3_stop_sge_timers - stop SGE timer call backs
- * @adap: the adapter
- *
- * Stops each SGE queue set's timer call back
- */
-void t3_stop_sge_timers(struct adapter *adap)
-{
- int i;
-
- for (i = 0; i < SGE_QSETS; ++i) {
- struct sge_qset *q = &adap->sge.qs[i];
-
- if (q->tx_reclaim_timer.function)
- del_timer_sync(&q->tx_reclaim_timer);
- if (q->rx_reclaim_timer.function)
- del_timer_sync(&q->rx_reclaim_timer);
- }
-}
-
-/**
- * t3_free_sge_resources - free SGE resources
- * @adap: the adapter
- *
- * Frees resources used by the SGE queue sets.
- */
-void t3_free_sge_resources(struct adapter *adap)
-{
- int i;
-
- for (i = 0; i < SGE_QSETS; ++i)
- t3_free_qset(adap, &adap->sge.qs[i]);
-}
-
-/**
- * t3_sge_start - enable SGE
- * @adap: the adapter
- *
- * Enables the SGE for DMAs. This is the last step in starting packet
- * transfers.
- */
-void t3_sge_start(struct adapter *adap)
-{
- t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE);
-}
-
-/**
- * t3_sge_stop - disable SGE operation
- * @adap: the adapter
- *
- * Disables the DMA engine. This can be called in emeregencies (e.g.,
- * from error interrupts) or from normal process context. In the latter
- * case it also disables any pending queue restart tasklets. Note that
- * if it is called in interrupt context it cannot disable the restart
- * tasklets as it cannot wait, however the tasklets will have no effect
- * since the doorbells are disabled and the driver will call this again
- * later from process context, at which time the tasklets will be stopped
- * if they are still running.
- */
-void t3_sge_stop(struct adapter *adap)
-{
- t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, 0);
- if (!in_interrupt()) {
- int i;
-
- for (i = 0; i < SGE_QSETS; ++i) {
- struct sge_qset *qs = &adap->sge.qs[i];
-
- tasklet_kill(&qs->txq[TXQ_OFLD].qresume_tsk);
- tasklet_kill(&qs->txq[TXQ_CTRL].qresume_tsk);
- }
- }
-}
-
-/**
- * t3_sge_init - initialize SGE
- * @adap: the adapter
- * @p: the SGE parameters
- *
- * Performs SGE initialization needed every time after a chip reset.
- * We do not initialize any of the queue sets here, instead the driver
- * top-level must request those individually. We also do not enable DMA
- * here, that should be done after the queues have been set up.
- */
-void t3_sge_init(struct adapter *adap, struct sge_params *p)
-{
- unsigned int ctrl, ups = ffs(pci_resource_len(adap->pdev, 2) >> 12);
-
- ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL |
- F_CQCRDTCTRL | F_CONGMODE | F_TNLFLMODE | F_FATLPERREN |
- V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS |
- V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING;
-#if SGE_NUM_GENBITS == 1
- ctrl |= F_EGRGENCTRL;
-#endif
- if (adap->params.rev > 0) {
- if (!(adap->flags & (USING_MSIX | USING_MSI)))
- ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ;
- }
- t3_write_reg(adap, A_SG_CONTROL, ctrl);
- t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) |
- V_LORCQDRBTHRSH(512));
- t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10);
- t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) |
- V_TIMEOUT(200 * core_ticks_per_usec(adap)));
- t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH,
- adap->params.rev < T3_REV_C ? 1000 : 500);
- t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256);
- t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000);
- t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256);
- t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff));
- t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024);
-}
-
-/**
- * t3_sge_prep - one-time SGE initialization
- * @adap: the associated adapter
- * @p: SGE parameters
- *
- * Performs one-time initialization of SGE SW state. Includes determining
- * defaults for the assorted SGE parameters, which admins can change until
- * they are used to initialize the SGE.
- */
-void t3_sge_prep(struct adapter *adap, struct sge_params *p)
-{
- int i;
-
- p->max_pkt_size = (16 * 1024) - sizeof(struct cpl_rx_data) -
- SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
-
- for (i = 0; i < SGE_QSETS; ++i) {
- struct qset_params *q = p->qset + i;
-
- q->polling = adap->params.rev > 0;
- q->coalesce_usecs = 5;
- q->rspq_size = 1024;
- q->fl_size = 1024;
- q->jumbo_size = 512;
- q->txq_size[TXQ_ETH] = 1024;
- q->txq_size[TXQ_OFLD] = 1024;
- q->txq_size[TXQ_CTRL] = 256;
- q->cong_thres = 0;
- }
-
- spin_lock_init(&adap->sge.reg_lock);
-}