diff options
author | Boris Brezillon <boris.brezillon@bootlin.com> | 2018-02-05 23:02:04 +0100 |
---|---|---|
committer | Boris Brezillon <boris.brezillon@bootlin.com> | 2018-02-16 10:09:34 +0100 |
commit | 93db446a424cee9387b532995e6b516667079555 (patch) | |
tree | 39c7900ae38d890fb971ea5fc6f194f7e66fa797 /drivers/mtd/nand/nandsim.c | |
parent | 7b6afee7291802aa8c02aa918782033992caf641 (diff) |
mtd: nand: move raw NAND related code to the raw/ subdir
As part of the process of sharing more code between different NAND
based devices, we need to move all raw NAND related code to the raw/
subdirectory.
Signed-off-by: Boris Brezillon <boris.brezillon@bootlin.com>
Diffstat (limited to 'drivers/mtd/nand/nandsim.c')
-rw-r--r-- | drivers/mtd/nand/nandsim.c | 2392 |
1 files changed, 0 insertions, 2392 deletions
diff --git a/drivers/mtd/nand/nandsim.c b/drivers/mtd/nand/nandsim.c deleted file mode 100644 index 44322a363ba5..000000000000 --- a/drivers/mtd/nand/nandsim.c +++ /dev/null @@ -1,2392 +0,0 @@ -/* - * NAND flash simulator. - * - * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org> - * - * Copyright (C) 2004 Nokia Corporation - * - * Note: NS means "NAND Simulator". - * Note: Input means input TO flash chip, output means output FROM chip. - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License as published by the - * Free Software Foundation; either version 2, or (at your option) any later - * version. - * - * This program is distributed in the hope that it will be useful, but - * WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General - * Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA - */ - -#include <linux/init.h> -#include <linux/types.h> -#include <linux/module.h> -#include <linux/moduleparam.h> -#include <linux/vmalloc.h> -#include <linux/math64.h> -#include <linux/slab.h> -#include <linux/errno.h> -#include <linux/string.h> -#include <linux/mtd/mtd.h> -#include <linux/mtd/rawnand.h> -#include <linux/mtd/nand_bch.h> -#include <linux/mtd/partitions.h> -#include <linux/delay.h> -#include <linux/list.h> -#include <linux/random.h> -#include <linux/sched.h> -#include <linux/sched/mm.h> -#include <linux/fs.h> -#include <linux/pagemap.h> -#include <linux/seq_file.h> -#include <linux/debugfs.h> - -/* Default simulator parameters values */ -#if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \ - !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \ - !defined(CONFIG_NANDSIM_THIRD_ID_BYTE) || \ - !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE) -#define CONFIG_NANDSIM_FIRST_ID_BYTE 0x98 -#define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39 -#define CONFIG_NANDSIM_THIRD_ID_BYTE 0xFF /* No byte */ -#define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */ -#endif - -#ifndef CONFIG_NANDSIM_ACCESS_DELAY -#define CONFIG_NANDSIM_ACCESS_DELAY 25 -#endif -#ifndef CONFIG_NANDSIM_PROGRAMM_DELAY -#define CONFIG_NANDSIM_PROGRAMM_DELAY 200 -#endif -#ifndef CONFIG_NANDSIM_ERASE_DELAY -#define CONFIG_NANDSIM_ERASE_DELAY 2 -#endif -#ifndef CONFIG_NANDSIM_OUTPUT_CYCLE -#define CONFIG_NANDSIM_OUTPUT_CYCLE 40 -#endif -#ifndef CONFIG_NANDSIM_INPUT_CYCLE -#define CONFIG_NANDSIM_INPUT_CYCLE 50 -#endif -#ifndef CONFIG_NANDSIM_BUS_WIDTH -#define CONFIG_NANDSIM_BUS_WIDTH 8 -#endif -#ifndef CONFIG_NANDSIM_DO_DELAYS -#define CONFIG_NANDSIM_DO_DELAYS 0 -#endif -#ifndef CONFIG_NANDSIM_LOG -#define CONFIG_NANDSIM_LOG 0 -#endif -#ifndef CONFIG_NANDSIM_DBG -#define CONFIG_NANDSIM_DBG 0 -#endif -#ifndef CONFIG_NANDSIM_MAX_PARTS -#define CONFIG_NANDSIM_MAX_PARTS 32 -#endif - -static uint access_delay = CONFIG_NANDSIM_ACCESS_DELAY; -static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY; -static uint erase_delay = CONFIG_NANDSIM_ERASE_DELAY; -static uint output_cycle = CONFIG_NANDSIM_OUTPUT_CYCLE; -static uint input_cycle = CONFIG_NANDSIM_INPUT_CYCLE; -static uint bus_width = CONFIG_NANDSIM_BUS_WIDTH; -static uint do_delays = CONFIG_NANDSIM_DO_DELAYS; -static uint log = CONFIG_NANDSIM_LOG; -static uint dbg = CONFIG_NANDSIM_DBG; -static unsigned long parts[CONFIG_NANDSIM_MAX_PARTS]; -static unsigned int parts_num; -static char *badblocks = NULL; -static char *weakblocks = NULL; -static char *weakpages = NULL; -static unsigned int bitflips = 0; -static char *gravepages = NULL; -static unsigned int overridesize = 0; -static char *cache_file = NULL; -static unsigned int bbt; -static unsigned int bch; -static u_char id_bytes[8] = { - [0] = CONFIG_NANDSIM_FIRST_ID_BYTE, - [1] = CONFIG_NANDSIM_SECOND_ID_BYTE, - [2] = CONFIG_NANDSIM_THIRD_ID_BYTE, - [3] = CONFIG_NANDSIM_FOURTH_ID_BYTE, - [4 ... 7] = 0xFF, -}; - -module_param_array(id_bytes, byte, NULL, 0400); -module_param_named(first_id_byte, id_bytes[0], byte, 0400); -module_param_named(second_id_byte, id_bytes[1], byte, 0400); -module_param_named(third_id_byte, id_bytes[2], byte, 0400); -module_param_named(fourth_id_byte, id_bytes[3], byte, 0400); -module_param(access_delay, uint, 0400); -module_param(programm_delay, uint, 0400); -module_param(erase_delay, uint, 0400); -module_param(output_cycle, uint, 0400); -module_param(input_cycle, uint, 0400); -module_param(bus_width, uint, 0400); -module_param(do_delays, uint, 0400); -module_param(log, uint, 0400); -module_param(dbg, uint, 0400); -module_param_array(parts, ulong, &parts_num, 0400); -module_param(badblocks, charp, 0400); -module_param(weakblocks, charp, 0400); -module_param(weakpages, charp, 0400); -module_param(bitflips, uint, 0400); -module_param(gravepages, charp, 0400); -module_param(overridesize, uint, 0400); -module_param(cache_file, charp, 0400); -module_param(bbt, uint, 0400); -module_param(bch, uint, 0400); - -MODULE_PARM_DESC(id_bytes, "The ID bytes returned by NAND Flash 'read ID' command"); -MODULE_PARM_DESC(first_id_byte, "The first byte returned by NAND Flash 'read ID' command (manufacturer ID) (obsolete)"); -MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID) (obsolete)"); -MODULE_PARM_DESC(third_id_byte, "The third byte returned by NAND Flash 'read ID' command (obsolete)"); -MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command (obsolete)"); -MODULE_PARM_DESC(access_delay, "Initial page access delay (microseconds)"); -MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds"); -MODULE_PARM_DESC(erase_delay, "Sector erase delay (milliseconds)"); -MODULE_PARM_DESC(output_cycle, "Word output (from flash) time (nanoseconds)"); -MODULE_PARM_DESC(input_cycle, "Word input (to flash) time (nanoseconds)"); -MODULE_PARM_DESC(bus_width, "Chip's bus width (8- or 16-bit)"); -MODULE_PARM_DESC(do_delays, "Simulate NAND delays using busy-waits if not zero"); -MODULE_PARM_DESC(log, "Perform logging if not zero"); -MODULE_PARM_DESC(dbg, "Output debug information if not zero"); -MODULE_PARM_DESC(parts, "Partition sizes (in erase blocks) separated by commas"); -/* Page and erase block positions for the following parameters are independent of any partitions */ -MODULE_PARM_DESC(badblocks, "Erase blocks that are initially marked bad, separated by commas"); -MODULE_PARM_DESC(weakblocks, "Weak erase blocks [: remaining erase cycles (defaults to 3)]" - " separated by commas e.g. 113:2 means eb 113" - " can be erased only twice before failing"); -MODULE_PARM_DESC(weakpages, "Weak pages [: maximum writes (defaults to 3)]" - " separated by commas e.g. 1401:2 means page 1401" - " can be written only twice before failing"); -MODULE_PARM_DESC(bitflips, "Maximum number of random bit flips per page (zero by default)"); -MODULE_PARM_DESC(gravepages, "Pages that lose data [: maximum reads (defaults to 3)]" - " separated by commas e.g. 1401:2 means page 1401" - " can be read only twice before failing"); -MODULE_PARM_DESC(overridesize, "Specifies the NAND Flash size overriding the ID bytes. " - "The size is specified in erase blocks and as the exponent of a power of two" - " e.g. 5 means a size of 32 erase blocks"); -MODULE_PARM_DESC(cache_file, "File to use to cache nand pages instead of memory"); -MODULE_PARM_DESC(bbt, "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area"); -MODULE_PARM_DESC(bch, "Enable BCH ecc and set how many bits should " - "be correctable in 512-byte blocks"); - -/* The largest possible page size */ -#define NS_LARGEST_PAGE_SIZE 4096 - -/* The prefix for simulator output */ -#define NS_OUTPUT_PREFIX "[nandsim]" - -/* Simulator's output macros (logging, debugging, warning, error) */ -#define NS_LOG(args...) \ - do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0) -#define NS_DBG(args...) \ - do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0) -#define NS_WARN(args...) \ - do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0) -#define NS_ERR(args...) \ - do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0) -#define NS_INFO(args...) \ - do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0) - -/* Busy-wait delay macros (microseconds, milliseconds) */ -#define NS_UDELAY(us) \ - do { if (do_delays) udelay(us); } while(0) -#define NS_MDELAY(us) \ - do { if (do_delays) mdelay(us); } while(0) - -/* Is the nandsim structure initialized ? */ -#define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0) - -/* Good operation completion status */ -#define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0))) - -/* Operation failed completion status */ -#define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns)) - -/* Calculate the page offset in flash RAM image by (row, column) address */ -#define NS_RAW_OFFSET(ns) \ - (((ns)->regs.row * (ns)->geom.pgszoob) + (ns)->regs.column) - -/* Calculate the OOB offset in flash RAM image by (row, column) address */ -#define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz) - -/* After a command is input, the simulator goes to one of the following states */ -#define STATE_CMD_READ0 0x00000001 /* read data from the beginning of page */ -#define STATE_CMD_READ1 0x00000002 /* read data from the second half of page */ -#define STATE_CMD_READSTART 0x00000003 /* read data second command (large page devices) */ -#define STATE_CMD_PAGEPROG 0x00000004 /* start page program */ -#define STATE_CMD_READOOB 0x00000005 /* read OOB area */ -#define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */ -#define STATE_CMD_STATUS 0x00000007 /* read status */ -#define STATE_CMD_SEQIN 0x00000009 /* sequential data input */ -#define STATE_CMD_READID 0x0000000A /* read ID */ -#define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */ -#define STATE_CMD_RESET 0x0000000C /* reset */ -#define STATE_CMD_RNDOUT 0x0000000D /* random output command */ -#define STATE_CMD_RNDOUTSTART 0x0000000E /* random output start command */ -#define STATE_CMD_MASK 0x0000000F /* command states mask */ - -/* After an address is input, the simulator goes to one of these states */ -#define STATE_ADDR_PAGE 0x00000010 /* full (row, column) address is accepted */ -#define STATE_ADDR_SEC 0x00000020 /* sector address was accepted */ -#define STATE_ADDR_COLUMN 0x00000030 /* column address was accepted */ -#define STATE_ADDR_ZERO 0x00000040 /* one byte zero address was accepted */ -#define STATE_ADDR_MASK 0x00000070 /* address states mask */ - -/* During data input/output the simulator is in these states */ -#define STATE_DATAIN 0x00000100 /* waiting for data input */ -#define STATE_DATAIN_MASK 0x00000100 /* data input states mask */ - -#define STATE_DATAOUT 0x00001000 /* waiting for page data output */ -#define STATE_DATAOUT_ID 0x00002000 /* waiting for ID bytes output */ -#define STATE_DATAOUT_STATUS 0x00003000 /* waiting for status output */ -#define STATE_DATAOUT_MASK 0x00007000 /* data output states mask */ - -/* Previous operation is done, ready to accept new requests */ -#define STATE_READY 0x00000000 - -/* This state is used to mark that the next state isn't known yet */ -#define STATE_UNKNOWN 0x10000000 - -/* Simulator's actions bit masks */ -#define ACTION_CPY 0x00100000 /* copy page/OOB to the internal buffer */ -#define ACTION_PRGPAGE 0x00200000 /* program the internal buffer to flash */ -#define ACTION_SECERASE 0x00300000 /* erase sector */ -#define ACTION_ZEROOFF 0x00400000 /* don't add any offset to address */ -#define ACTION_HALFOFF 0x00500000 /* add to address half of page */ -#define ACTION_OOBOFF 0x00600000 /* add to address OOB offset */ -#define ACTION_MASK 0x00700000 /* action mask */ - -#define NS_OPER_NUM 13 /* Number of operations supported by the simulator */ -#define NS_OPER_STATES 6 /* Maximum number of states in operation */ - -#define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */ -#define OPT_PAGE512 0x00000002 /* 512-byte page chips */ -#define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */ -#define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */ -#define OPT_PAGE4096 0x00000080 /* 4096-byte page chips */ -#define OPT_LARGEPAGE (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */ -#define OPT_SMALLPAGE (OPT_PAGE512) /* 512-byte page chips */ - -/* Remove action bits from state */ -#define NS_STATE(x) ((x) & ~ACTION_MASK) - -/* - * Maximum previous states which need to be saved. Currently saving is - * only needed for page program operation with preceded read command - * (which is only valid for 512-byte pages). - */ -#define NS_MAX_PREVSTATES 1 - -/* Maximum page cache pages needed to read or write a NAND page to the cache_file */ -#define NS_MAX_HELD_PAGES 16 - -/* - * A union to represent flash memory contents and flash buffer. - */ -union ns_mem { - u_char *byte; /* for byte access */ - uint16_t *word; /* for 16-bit word access */ -}; - -/* - * The structure which describes all the internal simulator data. - */ -struct nandsim { - struct mtd_partition partitions[CONFIG_NANDSIM_MAX_PARTS]; - unsigned int nbparts; - - uint busw; /* flash chip bus width (8 or 16) */ - u_char ids[8]; /* chip's ID bytes */ - uint32_t options; /* chip's characteristic bits */ - uint32_t state; /* current chip state */ - uint32_t nxstate; /* next expected state */ - - uint32_t *op; /* current operation, NULL operations isn't known yet */ - uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */ - uint16_t npstates; /* number of previous states saved */ - uint16_t stateidx; /* current state index */ - - /* The simulated NAND flash pages array */ - union ns_mem *pages; - - /* Slab allocator for nand pages */ - struct kmem_cache *nand_pages_slab; - - /* Internal buffer of page + OOB size bytes */ - union ns_mem buf; - - /* NAND flash "geometry" */ - struct { - uint64_t totsz; /* total flash size, bytes */ - uint32_t secsz; /* flash sector (erase block) size, bytes */ - uint pgsz; /* NAND flash page size, bytes */ - uint oobsz; /* page OOB area size, bytes */ - uint64_t totszoob; /* total flash size including OOB, bytes */ - uint pgszoob; /* page size including OOB , bytes*/ - uint secszoob; /* sector size including OOB, bytes */ - uint pgnum; /* total number of pages */ - uint pgsec; /* number of pages per sector */ - uint secshift; /* bits number in sector size */ - uint pgshift; /* bits number in page size */ - uint pgaddrbytes; /* bytes per page address */ - uint secaddrbytes; /* bytes per sector address */ - uint idbytes; /* the number ID bytes that this chip outputs */ - } geom; - - /* NAND flash internal registers */ - struct { - unsigned command; /* the command register */ - u_char status; /* the status register */ - uint row; /* the page number */ - uint column; /* the offset within page */ - uint count; /* internal counter */ - uint num; /* number of bytes which must be processed */ - uint off; /* fixed page offset */ - } regs; - - /* NAND flash lines state */ - struct { - int ce; /* chip Enable */ - int cle; /* command Latch Enable */ - int ale; /* address Latch Enable */ - int wp; /* write Protect */ - } lines; - - /* Fields needed when using a cache file */ - struct file *cfile; /* Open file */ - unsigned long *pages_written; /* Which pages have been written */ - void *file_buf; - struct page *held_pages[NS_MAX_HELD_PAGES]; - int held_cnt; -}; - -/* - * Operations array. To perform any operation the simulator must pass - * through the correspondent states chain. - */ -static struct nandsim_operations { - uint32_t reqopts; /* options which are required to perform the operation */ - uint32_t states[NS_OPER_STATES]; /* operation's states */ -} ops[NS_OPER_NUM] = { - /* Read page + OOB from the beginning */ - {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY, - STATE_DATAOUT, STATE_READY}}, - /* Read page + OOB from the second half */ - {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY, - STATE_DATAOUT, STATE_READY}}, - /* Read OOB */ - {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY, - STATE_DATAOUT, STATE_READY}}, - /* Program page starting from the beginning */ - {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN, - STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, - /* Program page starting from the beginning */ - {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE, - STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, - /* Program page starting from the second half */ - {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE, - STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, - /* Program OOB */ - {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE, - STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, - /* Erase sector */ - {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}}, - /* Read status */ - {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}}, - /* Read ID */ - {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}}, - /* Large page devices read page */ - {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY, - STATE_DATAOUT, STATE_READY}}, - /* Large page devices random page read */ - {OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY, - STATE_DATAOUT, STATE_READY}}, -}; - -struct weak_block { - struct list_head list; - unsigned int erase_block_no; - unsigned int max_erases; - unsigned int erases_done; -}; - -static LIST_HEAD(weak_blocks); - -struct weak_page { - struct list_head list; - unsigned int page_no; - unsigned int max_writes; - unsigned int writes_done; -}; - -static LIST_HEAD(weak_pages); - -struct grave_page { - struct list_head list; - unsigned int page_no; - unsigned int max_reads; - unsigned int reads_done; -}; - -static LIST_HEAD(grave_pages); - -static unsigned long *erase_block_wear = NULL; -static unsigned int wear_eb_count = 0; -static unsigned long total_wear = 0; - -/* MTD structure for NAND controller */ -static struct mtd_info *nsmtd; - -static int nandsim_debugfs_show(struct seq_file *m, void *private) -{ - unsigned long wmin = -1, wmax = 0, avg; - unsigned long deciles[10], decile_max[10], tot = 0; - unsigned int i; - - /* Calc wear stats */ - for (i = 0; i < wear_eb_count; ++i) { - unsigned long wear = erase_block_wear[i]; - if (wear < wmin) - wmin = wear; - if (wear > wmax) - wmax = wear; - tot += wear; - } - - for (i = 0; i < 9; ++i) { - deciles[i] = 0; - decile_max[i] = (wmax * (i + 1) + 5) / 10; - } - deciles[9] = 0; - decile_max[9] = wmax; - for (i = 0; i < wear_eb_count; ++i) { - int d; - unsigned long wear = erase_block_wear[i]; - for (d = 0; d < 10; ++d) - if (wear <= decile_max[d]) { - deciles[d] += 1; - break; - } - } - avg = tot / wear_eb_count; - - /* Output wear report */ - seq_printf(m, "Total numbers of erases: %lu\n", tot); - seq_printf(m, "Number of erase blocks: %u\n", wear_eb_count); - seq_printf(m, "Average number of erases: %lu\n", avg); - seq_printf(m, "Maximum number of erases: %lu\n", wmax); - seq_printf(m, "Minimum number of erases: %lu\n", wmin); - for (i = 0; i < 10; ++i) { - unsigned long from = (i ? decile_max[i - 1] + 1 : 0); - if (from > decile_max[i]) - continue; - seq_printf(m, "Number of ebs with erase counts from %lu to %lu : %lu\n", - from, - decile_max[i], - deciles[i]); - } - - return 0; -} - -static int nandsim_debugfs_open(struct inode *inode, struct file *file) -{ - return single_open(file, nandsim_debugfs_show, inode->i_private); -} - -static const struct file_operations dfs_fops = { - .open = nandsim_debugfs_open, - .read = seq_read, - .llseek = seq_lseek, - .release = single_release, -}; - -/** - * nandsim_debugfs_create - initialize debugfs - * @dev: nandsim device description object - * - * This function creates all debugfs files for UBI device @ubi. Returns zero in - * case of success and a negative error code in case of failure. - */ -static int nandsim_debugfs_create(struct nandsim *dev) -{ - struct dentry *root = nsmtd->dbg.dfs_dir; - struct dentry *dent; - - /* - * Just skip debugfs initialization when the debugfs directory is - * missing. - */ - if (IS_ERR_OR_NULL(root)) { - if (IS_ENABLED(CONFIG_DEBUG_FS) && - !IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) - NS_WARN("CONFIG_MTD_PARTITIONED_MASTER must be enabled to expose debugfs stuff\n"); - return 0; - } - - dent = debugfs_create_file("nandsim_wear_report", S_IRUSR, - root, dev, &dfs_fops); - if (IS_ERR_OR_NULL(dent)) { - NS_ERR("cannot create \"nandsim_wear_report\" debugfs entry\n"); - return -1; - } - - return 0; -} - -/* - * Allocate array of page pointers, create slab allocation for an array - * and initialize the array by NULL pointers. - * - * RETURNS: 0 if success, -ENOMEM if memory alloc fails. - */ -static int __init alloc_device(struct nandsim *ns) -{ - struct file *cfile; - int i, err; - - if (cache_file) { - cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600); - if (IS_ERR(cfile)) - return PTR_ERR(cfile); - if (!(cfile->f_mode & FMODE_CAN_READ)) { - NS_ERR("alloc_device: cache file not readable\n"); - err = -EINVAL; - goto err_close; - } - if (!(cfile->f_mode & FMODE_CAN_WRITE)) { - NS_ERR("alloc_device: cache file not writeable\n"); - err = -EINVAL; - goto err_close; - } - ns->pages_written = vzalloc(BITS_TO_LONGS(ns->geom.pgnum) * - sizeof(unsigned long)); - if (!ns->pages_written) { - NS_ERR("alloc_device: unable to allocate pages written array\n"); - err = -ENOMEM; - goto err_close; - } - ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL); - if (!ns->file_buf) { - NS_ERR("alloc_device: unable to allocate file buf\n"); - err = -ENOMEM; - goto err_free; - } - ns->cfile = cfile; - return 0; - } - - ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem)); - if (!ns->pages) { - NS_ERR("alloc_device: unable to allocate page array\n"); - return -ENOMEM; - } - for (i = 0; i < ns->geom.pgnum; i++) { - ns->pages[i].byte = NULL; - } - ns->nand_pages_slab = kmem_cache_create("nandsim", - ns->geom.pgszoob, 0, 0, NULL); - if (!ns->nand_pages_slab) { - NS_ERR("cache_create: unable to create kmem_cache\n"); - return -ENOMEM; - } - - return 0; - -err_free: - vfree(ns->pages_written); -err_close: - filp_close(cfile, NULL); - return err; -} - -/* - * Free any allocated pages, and free the array of page pointers. - */ -static void free_device(struct nandsim *ns) -{ - int i; - - if (ns->cfile) { - kfree(ns->file_buf); - vfree(ns->pages_written); - filp_close(ns->cfile, NULL); - return; - } - - if (ns->pages) { - for (i = 0; i < ns->geom.pgnum; i++) { - if (ns->pages[i].byte) - kmem_cache_free(ns->nand_pages_slab, - ns->pages[i].byte); - } - kmem_cache_destroy(ns->nand_pages_slab); - vfree(ns->pages); - } -} - -static char __init *get_partition_name(int i) -{ - return kasprintf(GFP_KERNEL, "NAND simulator partition %d", i); -} - -/* - * Initialize the nandsim structure. - * - * RETURNS: 0 if success, -ERRNO if failure. - */ -static int __init init_nandsim(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct nandsim *ns = nand_get_controller_data(chip); - int i, ret = 0; - uint64_t remains; - uint64_t next_offset; - - if (NS_IS_INITIALIZED(ns)) { - NS_ERR("init_nandsim: nandsim is already initialized\n"); - return -EIO; - } - - /* Force mtd to not do delays */ - chip->chip_delay = 0; - - /* Initialize the NAND flash parameters */ - ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8; - ns->geom.totsz = mtd->size; - ns->geom.pgsz = mtd->writesize; - ns->geom.oobsz = mtd->oobsize; - ns->geom.secsz = mtd->erasesize; - ns->geom.pgszoob = ns->geom.pgsz + ns->geom.oobsz; - ns->geom.pgnum = div_u64(ns->geom.totsz, ns->geom.pgsz); - ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz; - ns->geom.secshift = ffs(ns->geom.secsz) - 1; - ns->geom.pgshift = chip->page_shift; - ns->geom.pgsec = ns->geom.secsz / ns->geom.pgsz; - ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec; - ns->options = 0; - - if (ns->geom.pgsz == 512) { - ns->options |= OPT_PAGE512; - if (ns->busw == 8) - ns->options |= OPT_PAGE512_8BIT; - } else if (ns->geom.pgsz == 2048) { - ns->options |= OPT_PAGE2048; - } else if (ns->geom.pgsz == 4096) { - ns->options |= OPT_PAGE4096; - } else { - NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz); - return -EIO; - } - - if (ns->options & OPT_SMALLPAGE) { - if (ns->geom.totsz <= (32 << 20)) { - ns->geom.pgaddrbytes = 3; - ns->geom.secaddrbytes = 2; - } else { - ns->geom.pgaddrbytes = 4; - ns->geom.secaddrbytes = 3; - } - } else { - if (ns->geom.totsz <= (128 << 20)) { - ns->geom.pgaddrbytes = 4; - ns->geom.secaddrbytes = 2; - } else { - ns->geom.pgaddrbytes = 5; - ns->geom.secaddrbytes = 3; - } - } - - /* Fill the partition_info structure */ - if (parts_num > ARRAY_SIZE(ns->partitions)) { - NS_ERR("too many partitions.\n"); - return -EINVAL; - } - remains = ns->geom.totsz; - next_offset = 0; - for (i = 0; i < parts_num; ++i) { - uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz; - - if (!part_sz || part_sz > remains) { - NS_ERR("bad partition size.\n"); - return -EINVAL; - } - ns->partitions[i].name = get_partition_name(i); - if (!ns->partitions[i].name) { - NS_ERR("unable to allocate memory.\n"); - return -ENOMEM; - } - ns->partitions[i].offset = next_offset; - ns->partitions[i].size = part_sz; - next_offset += ns->partitions[i].size; - remains -= ns->partitions[i].size; - } - ns->nbparts = parts_num; - if (remains) { - if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) { - NS_ERR("too many partitions.\n"); - return -EINVAL; - } - ns->partitions[i].name = get_partition_name(i); - if (!ns->partitions[i].name) { - NS_ERR("unable to allocate memory.\n"); - return -ENOMEM; - } - ns->partitions[i].offset = next_offset; - ns->partitions[i].size = remains; - ns->nbparts += 1; - } - - if (ns->busw == 16) - NS_WARN("16-bit flashes support wasn't tested\n"); - - printk("flash size: %llu MiB\n", - (unsigned long long)ns->geom.totsz >> 20); - printk("page size: %u bytes\n", ns->geom.pgsz); - printk("OOB area size: %u bytes\n", ns->geom.oobsz); - printk("sector size: %u KiB\n", ns->geom.secsz >> 10); - printk("pages number: %u\n", ns->geom.pgnum); - printk("pages per sector: %u\n", ns->geom.pgsec); - printk("bus width: %u\n", ns->busw); - printk("bits in sector size: %u\n", ns->geom.secshift); - printk("bits in page size: %u\n", ns->geom.pgshift); - printk("bits in OOB size: %u\n", ffs(ns->geom.oobsz) - 1); - printk("flash size with OOB: %llu KiB\n", - (unsigned long long)ns->geom.totszoob >> 10); - printk("page address bytes: %u\n", ns->geom.pgaddrbytes); - printk("sector address bytes: %u\n", ns->geom.secaddrbytes); - printk("options: %#x\n", ns->options); - - if ((ret = alloc_device(ns)) != 0) - return ret; - - /* Allocate / initialize the internal buffer */ - ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL); - if (!ns->buf.byte) { - NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n", - ns->geom.pgszoob); - return -ENOMEM; - } - memset(ns->buf.byte, 0xFF, ns->geom.pgszoob); - - return 0; -} - -/* - * Free the nandsim structure. - */ -static void free_nandsim(struct nandsim *ns) -{ - kfree(ns->buf.byte); - free_device(ns); - - return; -} - -static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd) -{ - char *w; - int zero_ok; - unsigned int erase_block_no; - loff_t offset; - - if (!badblocks) - return 0; - w = badblocks; - do { - zero_ok = (*w == '0' ? 1 : 0); - erase_block_no = simple_strtoul(w, &w, 0); - if (!zero_ok && !erase_block_no) { - NS_ERR("invalid badblocks.\n"); - return -EINVAL; - } - offset = (loff_t)erase_block_no * ns->geom.secsz; - if (mtd_block_markbad(mtd, offset)) { - NS_ERR("invalid badblocks.\n"); - return -EINVAL; - } - if (*w == ',') - w += 1; - } while (*w); - return 0; -} - -static int parse_weakblocks(void) -{ - char *w; - int zero_ok; - unsigned int erase_block_no; - unsigned int max_erases; - struct weak_block *wb; - - if (!weakblocks) - return 0; - w = weakblocks; - do { - zero_ok = (*w == '0' ? 1 : 0); - erase_block_no = simple_strtoul(w, &w, 0); - if (!zero_ok && !erase_block_no) { - NS_ERR("invalid weakblocks.\n"); - return -EINVAL; - } - max_erases = 3; - if (*w == ':') { - w += 1; - max_erases = simple_strtoul(w, &w, 0); - } - if (*w == ',') - w += 1; - wb = kzalloc(sizeof(*wb), GFP_KERNEL); - if (!wb) { - NS_ERR("unable to allocate memory.\n"); - return -ENOMEM; - } - wb->erase_block_no = erase_block_no; - wb->max_erases = max_erases; - list_add(&wb->list, &weak_blocks); - } while (*w); - return 0; -} - -static int erase_error(unsigned int erase_block_no) -{ - struct weak_block *wb; - - list_for_each_entry(wb, &weak_blocks, list) - if (wb->erase_block_no == erase_block_no) { - if (wb->erases_done >= wb->max_erases) - return 1; - wb->erases_done += 1; - return 0; - } - return 0; -} - -static int parse_weakpages(void) -{ - char *w; - int zero_ok; - unsigned int page_no; - unsigned int max_writes; - struct weak_page *wp; - - if (!weakpages) - return 0; - w = weakpages; - do { - zero_ok = (*w == '0' ? 1 : 0); - page_no = simple_strtoul(w, &w, 0); - if (!zero_ok && !page_no) { - NS_ERR("invalid weakpages.\n"); - return -EINVAL; - } - max_writes = 3; - if (*w == ':') { - w += 1; - max_writes = simple_strtoul(w, &w, 0); - } - if (*w == ',') - w += 1; - wp = kzalloc(sizeof(*wp), GFP_KERNEL); - if (!wp) { - NS_ERR("unable to allocate memory.\n"); - return -ENOMEM; - } - wp->page_no = page_no; - wp->max_writes = max_writes; - list_add(&wp->list, &weak_pages); - } while (*w); - return 0; -} - -static int write_error(unsigned int page_no) -{ - struct weak_page *wp; - - list_for_each_entry(wp, &weak_pages, list) - if (wp->page_no == page_no) { - if (wp->writes_done >= wp->max_writes) - return 1; - wp->writes_done += 1; - return 0; - } - return 0; -} - -static int parse_gravepages(void) -{ - char *g; - int zero_ok; - unsigned int page_no; - unsigned int max_reads; - struct grave_page *gp; - - if (!gravepages) - return 0; - g = gravepages; - do { - zero_ok = (*g == '0' ? 1 : 0); - page_no = simple_strtoul(g, &g, 0); - if (!zero_ok && !page_no) { - NS_ERR("invalid gravepagess.\n"); - return -EINVAL; - } - max_reads = 3; - if (*g == ':') { - g += 1; - max_reads = simple_strtoul(g, &g, 0); - } - if (*g == ',') - g += 1; - gp = kzalloc(sizeof(*gp), GFP_KERNEL); - if (!gp) { - NS_ERR("unable to allocate memory.\n"); - return -ENOMEM; - } - gp->page_no = page_no; - gp->max_reads = max_reads; - list_add(&gp->list, &grave_pages); - } while (*g); - return 0; -} - -static int read_error(unsigned int page_no) -{ - struct grave_page *gp; - - list_for_each_entry(gp, &grave_pages, list) - if (gp->page_no == page_no) { - if (gp->reads_done >= gp->max_reads) - return 1; - gp->reads_done += 1; - return 0; - } - return 0; -} - -static void free_lists(void) -{ - struct list_head *pos, *n; - list_for_each_safe(pos, n, &weak_blocks) { - list_del(pos); - kfree(list_entry(pos, struct weak_block, list)); - } - list_for_each_safe(pos, n, &weak_pages) { - list_del(pos); - kfree(list_entry(pos, struct weak_page, list)); - } - list_for_each_safe(pos, n, &grave_pages) { - list_del(pos); - kfree(list_entry(pos, struct grave_page, list)); - } - kfree(erase_block_wear); -} - -static int setup_wear_reporting(struct mtd_info *mtd) -{ - size_t mem; - - wear_eb_count = div_u64(mtd->size, mtd->erasesize); - mem = wear_eb_count * sizeof(unsigned long); - if (mem / sizeof(unsigned long) != wear_eb_count) { - NS_ERR("Too many erase blocks for wear reporting\n"); - return -ENOMEM; - } - erase_block_wear = kzalloc(mem, GFP_KERNEL); - if (!erase_block_wear) { - NS_ERR("Too many erase blocks for wear reporting\n"); - return -ENOMEM; - } - return 0; -} - -static void update_wear(unsigned int erase_block_no) -{ - if (!erase_block_wear) - return; - total_wear += 1; - /* - * TODO: Notify this through a debugfs entry, - * instead of showing an error message. - */ - if (total_wear == 0) - NS_ERR("Erase counter total overflow\n"); - erase_block_wear[erase_block_no] += 1; - if (erase_block_wear[erase_block_no] == 0) - NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no); -} - -/* - * Returns the string representation of 'state' state. - */ -static char *get_state_name(uint32_t state) -{ - switch (NS_STATE(state)) { - case STATE_CMD_READ0: - return "STATE_CMD_READ0"; - case STATE_CMD_READ1: - return "STATE_CMD_READ1"; - case STATE_CMD_PAGEPROG: - return "STATE_CMD_PAGEPROG"; - case STATE_CMD_READOOB: - return "STATE_CMD_READOOB"; - case STATE_CMD_READSTART: - return "STATE_CMD_READSTART"; - case STATE_CMD_ERASE1: - return "STATE_CMD_ERASE1"; - case STATE_CMD_STATUS: - return "STATE_CMD_STATUS"; - case STATE_CMD_SEQIN: - return "STATE_CMD_SEQIN"; - case STATE_CMD_READID: - return "STATE_CMD_READID"; - case STATE_CMD_ERASE2: - return "STATE_CMD_ERASE2"; - case STATE_CMD_RESET: - return "STATE_CMD_RESET"; - case STATE_CMD_RNDOUT: - return "STATE_CMD_RNDOUT"; - case STATE_CMD_RNDOUTSTART: - return "STATE_CMD_RNDOUTSTART"; - case STATE_ADDR_PAGE: - return "STATE_ADDR_PAGE"; - case STATE_ADDR_SEC: - return "STATE_ADDR_SEC"; - case STATE_ADDR_ZERO: - return "STATE_ADDR_ZERO"; - case STATE_ADDR_COLUMN: - return "STATE_ADDR_COLUMN"; - case STATE_DATAIN: - return "STATE_DATAIN"; - case STATE_DATAOUT: - return "STATE_DATAOUT"; - case STATE_DATAOUT_ID: - return "STATE_DATAOUT_ID"; - case STATE_DATAOUT_STATUS: - return "STATE_DATAOUT_STATUS"; - case STATE_READY: - return "STATE_READY"; - case STATE_UNKNOWN: - return "STATE_UNKNOWN"; - } - - NS_ERR("get_state_name: unknown state, BUG\n"); - return NULL; -} - -/* - * Check if command is valid. - * - * RETURNS: 1 if wrong command, 0 if right. - */ -static int check_command(int cmd) -{ - switch (cmd) { - - case NAND_CMD_READ0: - case NAND_CMD_READ1: - case NAND_CMD_READSTART: - case NAND_CMD_PAGEPROG: - case NAND_CMD_READOOB: - case NAND_CMD_ERASE1: - case NAND_CMD_STATUS: - case NAND_CMD_SEQIN: - case NAND_CMD_READID: - case NAND_CMD_ERASE2: - case NAND_CMD_RESET: - case NAND_CMD_RNDOUT: - case NAND_CMD_RNDOUTSTART: - return 0; - - default: - return 1; - } -} - -/* - * Returns state after command is accepted by command number. - */ -static uint32_t get_state_by_command(unsigned command) -{ - switch (command) { - case NAND_CMD_READ0: - return STATE_CMD_READ0; - case NAND_CMD_READ1: - return STATE_CMD_READ1; - case NAND_CMD_PAGEPROG: - return STATE_CMD_PAGEPROG; - case NAND_CMD_READSTART: - return STATE_CMD_READSTART; - case NAND_CMD_READOOB: - return STATE_CMD_READOOB; - case NAND_CMD_ERASE1: - return STATE_CMD_ERASE1; - case NAND_CMD_STATUS: - return STATE_CMD_STATUS; - case NAND_CMD_SEQIN: - return STATE_CMD_SEQIN; - case NAND_CMD_READID: - return STATE_CMD_READID; - case NAND_CMD_ERASE2: - return STATE_CMD_ERASE2; - case NAND_CMD_RESET: - return STATE_CMD_RESET; - case NAND_CMD_RNDOUT: - return STATE_CMD_RNDOUT; - case NAND_CMD_RNDOUTSTART: - return STATE_CMD_RNDOUTSTART; - } - - NS_ERR("get_state_by_command: unknown command, BUG\n"); - return 0; -} - -/* - * Move an address byte to the correspondent internal register. - */ -static inline void accept_addr_byte(struct nandsim *ns, u_char bt) -{ - uint byte = (uint)bt; - - if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) - ns->regs.column |= (byte << 8 * ns->regs.count); - else { - ns->regs.row |= (byte << 8 * (ns->regs.count - - ns->geom.pgaddrbytes + - ns->geom.secaddrbytes)); - } - - return; -} - -/* - * Switch to STATE_READY state. - */ -static inline void switch_to_ready_state(struct nandsim *ns, u_char status) -{ - NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY)); - - ns->state = STATE_READY; - ns->nxstate = STATE_UNKNOWN; - ns->op = NULL; - ns->npstates = 0; - ns->stateidx = 0; - ns->regs.num = 0; - ns->regs.count = 0; - ns->regs.off = 0; - ns->regs.row = 0; - ns->regs.column = 0; - ns->regs.status = status; -} - -/* - * If the operation isn't known yet, try to find it in the global array - * of supported operations. - * - * Operation can be unknown because of the following. - * 1. New command was accepted and this is the first call to find the - * correspondent states chain. In this case ns->npstates = 0; - * 2. There are several operations which begin with the same command(s) - * (for example program from the second half and read from the - * second half operations both begin with the READ1 command). In this - * case the ns->pstates[] array contains previous states. - * - * Thus, the function tries to find operation containing the following - * states (if the 'flag' parameter is 0): - * ns->pstates[0], ... ns->pstates[ns->npstates], ns->state - * - * If (one and only one) matching operation is found, it is accepted ( - * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is - * zeroed). - * - * If there are several matches, the current state is pushed to the - * ns->pstates. - * - * The operation can be unknown only while commands are input to the chip. - * As soon as address command is accepted, the operation must be known. - * In such situation the function is called with 'flag' != 0, and the - * operation is searched using the following pattern: - * ns->pstates[0], ... ns->pstates[ns->npstates], <address input> - * - * It is supposed that this pattern must either match one operation or - * none. There can't be ambiguity in that case. - * - * If no matches found, the function does the following: - * 1. if there are saved states present, try to ignore them and search - * again only using the last command. If nothing was found, switch - * to the STATE_READY state. - * 2. if there are no saved states, switch to the STATE_READY state. - * - * RETURNS: -2 - no matched operations found. - * -1 - several matches. - * 0 - operation is found. - */ -static int find_operation(struct nandsim *ns, uint32_t flag) -{ - int opsfound = 0; - int i, j, idx = 0; - - for (i = 0; i < NS_OPER_NUM; i++) { - - int found = 1; - - if (!(ns->options & ops[i].reqopts)) - /* Ignore operations we can't perform */ - continue; - - if (flag) { - if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK)) - continue; - } else { - if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates])) - continue; - } - - for (j = 0; j < ns->npstates; j++) - if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j]) - && (ns->options & ops[idx].reqopts)) { - found = 0; - break; - } - - if (found) { - idx = i; - opsfound += 1; - } - } - - if (opsfound == 1) { - /* Exact match */ - ns->op = &ops[idx].states[0]; - if (flag) { - /* - * In this case the find_operation function was - * called when address has just began input. But it isn't - * yet fully input and the current state must - * not be one of STATE_ADDR_*, but the STATE_ADDR_* - * state must be the next state (ns->nxstate). - */ - ns->stateidx = ns->npstates - 1; - } else { - ns->stateidx = ns->npstates; - } - ns->npstates = 0; - ns->state = ns->op[ns->stateidx]; - ns->nxstate = ns->op[ns->stateidx + 1]; - NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n", - idx, get_state_name(ns->state), get_state_name(ns->nxstate)); - return 0; - } - - if (opsfound == 0) { - /* Nothing was found. Try to ignore previous commands (if any) and search again */ - if (ns->npstates != 0) { - NS_DBG("find_operation: no operation found, try again with state %s\n", - get_state_name(ns->state)); - ns->npstates = 0; - return find_operation(ns, 0); - - } - NS_DBG("find_operation: no operations found\n"); - switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); - return -2; - } - - if (flag) { - /* This shouldn't happen */ - NS_DBG("find_operation: BUG, operation must be known if address is input\n"); - return -2; - } - - NS_DBG("find_operation: there is still ambiguity\n"); - - ns->pstates[ns->npstates++] = ns->state; - - return -1; -} - -static void put_pages(struct nandsim *ns) -{ - int i; - - for (i = 0; i < ns->held_cnt; i++) - put_page(ns->held_pages[i]); -} - -/* Get page cache pages in advance to provide NOFS memory allocation */ -static int get_pages(struct nandsim *ns, struct file *file, size_t count, loff_t pos) -{ - pgoff_t index, start_index, end_index; - struct page *page; - struct address_space *mapping = file->f_mapping; - - start_index = pos >> PAGE_SHIFT; - end_index = (pos + count - 1) >> PAGE_SHIFT; - if (end_index - start_index + 1 > NS_MAX_HELD_PAGES) - return -EINVAL; - ns->held_cnt = 0; - for (index = start_index; index <= end_index; index++) { - page = find_get_page(mapping, index); - if (page == NULL) { - page = find_or_create_page(mapping, index, GFP_NOFS); - if (page == NULL) { - write_inode_now(mapping->host, 1); - page = find_or_create_page(mapping, index, GFP_NOFS); - } - if (page == NULL) { - put_pages(ns); - return -ENOMEM; - } - unlock_page(page); - } - ns->held_pages[ns->held_cnt++] = page; - } - return 0; -} - -static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos) -{ - ssize_t tx; - int err; - unsigned int noreclaim_flag; - - err = get_pages(ns, file, count, pos); - if (err) - return err; - noreclaim_flag = memalloc_noreclaim_save(); - tx = kernel_read(file, buf, count, &pos); - memalloc_noreclaim_restore(noreclaim_flag); - put_pages(ns); - return tx; -} - -static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos) -{ - ssize_t tx; - int err; - unsigned int noreclaim_flag; - - err = get_pages(ns, file, count, pos); - if (err) - return err; - noreclaim_flag = memalloc_noreclaim_save(); - tx = kernel_write(file, buf, count, &pos); - memalloc_noreclaim_restore(noreclaim_flag); - put_pages(ns); - return tx; -} - -/* - * Returns a pointer to the current page. - */ -static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns) -{ - return &(ns->pages[ns->regs.row]); -} - -/* - * Retuns a pointer to the current byte, within the current page. - */ -static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns) -{ - return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off; -} - -static int do_read_error(struct nandsim *ns, int num) -{ - unsigned int page_no = ns->regs.row; - - if (read_error(page_no)) { - prandom_bytes(ns->buf.byte, num); - NS_WARN("simulating read error in page %u\n", page_no); - return 1; - } - return 0; -} - -static void do_bit_flips(struct nandsim *ns, int num) -{ - if (bitflips && prandom_u32() < (1 << 22)) { - int flips = 1; - if (bitflips > 1) - flips = (prandom_u32() % (int) bitflips) + 1; - while (flips--) { - int pos = prandom_u32() % (num * 8); - ns->buf.byte[pos / 8] ^= (1 << (pos % 8)); - NS_WARN("read_page: flipping bit %d in page %d " - "reading from %d ecc: corrected=%u failed=%u\n", - pos, ns->regs.row, ns->regs.column + ns->regs.off, - nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed); - } - } -} - -/* - * Fill the NAND buffer with data read from the specified page. - */ -static void read_page(struct nandsim *ns, int num) -{ - union ns_mem *mypage; - - if (ns->cfile) { - if (!test_bit(ns->regs.row, ns->pages_written)) { - NS_DBG("read_page: page %d not written\n", ns->regs.row); - memset(ns->buf.byte, 0xFF, num); - } else { - loff_t pos; - ssize_t tx; - - NS_DBG("read_page: page %d written, reading from %d\n", - ns->regs.row, ns->regs.column + ns->regs.off); - if (do_read_error(ns, num)) - return; - pos = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off; - tx = read_file(ns, ns->cfile, ns->buf.byte, num, pos); - if (tx != num) { - NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx); - return; - } - do_bit_flips(ns, num); - } - return; - } - - mypage = NS_GET_PAGE(ns); - if (mypage->byte == NULL) { - NS_DBG("read_page: page %d not allocated\n", ns->regs.row); - memset(ns->buf.byte, 0xFF, num); - } else { - NS_DBG("read_page: page %d allocated, reading from %d\n", - ns->regs.row, ns->regs.column + ns->regs.off); - if (do_read_error(ns, num)) - return; - memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num); - do_bit_flips(ns, num); - } -} - -/* - * Erase all pages in the specified sector. - */ -static void erase_sector(struct nandsim *ns) -{ - union ns_mem *mypage; - int i; - - if (ns->cfile) { - for (i = 0; i < ns->geom.pgsec; i++) - if (__test_and_clear_bit(ns->regs.row + i, - ns->pages_written)) { - NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i); - } - return; - } - - mypage = NS_GET_PAGE(ns); - for (i = 0; i < ns->geom.pgsec; i++) { - if (mypage->byte != NULL) { - NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i); - kmem_cache_free(ns->nand_pages_slab, mypage->byte); - mypage->byte = NULL; - } - mypage++; - } -} - -/* - * Program the specified page with the contents from the NAND buffer. - */ -static int prog_page(struct nandsim *ns, int num) -{ - int i; - union ns_mem *mypage; - u_char *pg_off; - - if (ns->cfile) { - loff_t off; - ssize_t tx; - int all; - - NS_DBG("prog_page: writing page %d\n", ns->regs.row); - pg_off = ns->file_buf + ns->regs.column + ns->regs.off; - off = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off; - if (!test_bit(ns->regs.row, ns->pages_written)) { - all = 1; - memset(ns->file_buf, 0xff, ns->geom.pgszoob); - } else { - all = 0; - tx = read_file(ns, ns->cfile, pg_off, num, off); - if (tx != num) { - NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx); - return -1; - } - } - for (i = 0; i < num; i++) - pg_off[i] &= ns->buf.byte[i]; - if (all) { - loff_t pos = (loff_t)ns->regs.row * ns->geom.pgszoob; - tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, pos); - if (tx != ns->geom.pgszoob) { - NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx); - return -1; - } - __set_bit(ns->regs.row, ns->pages_written); - } else { - tx = write_file(ns, ns->cfile, pg_off, num, off); - if (tx != num) { - NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx); - return -1; - } - } - return 0; - } - - mypage = NS_GET_PAGE(ns); - if (mypage->byte == NULL) { - NS_DBG("prog_page: allocating page %d\n", ns->regs.row); - /* - * We allocate memory with GFP_NOFS because a flash FS may - * utilize this. If it is holding an FS lock, then gets here, - * then kernel memory alloc runs writeback which goes to the FS - * again and deadlocks. This was seen in practice. - */ - mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS); - if (mypage->byte == NULL) { - NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row); - return -1; - } - memset(mypage->byte, 0xFF, ns->geom.pgszoob); - } - - pg_off = NS_PAGE_BYTE_OFF(ns); - for (i = 0; i < num; i++) - pg_off[i] &= ns->buf.byte[i]; - - return 0; -} - -/* - * If state has any action bit, perform this action. - * - * RETURNS: 0 if success, -1 if error. - */ -static int do_state_action(struct nandsim *ns, uint32_t action) -{ - int num; - int busdiv = ns->busw == 8 ? 1 : 2; - unsigned int erase_block_no, page_no; - - action &= ACTION_MASK; - - /* Check that page address input is correct */ - if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) { - NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row); - return -1; - } - - switch (action) { - - case ACTION_CPY: - /* - * Copy page data to the internal buffer. - */ - - /* Column shouldn't be very large */ - if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) { - NS_ERR("do_state_action: column number is too large\n"); - break; - } - num = ns->geom.pgszoob - ns->regs.off - ns->regs.column; - read_page(ns, num); - - NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n", - num, NS_RAW_OFFSET(ns) + ns->regs.off); - - if (ns->regs.off == 0) - NS_LOG("read page %d\n", ns->regs.row); - else if (ns->regs.off < ns->geom.pgsz) - NS_LOG("read page %d (second half)\n", ns->regs.row); - else - NS_LOG("read OOB of page %d\n", ns->regs.row); - - NS_UDELAY(access_delay); - NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv); - - break; - - case ACTION_SECERASE: - /* - * Erase sector. - */ - - if (ns->lines.wp) { - NS_ERR("do_state_action: device is write-protected, ignore sector erase\n"); - return -1; - } - - if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec - || (ns->regs.row & ~(ns->geom.secsz - 1))) { - NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row); - return -1; - } - - ns->regs.row = (ns->regs.row << - 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column; - ns->regs.column = 0; - - erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift); - - NS_DBG("do_state_action: erase sector at address %#x, off = %d\n", - ns->regs.row, NS_RAW_OFFSET(ns)); - NS_LOG("erase sector %u\n", erase_block_no); - - erase_sector(ns); - - NS_MDELAY(erase_delay); - - if (erase_block_wear) - update_wear(erase_block_no); - - if (erase_error(erase_block_no)) { - NS_WARN("simulating erase failure in erase block %u\n", erase_block_no); - return -1; - } - - break; - - case ACTION_PRGPAGE: - /* - * Program page - move internal buffer data to the page. - */ - - if (ns->lines.wp) { - NS_WARN("do_state_action: device is write-protected, programm\n"); - return -1; - } - - num = ns->geom.pgszoob - ns->regs.off - ns->regs.column; - if (num != ns->regs.count) { - NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n", - ns->regs.count, num); - return -1; - } - - if (prog_page(ns, num) == -1) - return -1; - - page_no = ns->regs.row; - - NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n", - num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off); - NS_LOG("programm page %d\n", ns->regs.row); - - NS_UDELAY(programm_delay); - NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv); - - if (write_error(page_no)) { - NS_WARN("simulating write failure in page %u\n", page_no); - return -1; - } - - break; - - case ACTION_ZEROOFF: - NS_DBG("do_state_action: set internal offset to 0\n"); - ns->regs.off = 0; - break; - - case ACTION_HALFOFF: - if (!(ns->options & OPT_PAGE512_8BIT)) { - NS_ERR("do_state_action: BUG! can't skip half of page for non-512" - "byte page size 8x chips\n"); - return -1; - } - NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2); - ns->regs.off = ns->geom.pgsz/2; - break; - - case ACTION_OOBOFF: - NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz); - ns->regs.off = ns->geom.pgsz; - break; - - default: - NS_DBG("do_state_action: BUG! unknown action\n"); - } - - return 0; -} - -/* - * Switch simulator's state. - */ -static void switch_state(struct nandsim *ns) -{ - if (ns->op) { - /* - * The current operation have already been identified. - * Just follow the states chain. - */ - - ns->stateidx += 1; - ns->state = ns->nxstate; - ns->nxstate = ns->op[ns->stateidx + 1]; - - NS_DBG("switch_state: operation is known, switch to the next state, " - "state: %s, nxstate: %s\n", - get_state_name(ns->state), get_state_name(ns->nxstate)); - - /* See, whether we need to do some action */ - if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) { - switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); - return; - } - - } else { - /* - * We don't yet know which operation we perform. - * Try to identify it. - */ - - /* - * The only event causing the switch_state function to - * be called with yet unknown operation is new command. - */ - ns->state = get_state_by_command(ns->regs.command); - - NS_DBG("switch_state: operation is unknown, try to find it\n"); - - if (find_operation(ns, 0) != 0) - return; - - if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) { - switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); - return; - } - } - - /* For 16x devices column means the page offset in words */ - if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) { - NS_DBG("switch_state: double the column number for 16x device\n"); - ns->regs.column <<= 1; - } - - if (NS_STATE(ns->nxstate) == STATE_READY) { - /* - * The current state is the last. Return to STATE_READY - */ - - u_char status = NS_STATUS_OK(ns); - - /* In case of data states, see if all bytes were input/output */ - if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) - && ns->regs.count != ns->regs.num) { - NS_WARN("switch_state: not all bytes were processed, %d left\n", - ns->regs.num - ns->regs.count); - status = NS_STATUS_FAILED(ns); - } - - NS_DBG("switch_state: operation complete, switch to STATE_READY state\n"); - - switch_to_ready_state(ns, status); - - return; - } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) { - /* - * If the next state is data input/output, switch to it now - */ - - ns->state = ns->nxstate; - ns->nxstate = ns->op[++ns->stateidx + 1]; - ns->regs.num = ns->regs.count = 0; - - NS_DBG("switch_state: the next state is data I/O, switch, " - "state: %s, nxstate: %s\n", - get_state_name(ns->state), get_state_name(ns->nxstate)); - - /* - * Set the internal register to the count of bytes which - * are expected to be input or output - */ - switch (NS_STATE(ns->state)) { - case STATE_DATAIN: - case STATE_DATAOUT: - ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column; - break; - - case STATE_DATAOUT_ID: - ns->regs.num = ns->geom.idbytes; - break; - - case STATE_DATAOUT_STATUS: - ns->regs.count = ns->regs.num = 0; - break; - - default: - NS_ERR("switch_state: BUG! unknown data state\n"); - } - - } else if (ns->nxstate & STATE_ADDR_MASK) { - /* - * If the next state is address input, set the internal - * register to the number of expected address bytes - */ - - ns->regs.count = 0; - - switch (NS_STATE(ns->nxstate)) { - case STATE_ADDR_PAGE: - ns->regs.num = ns->geom.pgaddrbytes; - - break; - case STATE_ADDR_SEC: - ns->regs.num = ns->geom.secaddrbytes; - break; - - case STATE_ADDR_ZERO: - ns->regs.num = 1; - break; - - case STATE_ADDR_COLUMN: - /* Column address is always 2 bytes */ - ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes; - break; - - default: - NS_ERR("switch_state: BUG! unknown address state\n"); - } - } else { - /* - * Just reset internal counters. - */ - - ns->regs.num = 0; - ns->regs.count = 0; - } -} - -static u_char ns_nand_read_byte(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct nandsim *ns = nand_get_controller_data(chip); - u_char outb = 0x00; - - /* Sanity and correctness checks */ - if (!ns->lines.ce) { - NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb); - return outb; - } - if (ns->lines.ale || ns->lines.cle) { - NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb); - return outb; - } - if (!(ns->state & STATE_DATAOUT_MASK)) { - NS_WARN("read_byte: unexpected data output cycle, state is %s " - "return %#x\n", get_state_name(ns->state), (uint)outb); - return outb; - } - - /* Status register may be read as many times as it is wanted */ - if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) { - NS_DBG("read_byte: return %#x status\n", ns->regs.status); - return ns->regs.status; - } - - /* Check if there is any data in the internal buffer which may be read */ - if (ns->regs.count == ns->regs.num) { - NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb); - return outb; - } - - switch (NS_STATE(ns->state)) { - case STATE_DATAOUT: - if (ns->busw == 8) { - outb = ns->buf.byte[ns->regs.count]; - ns->regs.count += 1; - } else { - outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]); - ns->regs.count += 2; - } - break; - case STATE_DATAOUT_ID: - NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num); - outb = ns->ids[ns->regs.count]; - ns->regs.count += 1; - break; - default: - BUG(); - } - - if (ns->regs.count == ns->regs.num) { - NS_DBG("read_byte: all bytes were read\n"); - - if (NS_STATE(ns->nxstate) == STATE_READY) - switch_state(ns); - } - - return outb; -} - -static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct nandsim *ns = nand_get_controller_data(chip); - - /* Sanity and correctness checks */ - if (!ns->lines.ce) { - NS_ERR("write_byte: chip is disabled, ignore write\n"); - return; - } - if (ns->lines.ale && ns->lines.cle) { - NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n"); - return; - } - - if (ns->lines.cle == 1) { - /* - * The byte written is a command. - */ - - if (byte == NAND_CMD_RESET) { - NS_LOG("reset chip\n"); - switch_to_ready_state(ns, NS_STATUS_OK(ns)); - return; - } - - /* Check that the command byte is correct */ - if (check_command(byte)) { - NS_ERR("write_byte: unknown command %#x\n", (uint)byte); - return; - } - - if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS - || NS_STATE(ns->state) == STATE_DATAOUT) { - int row = ns->regs.row; - - switch_state(ns); - if (byte == NAND_CMD_RNDOUT) - ns->regs.row = row; - } - - /* Check if chip is expecting command */ - if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) { - /* Do not warn if only 2 id bytes are read */ - if (!(ns->regs.command == NAND_CMD_READID && - NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) { - /* - * We are in situation when something else (not command) - * was expected but command was input. In this case ignore - * previous command(s)/state(s) and accept the last one. - */ - NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, " - "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate)); - } - switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); - } - - NS_DBG("command byte corresponding to %s state accepted\n", - get_state_name(get_state_by_command(byte))); - ns->regs.command = byte; - switch_state(ns); - - } else if (ns->lines.ale == 1) { - /* - * The byte written is an address. - */ - - if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) { - - NS_DBG("write_byte: operation isn't known yet, identify it\n"); - - if (find_operation(ns, 1) < 0) - return; - - if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) { - switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); - return; - } - - ns->regs.count = 0; - switch (NS_STATE(ns->nxstate)) { - case STATE_ADDR_PAGE: - ns->regs.num = ns->geom.pgaddrbytes; - break; - case STATE_ADDR_SEC: - ns->regs.num = ns->geom.secaddrbytes; - break; - case STATE_ADDR_ZERO: - ns->regs.num = 1; - break; - default: - BUG(); - } - } - - /* Check that chip is expecting address */ - if (!(ns->nxstate & STATE_ADDR_MASK)) { - NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, " - "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate)); - switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); - return; - } - - /* Check if this is expected byte */ - if (ns->regs.count == ns->regs.num) { - NS_ERR("write_byte: no more address bytes expected\n"); - switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); - return; - } - - accept_addr_byte(ns, byte); - - ns->regs.count += 1; - - NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n", - (uint)byte, ns->regs.count, ns->regs.num); - - if (ns->regs.count == ns->regs.num) { - NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column); - switch_state(ns); - } - - } else { - /* - * The byte written is an input data. - */ - - /* Check that chip is expecting data input */ - if (!(ns->state & STATE_DATAIN_MASK)) { - NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, " - "switch to %s\n", (uint)byte, - get_state_name(ns->state), get_state_name(STATE_READY)); - switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); - return; - } - - /* Check if this is expected byte */ - if (ns->regs.count == ns->regs.num) { - NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n", - ns->regs.num); - return; - } - - if (ns->busw == 8) { - ns->buf.byte[ns->regs.count] = byte; - ns->regs.count += 1; - } else { - ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte); - ns->regs.count += 2; - } - } - - return; -} - -static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct nandsim *ns = nand_get_controller_data(chip); - - ns->lines.cle = bitmask & NAND_CLE ? 1 : 0; - ns->lines.ale = bitmask & NAND_ALE ? 1 : 0; - ns->lines.ce = bitmask & NAND_NCE ? 1 : 0; - - if (cmd != NAND_CMD_NONE) - ns_nand_write_byte(mtd, cmd); -} - -static int ns_device_ready(struct mtd_info *mtd) -{ - NS_DBG("device_ready\n"); - return 1; -} - -static uint16_t ns_nand_read_word(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - - NS_DBG("read_word\n"); - - return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8); -} - -static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct nandsim *ns = nand_get_controller_data(chip); - - /* Check that chip is expecting data input */ - if (!(ns->state & STATE_DATAIN_MASK)) { - NS_ERR("write_buf: data input isn't expected, state is %s, " - "switch to STATE_READY\n", get_state_name(ns->state)); - switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); - return; - } - - /* Check if these are expected bytes */ - if (ns->regs.count + len > ns->regs.num) { - NS_ERR("write_buf: too many input bytes\n"); - switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); - return; - } - - memcpy(ns->buf.byte + ns->regs.count, buf, len); - ns->regs.count += len; - - if (ns->regs.count == ns->regs.num) { - NS_DBG("write_buf: %d bytes were written\n", ns->regs.count); - } -} - -static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct nandsim *ns = nand_get_controller_data(chip); - - /* Sanity and correctness checks */ - if (!ns->lines.ce) { - NS_ERR("read_buf: chip is disabled\n"); - return; - } - if (ns->lines.ale || ns->lines.cle) { - NS_ERR("read_buf: ALE or CLE pin is high\n"); - return; - } - if (!(ns->state & STATE_DATAOUT_MASK)) { - NS_WARN("read_buf: unexpected data output cycle, current state is %s\n", - get_state_name(ns->state)); - return; - } - - if (NS_STATE(ns->state) != STATE_DATAOUT) { - int i; - - for (i = 0; i < len; i++) - buf[i] = mtd_to_nand(mtd)->read_byte(mtd); - - return; - } - - /* Check if these are expected bytes */ - if (ns->regs.count + len > ns->regs.num) { - NS_ERR("read_buf: too many bytes to read\n"); - switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); - return; - } - - memcpy(buf, ns->buf.byte + ns->regs.count, len); - ns->regs.count += len; - - if (ns->regs.count == ns->regs.num) { - if (NS_STATE(ns->nxstate) == STATE_READY) - switch_state(ns); - } - - return; -} - -/* - * Module initialization function - */ -static int __init ns_init_module(void) -{ - struct nand_chip *chip; - struct nandsim *nand; - int retval = -ENOMEM, i; - - if (bus_width != 8 && bus_width != 16) { - NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width); - return -EINVAL; - } - - /* Allocate and initialize mtd_info, nand_chip and nandsim structures */ - chip = kzalloc(sizeof(struct nand_chip) + sizeof(struct nandsim), - GFP_KERNEL); - if (!chip) { - NS_ERR("unable to allocate core structures.\n"); - return -ENOMEM; - } - nsmtd = nand_to_mtd(chip); - nand = (struct nandsim *)(chip + 1); - nand_set_controller_data(chip, (void *)nand); - - /* - * Register simulator's callbacks. - */ - chip->cmd_ctrl = ns_hwcontrol; - chip->read_byte = ns_nand_read_byte; - chip->dev_ready = ns_device_ready; - chip->write_buf = ns_nand_write_buf; - chip->read_buf = ns_nand_read_buf; - chip->read_word = ns_nand_read_word; - chip->ecc.mode = NAND_ECC_SOFT; - chip->ecc.algo = NAND_ECC_HAMMING; - /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */ - /* and 'badblocks' parameters to work */ - chip->options |= NAND_SKIP_BBTSCAN; - - switch (bbt) { - case 2: - chip->bbt_options |= NAND_BBT_NO_OOB; - case 1: - chip->bbt_options |= NAND_BBT_USE_FLASH; - case 0: - break; - default: - NS_ERR("bbt has to be 0..2\n"); - retval = -EINVAL; - goto error; - } - /* - * Perform minimum nandsim structure initialization to handle - * the initial ID read command correctly - */ - if (id_bytes[6] != 0xFF || id_bytes[7] != 0xFF) - nand->geom.idbytes = 8; - else if (id_bytes[4] != 0xFF || id_bytes[5] != 0xFF) - nand->geom.idbytes = 6; - else if (id_bytes[2] != 0xFF || id_bytes[3] != 0xFF) - nand->geom.idbytes = 4; - else - nand->geom.idbytes = 2; - nand->regs.status = NS_STATUS_OK(nand); - nand->nxstate = STATE_UNKNOWN; - nand->options |= OPT_PAGE512; /* temporary value */ - memcpy(nand->ids, id_bytes, sizeof(nand->ids)); - if (bus_width == 16) { - nand->busw = 16; - chip->options |= NAND_BUSWIDTH_16; - } - - nsmtd->owner = THIS_MODULE; - - if ((retval = parse_weakblocks()) != 0) - goto error; - - if ((retval = parse_weakpages()) != 0) - goto error; - - if ((retval = parse_gravepages()) != 0) - goto error; - - retval = nand_scan_ident(nsmtd, 1, NULL); - if (retval) { - NS_ERR("cannot scan NAND Simulator device\n"); - goto error; - } - - if (bch) { - unsigned int eccsteps, eccbytes; - if (!mtd_nand_has_bch()) { - NS_ERR("BCH ECC support is disabled\n"); - retval = -EINVAL; - goto error; - } - /* use 512-byte ecc blocks */ - eccsteps = nsmtd->writesize/512; - eccbytes = (bch*13+7)/8; - /* do not bother supporting small page devices */ - if ((nsmtd->oobsize < 64) || !eccsteps) { - NS_ERR("bch not available on small page devices\n"); - retval = -EINVAL; - goto error; - } - if ((eccbytes*eccsteps+2) > nsmtd->oobsize) { - NS_ERR("invalid bch value %u\n", bch); - retval = -EINVAL; - goto error; - } - chip->ecc.mode = NAND_ECC_SOFT; - chip->ecc.algo = NAND_ECC_BCH; - chip->ecc.size = 512; - chip->ecc.strength = bch; - chip->ecc.bytes = eccbytes; - NS_INFO("using %u-bit/%u bytes BCH ECC\n", bch, chip->ecc.size); - } - - retval = nand_scan_tail(nsmtd); - if (retval) { - NS_ERR("can't register NAND Simulator\n"); - goto error; - } - - if (overridesize) { - uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize; - if (new_size >> overridesize != nsmtd->erasesize) { - NS_ERR("overridesize is too big\n"); - retval = -EINVAL; - goto err_exit; - } - /* N.B. This relies on nand_scan not doing anything with the size before we change it */ - nsmtd->size = new_size; - chip->chipsize = new_size; - chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1; - chip->pagemask = (chip->chipsize >> chip->page_shift) - 1; - } - - if ((retval = setup_wear_reporting(nsmtd)) != 0) - goto err_exit; - - if ((retval = init_nandsim(nsmtd)) != 0) - goto err_exit; - - if ((retval = chip->scan_bbt(nsmtd)) != 0) - goto err_exit; - - if ((retval = parse_badblocks(nand, nsmtd)) != 0) - goto err_exit; - - /* Register NAND partitions */ - retval = mtd_device_register(nsmtd, &nand->partitions[0], - nand->nbparts); - if (retval != 0) - goto err_exit; - - if ((retval = nandsim_debugfs_create(nand)) != 0) - goto err_exit; - - return 0; - -err_exit: - free_nandsim(nand); - nand_release(nsmtd); - for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i) - kfree(nand->partitions[i].name); -error: - kfree(chip); - free_lists(); - - return retval; -} - -module_init(ns_init_module); - -/* - * Module clean-up function - */ -static void __exit ns_cleanup_module(void) -{ - struct nand_chip *chip = mtd_to_nand(nsmtd); - struct nandsim *ns = nand_get_controller_data(chip); - int i; - - free_nandsim(ns); /* Free nandsim private resources */ - nand_release(nsmtd); /* Unregister driver */ - for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i) - kfree(ns->partitions[i].name); - kfree(mtd_to_nand(nsmtd)); /* Free other structures */ - free_lists(); -} - -module_exit(ns_cleanup_module); - -MODULE_LICENSE ("GPL"); -MODULE_AUTHOR ("Artem B. Bityuckiy"); -MODULE_DESCRIPTION ("The NAND flash simulator"); |