summaryrefslogtreecommitdiff
path: root/arch/x86
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2020-04-08 10:56:50 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2020-04-08 10:56:50 -0700
commit0339eb95403fb4664219be344a9399a3fdf1fae1 (patch)
tree76a6cb0d0cfcf8712867bf7c34cef078245f790b /arch/x86
parent9bb715260ed4cef6948cb2e05cf670462367da71 (diff)
parentdbef2808af6c594922fe32833b30f55f35e9da6d (diff)
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull more kvm updates from Paolo Bonzini: "s390: - nested virtualization fixes x86: - split svm.c - miscellaneous fixes" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: KVM: VMX: fix crash cleanup when KVM wasn't used KVM: X86: Filter out the broadcast dest for IPI fastpath KVM: s390: vsie: Fix possible race when shadowing region 3 tables KVM: s390: vsie: Fix delivery of addressing exceptions KVM: s390: vsie: Fix region 1 ASCE sanity shadow address checks KVM: nVMX: don't clear mtf_pending when nested events are blocked KVM: VMX: Remove unnecessary exception trampoline in vmx_vmenter KVM: SVM: Split svm_vcpu_run inline assembly to separate file KVM: SVM: Move SEV code to separate file KVM: SVM: Move AVIC code to separate file KVM: SVM: Move Nested SVM Implementation to nested.c kVM SVM: Move SVM related files to own sub-directory
Diffstat (limited to 'arch/x86')
-rw-r--r--arch/x86/kvm/Makefile2
-rw-r--r--arch/x86/kvm/lapic.c3
-rw-r--r--arch/x86/kvm/lapic.h3
-rw-r--r--arch/x86/kvm/svm/avic.c1027
-rw-r--r--arch/x86/kvm/svm/nested.c823
-rw-r--r--arch/x86/kvm/svm/pmu.c (renamed from arch/x86/kvm/pmu_amd.c)0
-rw-r--r--arch/x86/kvm/svm/sev.c1187
-rw-r--r--arch/x86/kvm/svm/svm.c (renamed from arch/x86/kvm/svm.c)3526
-rw-r--r--arch/x86/kvm/svm/svm.h491
-rw-r--r--arch/x86/kvm/svm/vmenter.S162
-rw-r--r--arch/x86/kvm/vmx/nested.c3
-rw-r--r--arch/x86/kvm/vmx/vmenter.S8
-rw-r--r--arch/x86/kvm/vmx/vmx.c12
-rw-r--r--arch/x86/kvm/x86.c3
14 files changed, 3737 insertions, 3513 deletions
diff --git a/arch/x86/kvm/Makefile b/arch/x86/kvm/Makefile
index e553f0fdd87d..a789759b7261 100644
--- a/arch/x86/kvm/Makefile
+++ b/arch/x86/kvm/Makefile
@@ -14,7 +14,7 @@ kvm-y += x86.o emulate.o i8259.o irq.o lapic.o \
hyperv.o debugfs.o mmu/mmu.o mmu/page_track.o
kvm-intel-y += vmx/vmx.o vmx/vmenter.o vmx/pmu_intel.o vmx/vmcs12.o vmx/evmcs.o vmx/nested.o
-kvm-amd-y += svm.o pmu_amd.o
+kvm-amd-y += svm/svm.o svm/vmenter.o svm/pmu.o svm/nested.o svm/avic.o svm/sev.o
obj-$(CONFIG_KVM) += kvm.o
obj-$(CONFIG_KVM_INTEL) += kvm-intel.o
diff --git a/arch/x86/kvm/lapic.c b/arch/x86/kvm/lapic.c
index ca80daf8f878..9af25c97612a 100644
--- a/arch/x86/kvm/lapic.c
+++ b/arch/x86/kvm/lapic.c
@@ -59,9 +59,6 @@
#define MAX_APIC_VECTOR 256
#define APIC_VECTORS_PER_REG 32
-#define APIC_BROADCAST 0xFF
-#define X2APIC_BROADCAST 0xFFFFFFFFul
-
static bool lapic_timer_advance_dynamic __read_mostly;
#define LAPIC_TIMER_ADVANCE_ADJUST_MIN 100 /* clock cycles */
#define LAPIC_TIMER_ADVANCE_ADJUST_MAX 10000 /* clock cycles */
diff --git a/arch/x86/kvm/lapic.h b/arch/x86/kvm/lapic.h
index 40ed6ed22751..a0ffb4331418 100644
--- a/arch/x86/kvm/lapic.h
+++ b/arch/x86/kvm/lapic.h
@@ -17,6 +17,9 @@
#define APIC_BUS_CYCLE_NS 1
#define APIC_BUS_FREQUENCY (1000000000ULL / APIC_BUS_CYCLE_NS)
+#define APIC_BROADCAST 0xFF
+#define X2APIC_BROADCAST 0xFFFFFFFFul
+
enum lapic_mode {
LAPIC_MODE_DISABLED = 0,
LAPIC_MODE_INVALID = X2APIC_ENABLE,
diff --git a/arch/x86/kvm/svm/avic.c b/arch/x86/kvm/svm/avic.c
new file mode 100644
index 000000000000..e80daa98682f
--- /dev/null
+++ b/arch/x86/kvm/svm/avic.c
@@ -0,0 +1,1027 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Kernel-based Virtual Machine driver for Linux
+ *
+ * AMD SVM support
+ *
+ * Copyright (C) 2006 Qumranet, Inc.
+ * Copyright 2010 Red Hat, Inc. and/or its affiliates.
+ *
+ * Authors:
+ * Yaniv Kamay <yaniv@qumranet.com>
+ * Avi Kivity <avi@qumranet.com>
+ */
+
+#define pr_fmt(fmt) "SVM: " fmt
+
+#include <linux/kvm_types.h>
+#include <linux/hashtable.h>
+#include <linux/amd-iommu.h>
+#include <linux/kvm_host.h>
+
+#include <asm/irq_remapping.h>
+
+#include "trace.h"
+#include "lapic.h"
+#include "x86.h"
+#include "irq.h"
+#include "svm.h"
+
+/* enable / disable AVIC */
+int avic;
+#ifdef CONFIG_X86_LOCAL_APIC
+module_param(avic, int, S_IRUGO);
+#endif
+
+#define SVM_AVIC_DOORBELL 0xc001011b
+
+#define AVIC_HPA_MASK ~((0xFFFULL << 52) | 0xFFF)
+
+/*
+ * 0xff is broadcast, so the max index allowed for physical APIC ID
+ * table is 0xfe. APIC IDs above 0xff are reserved.
+ */
+#define AVIC_MAX_PHYSICAL_ID_COUNT 255
+
+#define AVIC_UNACCEL_ACCESS_WRITE_MASK 1
+#define AVIC_UNACCEL_ACCESS_OFFSET_MASK 0xFF0
+#define AVIC_UNACCEL_ACCESS_VECTOR_MASK 0xFFFFFFFF
+
+/* AVIC GATAG is encoded using VM and VCPU IDs */
+#define AVIC_VCPU_ID_BITS 8
+#define AVIC_VCPU_ID_MASK ((1 << AVIC_VCPU_ID_BITS) - 1)
+
+#define AVIC_VM_ID_BITS 24
+#define AVIC_VM_ID_NR (1 << AVIC_VM_ID_BITS)
+#define AVIC_VM_ID_MASK ((1 << AVIC_VM_ID_BITS) - 1)
+
+#define AVIC_GATAG(x, y) (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
+ (y & AVIC_VCPU_ID_MASK))
+#define AVIC_GATAG_TO_VMID(x) ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
+#define AVIC_GATAG_TO_VCPUID(x) (x & AVIC_VCPU_ID_MASK)
+
+/* Note:
+ * This hash table is used to map VM_ID to a struct kvm_svm,
+ * when handling AMD IOMMU GALOG notification to schedule in
+ * a particular vCPU.
+ */
+#define SVM_VM_DATA_HASH_BITS 8
+static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
+static u32 next_vm_id = 0;
+static bool next_vm_id_wrapped = 0;
+static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
+
+/*
+ * This is a wrapper of struct amd_iommu_ir_data.
+ */
+struct amd_svm_iommu_ir {
+ struct list_head node; /* Used by SVM for per-vcpu ir_list */
+ void *data; /* Storing pointer to struct amd_ir_data */
+};
+
+enum avic_ipi_failure_cause {
+ AVIC_IPI_FAILURE_INVALID_INT_TYPE,
+ AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
+ AVIC_IPI_FAILURE_INVALID_TARGET,
+ AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
+};
+
+/* Note:
+ * This function is called from IOMMU driver to notify
+ * SVM to schedule in a particular vCPU of a particular VM.
+ */
+int avic_ga_log_notifier(u32 ga_tag)
+{
+ unsigned long flags;
+ struct kvm_svm *kvm_svm;
+ struct kvm_vcpu *vcpu = NULL;
+ u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
+ u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
+
+ pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
+ trace_kvm_avic_ga_log(vm_id, vcpu_id);
+
+ spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
+ hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) {
+ if (kvm_svm->avic_vm_id != vm_id)
+ continue;
+ vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id);
+ break;
+ }
+ spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
+
+ /* Note:
+ * At this point, the IOMMU should have already set the pending
+ * bit in the vAPIC backing page. So, we just need to schedule
+ * in the vcpu.
+ */
+ if (vcpu)
+ kvm_vcpu_wake_up(vcpu);
+
+ return 0;
+}
+
+void avic_vm_destroy(struct kvm *kvm)
+{
+ unsigned long flags;
+ struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
+
+ if (!avic)
+ return;
+
+ if (kvm_svm->avic_logical_id_table_page)
+ __free_page(kvm_svm->avic_logical_id_table_page);
+ if (kvm_svm->avic_physical_id_table_page)
+ __free_page(kvm_svm->avic_physical_id_table_page);
+
+ spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
+ hash_del(&kvm_svm->hnode);
+ spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
+}
+
+int avic_vm_init(struct kvm *kvm)
+{
+ unsigned long flags;
+ int err = -ENOMEM;
+ struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
+ struct kvm_svm *k2;
+ struct page *p_page;
+ struct page *l_page;
+ u32 vm_id;
+
+ if (!avic)
+ return 0;
+
+ /* Allocating physical APIC ID table (4KB) */
+ p_page = alloc_page(GFP_KERNEL_ACCOUNT);
+ if (!p_page)
+ goto free_avic;
+
+ kvm_svm->avic_physical_id_table_page = p_page;
+ clear_page(page_address(p_page));
+
+ /* Allocating logical APIC ID table (4KB) */
+ l_page = alloc_page(GFP_KERNEL_ACCOUNT);
+ if (!l_page)
+ goto free_avic;
+
+ kvm_svm->avic_logical_id_table_page = l_page;
+ clear_page(page_address(l_page));
+
+ spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
+ again:
+ vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
+ if (vm_id == 0) { /* id is 1-based, zero is not okay */
+ next_vm_id_wrapped = 1;
+ goto again;
+ }
+ /* Is it still in use? Only possible if wrapped at least once */
+ if (next_vm_id_wrapped) {
+ hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) {
+ if (k2->avic_vm_id == vm_id)
+ goto again;
+ }
+ }
+ kvm_svm->avic_vm_id = vm_id;
+ hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id);
+ spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
+
+ return 0;
+
+free_avic:
+ avic_vm_destroy(kvm);
+ return err;
+}
+
+void avic_init_vmcb(struct vcpu_svm *svm)
+{
+ struct vmcb *vmcb = svm->vmcb;
+ struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm);
+ phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
+ phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page));
+ phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page));
+
+ vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
+ vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
+ vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
+ vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
+ if (kvm_apicv_activated(svm->vcpu.kvm))
+ vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
+ else
+ vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
+}
+
+static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
+ unsigned int index)
+{
+ u64 *avic_physical_id_table;
+ struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
+
+ if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
+ return NULL;
+
+ avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page);
+
+ return &avic_physical_id_table[index];
+}
+
+/**
+ * Note:
+ * AVIC hardware walks the nested page table to check permissions,
+ * but does not use the SPA address specified in the leaf page
+ * table entry since it uses address in the AVIC_BACKING_PAGE pointer
+ * field of the VMCB. Therefore, we set up the
+ * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
+ */
+static int avic_update_access_page(struct kvm *kvm, bool activate)
+{
+ int ret = 0;
+
+ mutex_lock(&kvm->slots_lock);
+ /*
+ * During kvm_destroy_vm(), kvm_pit_set_reinject() could trigger
+ * APICv mode change, which update APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
+ * memory region. So, we need to ensure that kvm->mm == current->mm.
+ */
+ if ((kvm->arch.apic_access_page_done == activate) ||
+ (kvm->mm != current->mm))
+ goto out;
+
+ ret = __x86_set_memory_region(kvm,
+ APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
+ APIC_DEFAULT_PHYS_BASE,
+ activate ? PAGE_SIZE : 0);
+ if (ret)
+ goto out;
+
+ kvm->arch.apic_access_page_done = activate;
+out:
+ mutex_unlock(&kvm->slots_lock);
+ return ret;
+}
+
+static int avic_init_backing_page(struct kvm_vcpu *vcpu)
+{
+ u64 *entry, new_entry;
+ int id = vcpu->vcpu_id;
+ struct vcpu_svm *svm = to_svm(vcpu);
+
+ if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
+ return -EINVAL;
+
+ if (!svm->vcpu.arch.apic->regs)
+ return -EINVAL;
+
+ if (kvm_apicv_activated(vcpu->kvm)) {
+ int ret;
+
+ ret = avic_update_access_page(vcpu->kvm, true);
+ if (ret)
+ return ret;
+ }
+
+ svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
+
+ /* Setting AVIC backing page address in the phy APIC ID table */
+ entry = avic_get_physical_id_entry(vcpu, id);
+ if (!entry)
+ return -EINVAL;
+
+ new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
+ AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
+ AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
+ WRITE_ONCE(*entry, new_entry);
+
+ svm->avic_physical_id_cache = entry;
+
+ return 0;
+}
+
+int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
+{
+ u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
+ u32 icrl = svm->vmcb->control.exit_info_1;
+ u32 id = svm->vmcb->control.exit_info_2 >> 32;
+ u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
+ struct kvm_lapic *apic = svm->vcpu.arch.apic;
+
+ trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
+
+ switch (id) {
+ case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
+ /*
+ * AVIC hardware handles the generation of
+ * IPIs when the specified Message Type is Fixed
+ * (also known as fixed delivery mode) and
+ * the Trigger Mode is edge-triggered. The hardware
+ * also supports self and broadcast delivery modes
+ * specified via the Destination Shorthand(DSH)
+ * field of the ICRL. Logical and physical APIC ID
+ * formats are supported. All other IPI types cause
+ * a #VMEXIT, which needs to emulated.
+ */
+ kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
+ kvm_lapic_reg_write(apic, APIC_ICR, icrl);
+ break;
+ case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
+ int i;
+ struct kvm_vcpu *vcpu;
+ struct kvm *kvm = svm->vcpu.kvm;
+ struct kvm_lapic *apic = svm->vcpu.arch.apic;
+
+ /*
+ * At this point, we expect that the AVIC HW has already
+ * set the appropriate IRR bits on the valid target
+ * vcpus. So, we just need to kick the appropriate vcpu.
+ */
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ bool m = kvm_apic_match_dest(vcpu, apic,
+ icrl & APIC_SHORT_MASK,
+ GET_APIC_DEST_FIELD(icrh),
+ icrl & APIC_DEST_MASK);
+
+ if (m && !avic_vcpu_is_running(vcpu))
+ kvm_vcpu_wake_up(vcpu);
+ }
+ break;
+ }
+ case AVIC_IPI_FAILURE_INVALID_TARGET:
+ WARN_ONCE(1, "Invalid IPI target: index=%u, vcpu=%d, icr=%#0x:%#0x\n",
+ index, svm->vcpu.vcpu_id, icrh, icrl);
+ break;
+ case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
+ WARN_ONCE(1, "Invalid backing page\n");
+ break;
+ default:
+ pr_err("Unknown IPI interception\n");
+ }
+
+ return 1;
+}
+
+static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
+{
+ struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
+ int index;
+ u32 *logical_apic_id_table;
+ int dlid = GET_APIC_LOGICAL_ID(ldr);
+
+ if (!dlid)
+ return NULL;
+
+ if (flat) { /* flat */
+ index = ffs(dlid) - 1;
+ if (index > 7)
+ return NULL;
+ } else { /* cluster */
+ int cluster = (dlid & 0xf0) >> 4;
+ int apic = ffs(dlid & 0x0f) - 1;
+
+ if ((apic < 0) || (apic > 7) ||
+ (cluster >= 0xf))
+ return NULL;
+ index = (cluster << 2) + apic;
+ }
+
+ logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page);
+
+ return &logical_apic_id_table[index];
+}
+
+static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr)
+{
+ bool flat;
+ u32 *entry, new_entry;
+
+ flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
+ entry = avic_get_logical_id_entry(vcpu, ldr, flat);
+ if (!entry)
+ return -EINVAL;
+
+ new_entry = READ_ONCE(*entry);
+ new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
+ new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
+ new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
+ WRITE_ONCE(*entry, new_entry);
+
+ return 0;
+}
+
+static void avic_invalidate_logical_id_entry(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+ bool flat = svm->dfr_reg == APIC_DFR_FLAT;
+ u32 *entry = avic_get_logical_id_entry(vcpu, svm->ldr_reg, flat);
+
+ if (entry)
+ clear_bit(AVIC_LOGICAL_ID_ENTRY_VALID_BIT, (unsigned long *)entry);
+}
+
+static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
+{
+ int ret = 0;
+ struct vcpu_svm *svm = to_svm(vcpu);
+ u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
+ u32 id = kvm_xapic_id(vcpu->arch.apic);
+
+ if (ldr == svm->ldr_reg)
+ return 0;
+
+ avic_invalidate_logical_id_entry(vcpu);
+
+ if (ldr)
+ ret = avic_ldr_write(vcpu, id, ldr);
+
+ if (!ret)
+ svm->ldr_reg = ldr;
+
+ return ret;
+}
+
+static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
+{
+ u64 *old, *new;
+ struct vcpu_svm *svm = to_svm(vcpu);
+ u32 id = kvm_xapic_id(vcpu->arch.apic);
+
+ if (vcpu->vcpu_id == id)
+ return 0;
+
+ old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
+ new = avic_get_physical_id_entry(vcpu, id);
+ if (!new || !old)
+ return 1;
+
+ /* We need to move physical_id_entry to new offset */
+ *new = *old;
+ *old = 0ULL;
+ to_svm(vcpu)->avic_physical_id_cache = new;
+
+ /*
+ * Also update the guest physical APIC ID in the logical
+ * APIC ID table entry if already setup the LDR.
+ */
+ if (svm->ldr_reg)
+ avic_handle_ldr_update(vcpu);
+
+ return 0;
+}
+
+static void avic_handle_dfr_update(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+ u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
+
+ if (svm->dfr_reg == dfr)
+ return;
+
+ avic_invalidate_logical_id_entry(vcpu);
+ svm->dfr_reg = dfr;
+}
+
+static int avic_unaccel_trap_write(struct vcpu_svm *svm)
+{
+ struct kvm_lapic *apic = svm->vcpu.arch.apic;
+ u32 offset = svm->vmcb->control.exit_info_1 &
+ AVIC_UNACCEL_ACCESS_OFFSET_MASK;
+
+ switch (offset) {
+ case APIC_ID:
+ if (avic_handle_apic_id_update(&svm->vcpu))
+ return 0;
+ break;
+ case APIC_LDR:
+ if (avic_handle_ldr_update(&svm->vcpu))
+ return 0;
+ break;
+ case APIC_DFR:
+ avic_handle_dfr_update(&svm->vcpu);
+ break;
+ default:
+ break;
+ }
+
+ kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
+
+ return 1;
+}
+
+static bool is_avic_unaccelerated_access_trap(u32 offset)
+{
+ bool ret = false;
+
+ switch (offset) {
+ case APIC_ID:
+ case APIC_EOI:
+ case APIC_RRR:
+ case APIC_LDR:
+ case APIC_DFR:
+ case APIC_SPIV:
+ case APIC_ESR:
+ case APIC_ICR:
+ case APIC_LVTT:
+ case APIC_LVTTHMR:
+ case APIC_LVTPC:
+ case APIC_LVT0:
+ case APIC_LVT1:
+ case APIC_LVTERR:
+ case APIC_TMICT:
+ case APIC_TDCR:
+ ret = true;
+ break;
+ default:
+ break;
+ }
+ return ret;
+}
+
+int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
+{
+ int ret = 0;
+ u32 offset = svm->vmcb->control.exit_info_1 &
+ AVIC_UNACCEL_ACCESS_OFFSET_MASK;
+ u32 vector = svm->vmcb->control.exit_info_2 &
+ AVIC_UNACCEL_ACCESS_VECTOR_MASK;
+ bool write = (svm->vmcb->control.exit_info_1 >> 32) &
+ AVIC_UNACCEL_ACCESS_WRITE_MASK;
+ bool trap = is_avic_unaccelerated_access_trap(offset);
+
+ trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
+ trap, write, vector);
+ if (trap) {
+ /* Handling Trap */
+ WARN_ONCE(!write, "svm: Handling trap read.\n");
+ ret = avic_unaccel_trap_write(svm);
+ } else {
+ /* Handling Fault */
+ ret = kvm_emulate_instruction(&svm->vcpu, 0);
+ }
+
+ return ret;
+}
+
+int avic_init_vcpu(struct vcpu_svm *svm)
+{
+ int ret;
+ struct kvm_vcpu *vcpu = &svm->vcpu;
+
+ if (!avic || !irqchip_in_kernel(vcpu->kvm))
+ return 0;
+
+ ret = avic_init_backing_page(&svm->vcpu);
+ if (ret)
+ return ret;
+
+ INIT_LIST_HEAD(&svm->ir_list);
+ spin_lock_init(&svm->ir_list_lock);
+ svm->dfr_reg = APIC_DFR_FLAT;
+
+ return ret;
+}
+
+void avic_post_state_restore(struct kvm_vcpu *vcpu)
+{
+ if (avic_handle_apic_id_update(vcpu) != 0)
+ return;
+ avic_handle_dfr_update(vcpu);
+ avic_handle_ldr_update(vcpu);
+}
+
+void svm_toggle_avic_for_irq_window(struct kvm_vcpu *vcpu, bool activate)
+{
+ if (!avic || !lapic_in_kernel(vcpu))
+ return;
+
+ srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
+ kvm_request_apicv_update(vcpu->kvm, activate,
+ APICV_INHIBIT_REASON_IRQWIN);
+ vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
+}
+
+void svm_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
+{
+ return;
+}
+
+void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
+{
+}
+
+void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
+{
+}
+
+static int svm_set_pi_irte_mode(struct kvm_vcpu *vcpu, bool activate)
+{
+ int ret = 0;
+ unsigned long flags;
+ struct amd_svm_iommu_ir *ir;
+ struct vcpu_svm *svm = to_svm(vcpu);
+
+ if (!kvm_arch_has_assigned_device(vcpu->kvm))
+ return 0;
+
+ /*
+ * Here, we go through the per-vcpu ir_list to update all existing
+ * interrupt remapping table entry targeting this vcpu.
+ */
+ spin_lock_irqsave(&svm->ir_list_lock, flags);
+
+ if (list_empty(&svm->ir_list))
+ goto out;
+
+ list_for_each_entry(ir, &svm->ir_list, node) {
+ if (activate)
+ ret = amd_iommu_activate_guest_mode(ir->data);
+ else
+ ret = amd_iommu_deactivate_guest_mode(ir->data);
+ if (ret)
+ break;
+ }
+out:
+ spin_unlock_irqrestore(&svm->ir_list_lock, flags);
+ return ret;
+}
+
+void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+ struct vmcb *vmcb = svm->vmcb;
+ bool activated = kvm_vcpu_apicv_active(vcpu);
+
+ if (!avic)
+ return;
+
+ if (activated) {
+ /**
+ * During AVIC temporary deactivation, guest could update
+ * APIC ID, DFR and LDR registers, which would not be trapped
+ * by avic_unaccelerated_access_interception(). In this case,
+ * we need to check and update the AVIC logical APIC ID table
+ * accordingly before re-activating.
+ */
+ avic_post_state_restore(vcpu);
+ vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
+ } else {
+ vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
+ }
+ mark_dirty(vmcb, VMCB_AVIC);
+
+ svm_set_pi_irte_mode(vcpu, activated);
+}
+
+void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
+{
+ return;
+}
+
+int svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
+{
+ if (!vcpu->arch.apicv_active)
+ return -1;
+
+ kvm_lapic_set_irr(vec, vcpu->arch.apic);
+ smp_mb__after_atomic();
+
+ if (avic_vcpu_is_running(vcpu)) {
+ int cpuid = vcpu->cpu;
+
+ if (cpuid != get_cpu())
+ wrmsrl(SVM_AVIC_DOORBELL, kvm_cpu_get_apicid(cpuid));
+ put_cpu();
+ } else
+ kvm_vcpu_wake_up(vcpu);
+
+ return 0;
+}
+
+bool svm_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
+{
+ return false;
+}
+
+static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
+{
+ unsigned long flags;
+ struct amd_svm_iommu_ir *cur;
+
+ spin_lock_irqsave(&svm->ir_list_lock, flags);
+ list_for_each_entry(cur, &svm->ir_list, node) {
+ if (cur->data != pi->ir_data)
+ continue;
+ list_del(&cur->node);
+ kfree(cur);
+ break;
+ }
+ spin_unlock_irqrestore(&svm->ir_list_lock, flags);
+}
+
+static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
+{
+ int ret = 0;
+ unsigned long flags;
+ struct amd_svm_iommu_ir *ir;
+
+ /**
+ * In some cases, the existing irte is updaed and re-set,
+ * so we need to check here if it's already been * added
+ * to the ir_list.
+ */
+ if (pi->ir_data && (pi->prev_ga_tag != 0)) {
+ struct kvm *kvm = svm->vcpu.kvm;
+ u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
+ struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
+ struct vcpu_svm *prev_svm;
+
+ if (!prev_vcpu) {
+ ret = -EINVAL;
+ goto out;
+ }
+
+ prev_svm = to_svm(prev_vcpu);
+ svm_ir_list_del(prev_svm, pi);
+ }
+
+ /**
+ * Allocating new amd_iommu_pi_data, which will get
+ * add to the per-vcpu ir_list.
+ */
+ ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL_ACCOUNT);
+ if (!ir) {
+ ret = -ENOMEM;
+ goto out;
+ }
+ ir->data = pi->ir_data;
+
+ spin_lock_irqsave(&svm->ir_list_lock, flags);
+ list_add(&ir->node, &svm->ir_list);
+ spin_unlock_irqrestore(&svm->ir_list_lock, flags);
+out:
+ return ret;
+}
+
+/**
+ * Note:
+ * The HW cannot support posting multicast/broadcast
+ * interrupts to a vCPU. So, we still use legacy interrupt
+ * remapping for these kind of interrupts.
+ *
+ * For lowest-priority interrupts, we only support
+ * those with single CPU as the destination, e.g. user
+ * configures the interrupts via /proc/irq or uses
+ * irqbalance to make the interrupts single-CPU.
+ */
+static int
+get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
+ struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
+{
+ struct kvm_lapic_irq irq;
+ struct kvm_vcpu *vcpu = NULL;
+
+ kvm_set_msi_irq(kvm, e, &irq);
+
+ if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
+ !kvm_irq_is_postable(&irq)) {
+ pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
+ __func__, irq.vector);
+ return -1;
+ }
+
+ pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
+ irq.vector);
+ *svm = to_svm(vcpu);
+ vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
+ vcpu_info->vector = irq.vector;
+
+ return 0;
+}
+
+/*
+ * svm_update_pi_irte - set IRTE for Posted-Interrupts
+ *
+ * @kvm: kvm
+ * @host_irq: host irq of the interrupt
+ * @guest_irq: gsi of the interrupt
+ * @set: set or unset PI
+ * returns 0 on success, < 0 on failure
+ */
+int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
+ uint32_t guest_irq, bool set)
+{
+ struct kvm_kernel_irq_routing_entry *e;
+ struct kvm_irq_routing_table *irq_rt;
+ int idx, ret = -EINVAL;
+
+ if (!kvm_arch_has_assigned_device(kvm) ||
+ !irq_remapping_cap(IRQ_POSTING_CAP))
+ return 0;
+
+ pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
+ __func__, host_irq, guest_irq, set);
+
+ idx = srcu_read_lock(&kvm->irq_srcu);
+ irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
+ WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
+
+ hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
+ struct vcpu_data vcpu_info;
+ struct vcpu_svm *svm = NULL;
+
+ if (e->type != KVM_IRQ_ROUTING_MSI)
+ continue;
+
+ /**
+ * Here, we setup with legacy mode in the following cases:
+ * 1. When cannot target interrupt to a specific vcpu.
+ * 2. Unsetting posted interrupt.
+ * 3. APIC virtialization is disabled for the vcpu.
+ * 4. IRQ has incompatible delivery mode (SMI, INIT, etc)
+ */
+ if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
+ kvm_vcpu_apicv_active(&svm->vcpu)) {
+ struct amd_iommu_pi_data pi;
+
+ /* Try to enable guest_mode in IRTE */
+ pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
+ AVIC_HPA_MASK);
+ pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
+ svm->vcpu.vcpu_id);
+ pi.is_guest_mode = true;
+ pi.vcpu_data = &vcpu_info;
+ ret = irq_set_vcpu_affinity(host_irq, &pi);
+
+ /**
+ * Here, we successfully setting up vcpu affinity in
+ * IOMMU guest mode. Now, we need to store the posted
+ * interrupt information in a per-vcpu ir_list so that
+ * we can reference to them directly when we update vcpu
+ * scheduling information in IOMMU irte.
+ */
+ if (!ret && pi.is_guest_mode)
+ svm_ir_list_add(svm, &pi);
+ } else {
+ /* Use legacy mode in IRTE */
+ struct amd_iommu_pi_data pi;
+
+ /**
+ * Here, pi is used to:
+ * - Tell IOMMU to use legacy mode for this interrupt.
+ * - Retrieve ga_tag of prior interrupt remapping data.
+ */
+ pi.is_guest_mode = false;
+ ret = irq_set_vcpu_affinity(host_irq, &pi);
+
+ /**
+ * Check if the posted interrupt was previously
+ * setup with the guest_mode by checking if the ga_tag
+ * was cached. If so, we need to clean up the per-vcpu
+ * ir_list.
+ */
+ if (!ret && pi.prev_ga_tag) {
+ int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
+ struct kvm_vcpu *vcpu;
+
+ vcpu = kvm_get_vcpu_by_id(kvm, id);
+ if (vcpu)
+ svm_ir_list_del(to_svm(vcpu), &pi);
+ }
+ }
+
+ if (!ret && svm) {
+ trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
+ e->gsi, vcpu_info.vector,
+ vcpu_info.pi_desc_addr, set);
+ }
+
+ if (ret < 0) {
+ pr_err("%s: failed to update PI IRTE\n", __func__);
+ goto out;
+ }
+ }
+
+ ret = 0;
+out:
+ srcu_read_unlock(&kvm->irq_srcu, idx);
+ return ret;
+}
+
+bool svm_check_apicv_inhibit_reasons(ulong bit)
+{
+ ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
+ BIT(APICV_INHIBIT_REASON_HYPERV) |
+ BIT(APICV_INHIBIT_REASON_NESTED) |
+ BIT(APICV_INHIBIT_REASON_IRQWIN) |
+ BIT(APICV_INHIBIT_REASON_PIT_REINJ) |
+ BIT(APICV_INHIBIT_REASON_X2APIC);
+
+ return supported & BIT(bit);
+}
+
+void svm_pre_update_apicv_exec_ctrl(struct kvm *kvm, bool activate)
+{
+ avic_update_access_page(kvm, activate);
+}
+
+static inline int
+avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
+{
+ int ret = 0;
+ unsigned long flags;
+ struct amd_svm_iommu_ir *ir;
+ struct vcpu_svm *svm = to_svm(vcpu);
+
+ if (!kvm_arch_has_assigned_device(vcpu->kvm))
+ return 0;
+
+ /*
+ * Here, we go through the per-vcpu ir_list to update all existing
+ * interrupt remapping table entry targeting this vcpu.
+ */
+ spin_lock_irqsave(&svm->ir_list_lock, flags);
+
+ if (list_empty(&svm->ir_list))
+ goto out;
+
+ list_for_each_entry(ir, &svm->ir_list, node) {
+ ret = amd_iommu_update_ga(cpu, r, ir->data);
+ if (ret)
+ break;
+ }
+out:
+ spin_unlock_irqrestore(&svm->ir_list_lock, flags);
+ return ret;
+}
+
+void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
+{
+ u64 entry;
+ /* ID = 0xff (broadcast), ID > 0xff (reserved) */
+ int h_physical_id = kvm_cpu_get_apicid(cpu);
+ struct vcpu_svm *svm = to_svm(vcpu);
+
+ if (!kvm_vcpu_apicv_active(vcpu))
+ return;
+
+ /*
+ * Since the host physical APIC id is 8 bits,
+ * we can support host APIC ID upto 255.
+ */
+ if (WARN_ON(h_physical_id > AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK))
+ return;
+
+ entry = READ_ONCE(*(svm->avic_physical_id_cache));
+ WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
+
+ entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
+ entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
+
+ entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
+ if (svm->avic_is_running)
+ entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
+
+ WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
+ avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
+ svm->avic_is_running);
+}
+
+void avic_vcpu_put(struct kvm_vcpu *vcpu)
+{
+ u64 entry;
+ struct vcpu_svm *svm = to_svm(vcpu);
+
+ if (!kvm_vcpu_apicv_active(vcpu))
+ return;
+
+ entry = READ_ONCE(*(svm->avic_physical_id_cache));
+ if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
+ avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
+
+ entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
+ WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
+}
+
+/**
+ * This function is called during VCPU halt/unhalt.
+ */
+static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+
+ svm->avic_is_running = is_run;
+ if (is_run)
+ avic_vcpu_load(vcpu, vcpu->cpu);
+ else
+ avic_vcpu_put(vcpu);
+}
+
+void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
+{
+ avic_set_running(vcpu, false);
+}
+
+void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
+{
+ if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
+ kvm_vcpu_update_apicv(vcpu);
+ avic_set_running(vcpu, true);
+}
diff --git a/arch/x86/kvm/svm/nested.c b/arch/x86/kvm/svm/nested.c
new file mode 100644
index 000000000000..90a1ca939627
--- /dev/null
+++ b/arch/x86/kvm/svm/nested.c
@@ -0,0 +1,823 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Kernel-based Virtual Machine driver for Linux
+ *
+ * AMD SVM support
+ *
+ * Copyright (C) 2006 Qumranet, Inc.
+ * Copyright 2010 Red Hat, Inc. and/or its affiliates.
+ *
+ * Authors:
+ * Yaniv Kamay <yaniv@qumranet.com>
+ * Avi Kivity <avi@qumranet.com>
+ */
+
+#define pr_fmt(fmt) "SVM: " fmt
+
+#include <linux/kvm_types.h>
+#include <linux/kvm_host.h>
+#include <linux/kernel.h>
+
+#include <asm/msr-index.h>
+
+#include "kvm_emulate.h"
+#include "trace.h"
+#include "mmu.h"
+#include "x86.h"
+#include "svm.h"
+
+static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
+ struct x86_exception *fault)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+
+ if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
+ /*
+ * TODO: track the cause of the nested page fault, and
+ * correctly fill in the high bits of exit_info_1.
+ */
+ svm->vmcb->control.exit_code = SVM_EXIT_NPF;
+ svm->vmcb->control.exit_code_hi = 0;
+ svm->vmcb->control.exit_info_1 = (1ULL << 32);
+ svm->vmcb->control.exit_info_2 = fault->address;
+ }
+
+ svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
+ svm->vmcb->control.exit_info_1 |= fault->error_code;
+
+ /*
+ * The present bit is always zero for page structure faults on real
+ * hardware.
+ */
+ if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
+ svm->vmcb->control.exit_info_1 &= ~1;
+
+ nested_svm_vmexit(svm);
+}
+
+static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+ u64 cr3 = svm->nested.nested_cr3;
+ u64 pdpte;
+ int ret;
+
+ ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(__sme_clr(cr3)), &pdpte,
+ offset_in_page(cr3) + index * 8, 8);
+ if (ret)
+ return 0;
+ return pdpte;
+}
+
+static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+
+ return svm->nested.nested_cr3;
+}
+
+static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
+{
+ WARN_ON(mmu_is_nested(vcpu));
+
+ vcpu->arch.mmu = &vcpu->arch.guest_mmu;
+ kvm_init_shadow_mmu(vcpu);
+ vcpu->arch.mmu->get_guest_pgd = nested_svm_get_tdp_cr3;
+ vcpu->arch.mmu->get_pdptr = nested_svm_get_tdp_pdptr;
+ vcpu->arch.mmu->inject_page_fault = nested_svm_inject_npf_exit;
+ vcpu->arch.mmu->shadow_root_level = kvm_x86_ops.get_tdp_level(vcpu);
+ reset_shadow_zero_bits_mask(vcpu, vcpu->arch.mmu);
+ vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
+}
+
+static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
+{
+ vcpu->arch.mmu = &vcpu->arch.root_mmu;
+ vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
+}
+
+void recalc_intercepts(struct vcpu_svm *svm)
+{
+ struct vmcb_control_area *c, *h;
+ struct nested_state *g;
+
+ mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
+
+ if (!is_guest_mode(&svm->vcpu))
+ return;
+
+ c = &svm->vmcb->control;
+ h = &svm->nested.hsave->control;
+ g = &svm->nested;
+
+ c->intercept_cr = h->intercept_cr;
+ c->intercept_dr = h->intercept_dr;
+ c->intercept_exceptions = h->intercept_exceptions;
+ c->intercept = h->intercept;
+
+ if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
+ /* We only want the cr8 intercept bits of L1 */
+ c->intercept_cr &= ~(1U << INTERCEPT_CR8_READ);
+ c->intercept_cr &= ~(1U << INTERCEPT_CR8_WRITE);
+
+ /*
+ * Once running L2 with HF_VINTR_MASK, EFLAGS.IF does not
+ * affect any interrupt we may want to inject; therefore,
+ * interrupt window vmexits are irrelevant to L0.
+ */
+ c->intercept &= ~(1ULL << INTERCEPT_VINTR);
+ }
+
+ /* We don't want to see VMMCALLs from a nested guest */
+ c->intercept &= ~(1ULL << INTERCEPT_VMMCALL);
+
+ c->intercept_cr |= g->intercept_cr;
+ c->intercept_dr |= g->intercept_dr;
+ c->intercept_exceptions |= g->intercept_exceptions;
+ c->intercept |= g->intercept;
+}
+
+static void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
+{
+ struct vmcb_control_area *dst = &dst_vmcb->control;
+ struct vmcb_control_area *from = &from_vmcb->control;
+
+ dst->intercept_cr = from->intercept_cr;
+ dst->intercept_dr = from->intercept_dr;
+ dst->intercept_exceptions = from->intercept_exceptions;
+ dst->intercept = from->intercept;
+ dst->iopm_base_pa = from->iopm_base_pa;
+ dst->msrpm_base_pa = from->msrpm_base_pa;
+ dst->tsc_offset = from->tsc_offset;
+ dst->asid = from->asid;
+ dst->tlb_ctl = from->tlb_ctl;
+ dst->int_ctl = from->int_ctl;
+ dst->int_vector = from->int_vector;
+ dst->int_state = from->int_state;
+ dst->exit_code = from->exit_code;
+ dst->exit_code_hi = from->exit_code_hi;
+ dst->exit_info_1 = from->exit_info_1;
+ dst->exit_info_2 = from->exit_info_2;
+ dst->exit_int_info = from->exit_int_info;
+ dst->exit_int_info_err = from->exit_int_info_err;
+ dst->nested_ctl = from->nested_ctl;
+ dst->event_inj = from->event_inj;
+ dst->event_inj_err = from->event_inj_err;
+ dst->nested_cr3 = from->nested_cr3;
+ dst->virt_ext = from->virt_ext;
+ dst->pause_filter_count = from->pause_filter_count;
+ dst->pause_filter_thresh = from->pause_filter_thresh;
+}
+
+static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
+{
+ /*
+ * This function merges the msr permission bitmaps of kvm and the
+ * nested vmcb. It is optimized in that it only merges the parts where
+ * the kvm msr permission bitmap may contain zero bits
+ */
+ int i;
+
+ if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
+ return true;
+
+ for (i = 0; i < MSRPM_OFFSETS; i++) {
+ u32 value, p;
+ u64 offset;
+
+ if (msrpm_offsets[i] == 0xffffffff)
+ break;
+
+ p = msrpm_offsets[i];
+ offset = svm->nested.vmcb_msrpm + (p * 4);
+
+ if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
+ return false;
+
+ svm->nested.msrpm[p] = svm->msrpm[p] | value;
+ }
+
+ svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm));
+
+ return true;
+}
+
+static bool nested_vmcb_checks(struct vmcb *vmcb)
+{
+ if ((vmcb->save.efer & EFER_SVME) == 0)
+ return false;
+
+ if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
+ return false;
+
+ if (vmcb->control.asid == 0)
+ return false;
+
+ if ((vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) &&
+ !npt_enabled)
+ return false;
+
+ return true;
+}
+
+void enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb_gpa,
+ struct vmcb *nested_vmcb, struct kvm_host_map *map)
+{
+ bool evaluate_pending_interrupts =
+ is_intercept(svm, INTERCEPT_VINTR) ||
+ is_intercept(svm, INTERCEPT_IRET);
+
+ if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
+ svm->vcpu.arch.hflags |= HF_HIF_MASK;
+ else
+ svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
+
+ if (nested_vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) {
+ svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
+ nested_svm_init_mmu_context(&svm->vcpu);
+ }
+
+ /* Load the nested guest state */
+ svm->vmcb->save.es = nested_vmcb->save.es;
+ svm->vmcb->save.cs = nested_vmcb->save.cs;
+ svm->vmcb->save.ss = nested_vmcb->save.ss;
+ svm->vmcb->save.ds = nested_vmcb->save.ds;
+ svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
+ svm->vmcb->save.idtr = nested_vmcb->save.idtr;
+ kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
+ svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
+ svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
+ svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
+ if (npt_enabled) {
+ svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
+ svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
+ } else
+ (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
+
+ /* Guest paging mode is active - reset mmu */
+ kvm_mmu_reset_context(&svm->vcpu);
+
+ svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
+ kvm_rax_write(&svm->vcpu, nested_vmcb->save.rax);
+ kvm_rsp_write(&svm->vcpu, nested_vmcb->save.rsp);
+ kvm_rip_write(&svm->vcpu, nested_vmcb->save.rip);
+
+ /* In case we don't even reach vcpu_run, the fields are not updated */
+ svm->vmcb->save.rax = nested_vmcb->save.rax;
+ svm->vmcb->save.rsp = nested_vmcb->save.rsp;
+ svm->vmcb->save.rip = nested_vmcb->save.rip;
+ svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
+ svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
+ svm->vmcb->save.cpl = nested_vmcb->save.cpl;
+
+ svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
+ svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
+
+ /* cache intercepts */
+ svm->nested.intercept_cr = nested_vmcb->control.intercept_cr;
+ svm->nested.intercept_dr = nested_vmcb->control.intercept_dr;
+ svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
+ svm->nested.intercept = nested_vmcb->control.intercept;
+
+ svm_flush_tlb(&svm->vcpu, true);
+ svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
+ if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
+ svm->vcpu.arch.hflags |= HF_VINTR_MASK;
+ else
+ svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
+
+ svm->vcpu.arch.tsc_offset += nested_vmcb->control.tsc_offset;
+ svm->vmcb->control.tsc_offset = svm->vcpu.arch.tsc_offset;
+
+ svm->vmcb->control.virt_ext = nested_vmcb->control.virt_ext;
+ svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
+ svm->vmcb->control.int_state = nested_vmcb->control.int_state;
+ svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
+ svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
+
+ svm->vmcb->control.pause_filter_count =
+ nested_vmcb->control.pause_filter_count;
+ svm->vmcb->control.pause_filter_thresh =
+ nested_vmcb->control.pause_filter_thresh;
+
+ kvm_vcpu_unmap(&svm->vcpu, map, true);
+
+ /* Enter Guest-Mode */
+ enter_guest_mode(&svm->vcpu);
+
+ /*
+ * Merge guest and host intercepts - must be called with vcpu in
+ * guest-mode to take affect here
+ */
+ recalc_intercepts(svm);
+
+ svm->nested.vmcb = vmcb_gpa;
+
+ /*
+ * If L1 had a pending IRQ/NMI before executing VMRUN,
+ * which wasn't delivered because it was disallowed (e.g.
+ * interrupts disabled), L0 needs to evaluate if this pending
+ * event should cause an exit from L2 to L1 or be delivered
+ * directly to L2.
+ *
+ * Usually this would be handled by the processor noticing an
+ * IRQ/NMI window request. However, VMRUN can unblock interrupts
+ * by implicitly setting GIF, so force L0 to perform pending event
+ * evaluation by requesting a KVM_REQ_EVENT.
+ */
+ enable_gif(svm);
+ if (unlikely(evaluate_pending_interrupts))
+ kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
+
+ mark_all_dirty(svm->vmcb);
+}
+
+int nested_svm_vmrun(struct vcpu_svm *svm)
+{
+ int ret;
+ struct vmcb *nested_vmcb;
+ struct vmcb *hsave = svm->nested.hsave;
+ struct vmcb *vmcb = svm->vmcb;
+ struct kvm_host_map map;
+ u64 vmcb_gpa;
+
+ vmcb_gpa = svm->vmcb->save.rax;
+
+ ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(vmcb_gpa), &map);
+ if (ret == -EINVAL) {
+ kvm_inject_gp(&svm->vcpu, 0);
+ return 1;
+ } else if (ret) {
+ return kvm_skip_emulated_instruction(&svm->vcpu);
+ }
+
+ ret = kvm_skip_emulated_instruction(&svm->vcpu);
+
+ nested_vmcb = map.hva;
+
+ if (!nested_vmcb_checks(nested_vmcb)) {
+ nested_vmcb->control.exit_code = SVM_EXIT_ERR;
+ nested_vmcb->control.exit_code_hi = 0;
+ nested_vmcb->control.exit_info_1 = 0;
+ nested_vmcb->control.exit_info_2 = 0;
+
+ kvm_vcpu_unmap(&svm->vcpu, &map, true);
+
+ return ret;
+ }
+
+ trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
+ nested_vmcb->save.rip,
+ nested_vmcb->control.int_ctl,
+ nested_vmcb->control.event_inj,
+ nested_vmcb->control.nested_ctl);
+
+ trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
+ nested_vmcb->control.intercept_cr >> 16,
+ nested_vmcb->control.intercept_exceptions,
+ nested_vmcb->control.intercept);
+
+ /* Clear internal status */
+ kvm_clear_exception_queue(&svm->vcpu);
+ kvm_clear_interrupt_queue(&svm->vcpu);
+
+ /*
+ * Save the old vmcb, so we don't need to pick what we save, but can
+ * restore everything when a VMEXIT occurs
+ */
+ hsave->save.es = vmcb->save.es;
+ hsave->save.cs = vmcb->save.cs;
+ hsave->save.ss = vmcb->save.ss;
+ hsave->save.ds = vmcb->save.ds;
+ hsave->save.gdtr = vmcb->save.gdtr;
+ hsave->save.idtr = vmcb->save.idtr;
+ hsave->save.efer = svm->vcpu.arch.efer;
+ hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
+ hsave->save.cr4 = svm->vcpu.arch.cr4;
+ hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
+ hsave->save.rip = kvm_rip_read(&svm->vcpu);
+ hsave->save.rsp = vmcb->save.rsp;
+ hsave->save.rax = vmcb->save.rax;
+ if (npt_enabled)
+ hsave->save.cr3 = vmcb->save.cr3;
+ else
+ hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);
+
+ copy_vmcb_control_area(hsave, vmcb);
+
+ enter_svm_guest_mode(svm, vmcb_gpa, nested_vmcb, &map);
+
+ if (!nested_svm_vmrun_msrpm(svm)) {
+ svm->vmcb->control.exit_code = SVM_EXIT_ERR;
+ svm->vmcb->control.exit_code_hi = 0;
+ svm->vmcb->control.exit_info_1 = 0;
+ svm->vmcb->control.exit_info_2 = 0;
+
+ nested_svm_vmexit(svm);
+ }
+
+ return ret;
+}
+
+void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
+{
+ to_vmcb->save.fs = from_vmcb->save.fs;
+ to_vmcb->save.gs = from_vmcb->save.gs;
+ to_vmcb->save.tr = from_vmcb->save.tr;
+ to_vmcb->save.ldtr = from_vmcb->save.ldtr;
+ to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
+ to_vmcb->save.star = from_vmcb->save.star;
+ to_vmcb->save.lstar = from_vmcb->save.lstar;
+ to_vmcb->save.cstar = from_vmcb->save.cstar;
+ to_vmcb->save.sfmask = from_vmcb->save.sfmask;
+ to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
+ to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
+ to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
+}
+
+int nested_svm_vmexit(struct vcpu_svm *svm)
+{
+ int rc;
+ struct vmcb *nested_vmcb;
+ struct vmcb *hsave = svm->nested.hsave;
+ struct vmcb *vmcb = svm->vmcb;
+ struct kvm_host_map map;
+
+ trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
+ vmcb->control.exit_info_1,
+ vmcb->control.exit_info_2,
+ vmcb->control.exit_int_info,
+ vmcb->control.exit_int_info_err,
+ KVM_ISA_SVM);
+
+ rc = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->nested.vmcb), &map);
+ if (rc) {
+ if (rc == -EINVAL)
+ kvm_inject_gp(&svm->vcpu, 0);
+ return 1;
+ }
+
+ nested_vmcb = map.hva;
+
+ /* Exit Guest-Mode */
+ leave_guest_mode(&svm->vcpu);
+ svm->nested.vmcb = 0;
+
+ /* Give the current vmcb to the guest */
+ disable_gif(svm);
+
+ nested_vmcb->save.es = vmcb->save.es;
+ nested_vmcb->save.cs = vmcb->save.cs;
+ nested_vmcb->save.ss = vmcb->save.ss;
+ nested_vmcb->save.ds = vmcb->save.ds;
+ nested_vmcb->save.gdtr = vmcb->save.gdtr;
+ nested_vmcb->save.idtr = vmcb->save.idtr;
+ nested_vmcb->save.efer = svm->vcpu.arch.efer;
+ nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
+ nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu);
+ nested_vmcb->save.cr2 = vmcb->save.cr2;
+ nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
+ nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
+ nested_vmcb->save.rip = vmcb->save.rip;
+ nested_vmcb->save.rsp = vmcb->save.rsp;
+ nested_vmcb->save.rax = vmcb->save.rax;
+ nested_vmcb->save.dr7 = vmcb->save.dr7;
+ nested_vmcb->save.dr6 = vmcb->save.dr6;
+ nested_vmcb->save.cpl = vmcb->save.cpl;
+
+ nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
+ nested_vmcb->control.int_vector = vmcb->control.int_vector;
+ nested_vmcb->control.int_state = vmcb->control.int_state;
+ nested_vmcb->control.exit_code = vmcb->control.exit_code;
+ nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
+ nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
+ nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
+ nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
+ nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
+
+ if (svm->nrips_enabled)
+ nested_vmcb->control.next_rip = vmcb->control.next_rip;
+
+ /*
+ * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
+ * to make sure that we do not lose injected events. So check event_inj
+ * here and copy it to exit_int_info if it is valid.
+ * Exit_int_info and event_inj can't be both valid because the case
+ * below only happens on a VMRUN instruction intercept which has
+ * no valid exit_int_info set.
+ */
+ if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
+ struct vmcb_control_area *nc = &nested_vmcb->control;
+
+ nc->exit_int_info = vmcb->control.event_inj;
+ nc->exit_int_info_err = vmcb->control.event_inj_err;
+ }
+
+ nested_vmcb->control.tlb_ctl = 0;
+ nested_vmcb->control.event_inj = 0;
+ nested_vmcb->control.event_inj_err = 0;
+
+ nested_vmcb->control.pause_filter_count =
+ svm->vmcb->control.pause_filter_count;
+ nested_vmcb->control.pause_filter_thresh =
+ svm->vmcb->control.pause_filter_thresh;
+
+ /* We always set V_INTR_MASKING and remember the old value in hflags */
+ if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
+ nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
+
+ /* Restore the original control entries */
+ copy_vmcb_control_area(vmcb, hsave);
+
+ svm->vcpu.arch.tsc_offset = svm->vmcb->control.tsc_offset;
+ kvm_clear_exception_queue(&svm->vcpu);
+ kvm_clear_interrupt_queue(&svm->vcpu);
+
+ svm->nested.nested_cr3 = 0;
+
+ /* Restore selected save entries */
+ svm->vmcb->save.es = hsave->save.es;
+ svm->vmcb->save.cs = hsave->save.cs;
+ svm->vmcb->save.ss = hsave->save.ss;
+ svm->vmcb->save.ds = hsave->save.ds;
+ svm->vmcb->save.gdtr = hsave->save.gdtr;
+ svm->vmcb->save.idtr = hsave->save.idtr;
+ kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
+ svm_set_efer(&svm->vcpu, hsave->save.efer);
+ svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
+ svm_set_cr4(&svm->vcpu, hsave->save.cr4);
+ if (npt_enabled) {
+ svm->vmcb->save.cr3 = hsave->save.cr3;
+ svm->vcpu.arch.cr3 = hsave->save.cr3;
+ } else {
+ (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
+ }
+ kvm_rax_write(&svm->vcpu, hsave->save.rax);
+ kvm_rsp_write(&svm->vcpu, hsave->save.rsp);
+ kvm_rip_write(&svm->vcpu, hsave->save.rip);
+ svm->vmcb->save.dr7 = 0;
+ svm->vmcb->save.cpl = 0;
+ svm->vmcb->control.exit_int_info = 0;
+
+ mark_all_dirty(svm->vmcb);
+
+ kvm_vcpu_unmap(&svm->vcpu, &map, true);
+
+ nested_svm_uninit_mmu_context(&svm->vcpu);
+ kvm_mmu_reset_context(&svm->vcpu);
+ kvm_mmu_load(&svm->vcpu);
+
+ /*
+ * Drop what we picked up for L2 via svm_complete_interrupts() so it
+ * doesn't end up in L1.
+ */
+ svm->vcpu.arch.nmi_injected = false;
+ kvm_clear_exception_queue(&svm->vcpu);
+ kvm_clear_interrupt_queue(&svm->vcpu);
+
+ return 0;
+}
+
+static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
+{
+ u32 offset, msr, value;
+ int write, mask;
+
+ if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
+ return NESTED_EXIT_HOST;
+
+ msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
+ offset = svm_msrpm_offset(msr);
+ write = svm->vmcb->control.exit_info_1 & 1;
+ mask = 1 << ((2 * (msr & 0xf)) + write);
+
+ if (offset == MSR_INVALID)
+ return NESTED_EXIT_DONE;
+
+ /* Offset is in 32 bit units but need in 8 bit units */
+ offset *= 4;
+
+ if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
+ return NESTED_EXIT_DONE;
+
+ return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
+}
+
+/* DB exceptions for our internal use must not cause vmexit */
+static int nested_svm_intercept_db(struct vcpu_svm *svm)
+{
+ unsigned long dr6;
+
+ /* if we're not singlestepping, it's not ours */
+ if (!svm->nmi_singlestep)
+ return NESTED_EXIT_DONE;
+
+ /* if it's not a singlestep exception, it's not ours */
+ if (kvm_get_dr(&svm->vcpu, 6, &dr6))
+ return NESTED_EXIT_DONE;
+ if (!(dr6 & DR6_BS))
+ return NESTED_EXIT_DONE;
+
+ /* if the guest is singlestepping, it should get the vmexit */
+ if (svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF) {
+ disable_nmi_singlestep(svm);
+ return NESTED_EXIT_DONE;
+ }
+
+ /* it's ours, the nested hypervisor must not see this one */
+ return NESTED_EXIT_HOST;
+}
+
+static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
+{
+ unsigned port, size, iopm_len;
+ u16 val, mask;
+ u8 start_bit;
+ u64 gpa;
+
+ if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
+ return NESTED_EXIT_HOST;
+
+ port = svm->vmcb->control.exit_info_1 >> 16;
+ size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
+ SVM_IOIO_SIZE_SHIFT;
+ gpa = svm->nested.vmcb_iopm + (port / 8);
+ start_bit = port % 8;
+ iopm_len = (start_bit + size > 8) ? 2 : 1;
+ mask = (0xf >> (4 - size)) << start_bit;
+ val = 0;
+
+ if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
+ return NESTED_EXIT_DONE;
+
+ return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
+}
+
+static int nested_svm_intercept(struct vcpu_svm *svm)
+{
+ u32 exit_code = svm->vmcb->control.exit_code;
+ int vmexit = NESTED_EXIT_HOST;
+
+ switch (exit_code) {
+ case SVM_EXIT_MSR:
+ vmexit = nested_svm_exit_handled_msr(svm);
+ break;
+ case SVM_EXIT_IOIO:
+ vmexit = nested_svm_intercept_ioio(svm);
+ break;
+ case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
+ u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
+ if (svm->nested.intercept_cr & bit)
+ vmexit = NESTED_EXIT_DONE;
+ break;
+ }
+ case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
+ u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
+ if (svm->nested.intercept_dr & bit)
+ vmexit = NESTED_EXIT_DONE;
+ break;
+ }
+ case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
+ u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
+ if (svm->nested.intercept_exceptions & excp_bits) {
+ if (exit_code == SVM_EXIT_EXCP_BASE + DB_VECTOR)
+ vmexit = nested_svm_intercept_db(svm);
+ else
+ vmexit = NESTED_EXIT_DONE;
+ }
+ /* async page fault always cause vmexit */
+ else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
+ svm->vcpu.arch.exception.nested_apf != 0)
+ vmexit = NESTED_EXIT_DONE;
+ break;
+ }
+ case SVM_EXIT_ERR: {
+ vmexit = NESTED_EXIT_DONE;
+ break;
+ }
+ default: {
+ u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
+ if (svm->nested.intercept & exit_bits)
+ vmexit = NESTED_EXIT_DONE;
+ }
+ }
+
+ return vmexit;
+}
+
+int nested_svm_exit_handled(struct vcpu_svm *svm)
+{
+ int vmexit;
+
+ vmexit = nested_svm_intercept(svm);
+
+ if (vmexit == NESTED_EXIT_DONE)
+ nested_svm_vmexit(svm);
+
+ return vmexit;
+}
+
+int nested_svm_check_permissions(struct vcpu_svm *svm)
+{
+ if (!(svm->vcpu.arch.efer & EFER_SVME) ||
+ !is_paging(&svm->vcpu)) {
+ kvm_queue_exception(&svm->vcpu, UD_VECTOR);
+ return 1;
+ }
+
+ if (svm->vmcb->save.cpl) {
+ kvm_inject_gp(&svm->vcpu, 0);
+ return 1;
+ }
+
+ return 0;
+}
+
+int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
+ bool has_error_code, u32 error_code)
+{
+ int vmexit;
+
+ if (!is_guest_mode(&svm->vcpu))
+ return 0;
+
+ vmexit = nested_svm_intercept(svm);
+ if (vmexit != NESTED_EXIT_DONE)
+ return 0;
+
+ svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
+ svm->vmcb->control.exit_code_hi = 0;
+ svm->vmcb->control.exit_info_1 = error_code;
+
+ /*
+ * EXITINFO2 is undefined for all exception intercepts other
+ * than #PF.
+ */
+ if (svm->vcpu.arch.exception.nested_apf)
+ svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token;
+ else if (svm->vcpu.arch.exception.has_payload)
+ svm->vmcb->control.exit_info_2 = svm->vcpu.arch.exception.payload;
+ else
+ svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
+
+ svm->nested.exit_required = true;
+ return vmexit;
+}
+
+static void nested_svm_intr(struct vcpu_svm *svm)
+{
+ svm->vmcb->control.exit_code = SVM_EXIT_INTR;
+ svm->vmcb->control.exit_info_1 = 0;
+ svm->vmcb->control.exit_info_2 = 0;
+
+ /* nested_svm_vmexit this gets called afterwards from handle_exit */
+ svm->nested.exit_required = true;
+ trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
+}
+
+static bool nested_exit_on_intr(struct vcpu_svm *svm)
+{
+ return (svm->nested.intercept & 1ULL);
+}
+
+int svm_check_nested_events(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+ bool block_nested_events =
+ kvm_event_needs_reinjection(vcpu) || svm->nested.exit_required;
+
+ if (kvm_cpu_has_interrupt(vcpu) && nested_exit_on_intr(svm)) {
+ if (block_nested_events)
+ return -EBUSY;
+ nested_svm_intr(svm);
+ return 0;
+ }
+
+ return 0;
+}
+
+int nested_svm_exit_special(struct vcpu_svm *svm)
+{
+ u32 exit_code = svm->vmcb->control.exit_code;
+
+ switch (exit_code) {
+ case SVM_EXIT_INTR:
+ case SVM_EXIT_NMI:
+ case SVM_EXIT_EXCP_BASE + MC_VECTOR:
+ return NESTED_EXIT_HOST;
+ case SVM_EXIT_NPF:
+ /* For now we are always handling NPFs when using them */
+ if (npt_enabled)
+ return NESTED_EXIT_HOST;
+ break;
+ case SVM_EXIT_EXCP_BASE + PF_VECTOR:
+ /* When we're shadowing, trap PFs, but not async PF */
+ if (!npt_enabled && svm->vcpu.arch.apf.host_apf_reason == 0)
+ return NESTED_EXIT_HOST;
+ break;
+ default:
+ break;
+ }
+
+ return NESTED_EXIT_CONTINUE;
+}
diff --git a/arch/x86/kvm/pmu_amd.c b/arch/x86/kvm/svm/pmu.c
index ce0b10fe5e2b..ce0b10fe5e2b 100644
--- a/arch/x86/kvm/pmu_amd.c
+++ b/arch/x86/kvm/svm/pmu.c
diff --git a/arch/x86/kvm/svm/sev.c b/arch/x86/kvm/svm/sev.c
new file mode 100644
index 000000000000..0e3fc311d7da
--- /dev/null
+++ b/arch/x86/kvm/svm/sev.c
@@ -0,0 +1,1187 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Kernel-based Virtual Machine driver for Linux
+ *
+ * AMD SVM-SEV support
+ *
+ * Copyright 2010 Red Hat, Inc. and/or its affiliates.
+ */
+
+#include <linux/kvm_types.h>
+#include <linux/kvm_host.h>
+#include <linux/kernel.h>
+#include <linux/highmem.h>
+#include <linux/psp-sev.h>
+#include <linux/swap.h>
+
+#include "x86.h"
+#include "svm.h"
+
+static int sev_flush_asids(void);
+static DECLARE_RWSEM(sev_deactivate_lock);
+static DEFINE_MUTEX(sev_bitmap_lock);
+unsigned int max_sev_asid;
+static unsigned int min_sev_asid;
+static unsigned long *sev_asid_bitmap;
+static unsigned long *sev_reclaim_asid_bitmap;
+#define __sme_page_pa(x) __sme_set(page_to_pfn(x) << PAGE_SHIFT)
+
+struct enc_region {
+ struct list_head list;
+ unsigned long npages;
+ struct page **pages;
+ unsigned long uaddr;
+ unsigned long size;
+};
+
+static int sev_flush_asids(void)
+{
+ int ret, error = 0;
+
+ /*
+ * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
+ * so it must be guarded.
+ */
+ down_write(&sev_deactivate_lock);
+
+ wbinvd_on_all_cpus();
+ ret = sev_guest_df_flush(&error);
+
+ up_write(&sev_deactivate_lock);
+
+ if (ret)
+ pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error);
+
+ return ret;
+}
+
+/* Must be called with the sev_bitmap_lock held */
+static bool __sev_recycle_asids(void)
+{
+ int pos;
+
+ /* Check if there are any ASIDs to reclaim before performing a flush */
+ pos = find_next_bit(sev_reclaim_asid_bitmap,
+ max_sev_asid, min_sev_asid - 1);
+ if (pos >= max_sev_asid)
+ return false;
+
+ if (sev_flush_asids())
+ return false;
+
+ bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
+ max_sev_asid);
+ bitmap_zero(sev_reclaim_asid_bitmap, max_sev_asid);
+
+ return true;
+}
+
+static int sev_asid_new(void)
+{
+ bool retry = true;
+ int pos;
+
+ mutex_lock(&sev_bitmap_lock);
+
+ /*
+ * SEV-enabled guest must use asid from min_sev_asid to max_sev_asid.
+ */
+again:
+ pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_sev_asid - 1);
+ if (pos >= max_sev_asid) {
+ if (retry && __sev_recycle_asids()) {
+ retry = false;
+ goto again;
+ }
+ mutex_unlock(&sev_bitmap_lock);
+ return -EBUSY;
+ }
+
+ __set_bit(pos, sev_asid_bitmap);
+
+ mutex_unlock(&sev_bitmap_lock);
+
+ return pos + 1;
+}
+
+static int sev_get_asid(struct kvm *kvm)
+{
+ struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
+
+ return sev->asid;
+}
+
+static void sev_asid_free(int asid)
+{
+ struct svm_cpu_data *sd;
+ int cpu, pos;
+
+ mutex_lock(&sev_bitmap_lock);
+
+ pos = asid - 1;
+ __set_bit(pos, sev_reclaim_asid_bitmap);
+
+ for_each_possible_cpu(cpu) {
+ sd = per_cpu(svm_data, cpu);
+ sd->sev_vmcbs[pos] = NULL;
+ }
+
+ mutex_unlock(&sev_bitmap_lock);
+}
+
+static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
+{
+ struct sev_data_decommission *decommission;
+ struct sev_data_deactivate *data;
+
+ if (!handle)
+ return;
+
+ data = kzalloc(sizeof(*data), GFP_KERNEL);
+ if (!data)
+ return;
+
+ /* deactivate handle */
+ data->handle = handle;
+
+ /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
+ down_read(&sev_deactivate_lock);
+ sev_guest_deactivate(data, NULL);
+ up_read(&sev_deactivate_lock);
+
+ kfree(data);
+
+ decommission = kzalloc(sizeof(*decommission), GFP_KERNEL);
+ if (!decommission)
+ return;
+
+ /* decommission handle */
+ decommission->handle = handle;
+ sev_guest_decommission(decommission, NULL);
+
+ kfree(decommission);
+}
+
+static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
+{
+ struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
+ int asid, ret;
+
+ ret = -EBUSY;
+ if (unlikely(sev->active))
+ return ret;
+
+ asid = sev_asid_new();
+ if (asid < 0)
+ return ret;
+
+ ret = sev_platform_init(&argp->error);
+ if (ret)
+ goto e_free;
+
+ sev->active = true;
+ sev->asid = asid;
+ INIT_LIST_HEAD(&sev->regions_list);
+
+ return 0;
+
+e_free:
+ sev_asid_free(asid);
+ return ret;
+}
+
+static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
+{
+ struct sev_data_activate *data;
+ int asid = sev_get_asid(kvm);
+ int ret;
+
+ data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
+ if (!data)
+ return -ENOMEM;
+
+ /* activate ASID on the given handle */
+ data->handle = handle;
+ data->asid = asid;
+ ret = sev_guest_activate(data, error);
+ kfree(data);
+
+ return ret;
+}
+
+static int __sev_issue_cmd(int fd, int id, void *data, int *error)
+{
+ struct fd f;
+ int ret;
+
+ f = fdget(fd);
+ if (!f.file)
+ return -EBADF;
+
+ ret = sev_issue_cmd_external_user(f.file, id, data, error);
+
+ fdput(f);
+ return ret;
+}
+
+static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
+{
+ struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
+
+ return __sev_issue_cmd(sev->fd, id, data, error);
+}
+
+static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
+{
+ struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
+ struct sev_data_launch_start *start;
+ struct kvm_sev_launch_start params;
+ void *dh_blob, *session_blob;
+ int *error = &argp->error;
+ int ret;
+
+ if (!sev_guest(kvm))
+ return -ENOTTY;
+
+ if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
+ return -EFAULT;
+
+ start = kzalloc(sizeof(*start), GFP_KERNEL_ACCOUNT);
+ if (!start)
+ return -ENOMEM;
+
+ dh_blob = NULL;
+ if (params.dh_uaddr) {
+ dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
+ if (IS_ERR(dh_blob)) {
+ ret = PTR_ERR(dh_blob);
+ goto e_free;
+ }
+
+ start->dh_cert_address = __sme_set(__pa(dh_blob));
+ start->dh_cert_len = params.dh_len;
+ }
+
+ session_blob = NULL;
+ if (params.session_uaddr) {
+ session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
+ if (IS_ERR(session_blob)) {
+ ret = PTR_ERR(session_blob);
+ goto e_free_dh;
+ }
+
+ start->session_address = __sme_set(__pa(session_blob));
+ start->session_len = params.session_len;
+ }
+
+ start->handle = params.handle;
+ start->policy = params.policy;
+
+ /* create memory encryption context */
+ ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, start, error);
+ if (ret)
+ goto e_free_session;
+
+ /* Bind ASID to this guest */
+ ret = sev_bind_asid(kvm, start->handle, error);
+ if (ret)
+ goto e_free_session;
+
+ /* return handle to userspace */
+ params.handle = start->handle;
+ if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
+ sev_unbind_asid(kvm, start->handle);
+ ret = -EFAULT;
+ goto e_free_session;
+ }
+
+ sev->handle = start->handle;
+ sev->fd = argp->sev_fd;
+
+e_free_session:
+ kfree(session_blob);
+e_free_dh:
+ kfree(dh_blob);
+e_free:
+ kfree(start);
+ return ret;
+}
+
+static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
+ unsigned long ulen, unsigned long *n,
+ int write)
+{
+ struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
+ unsigned long npages, npinned, size;
+ unsigned long locked, lock_limit;
+ struct page **pages;
+ unsigned long first, last;
+
+ if (ulen == 0 || uaddr + ulen < uaddr)
+ return NULL;
+
+ /* Calculate number of pages. */
+ first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
+ last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
+ npages = (last - first + 1);
+
+ locked = sev->pages_locked + npages;
+ lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
+ if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
+ pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
+ return NULL;
+ }
+
+ /* Avoid using vmalloc for smaller buffers. */
+ size = npages * sizeof(struct page *);
+ if (size > PAGE_SIZE)
+ pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO,
+ PAGE_KERNEL);
+ else
+ pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
+
+ if (!pages)
+ return NULL;
+
+ /* Pin the user virtual address. */
+ npinned = get_user_pages_fast(uaddr, npages, FOLL_WRITE, pages);
+ if (npinned != npages) {
+ pr_err("SEV: Failure locking %lu pages.\n", npages);
+ goto err;
+ }
+
+ *n = npages;
+ sev->pages_locked = locked;
+
+ return pages;
+
+err:
+ if (npinned > 0)
+ release_pages(pages, npinned);
+
+ kvfree(pages);
+ return NULL;
+}
+
+static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
+ unsigned long npages)
+{
+ struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
+
+ release_pages(pages, npages);
+ kvfree(pages);
+ sev->pages_locked -= npages;
+}
+
+static void sev_clflush_pages(struct page *pages[], unsigned long npages)
+{
+ uint8_t *page_virtual;
+ unsigned long i;
+
+ if (npages == 0 || pages == NULL)
+ return;
+
+ for (i = 0; i < npages; i++) {
+ page_virtual = kmap_atomic(pages[i]);
+ clflush_cache_range(page_virtual, PAGE_SIZE);
+ kunmap_atomic(page_virtual);
+ }
+}
+
+static unsigned long get_num_contig_pages(unsigned long idx,
+ struct page **inpages, unsigned long npages)
+{
+ unsigned long paddr, next_paddr;
+ unsigned long i = idx + 1, pages = 1;
+
+ /* find the number of contiguous pages starting from idx */
+ paddr = __sme_page_pa(inpages[idx]);
+ while (i < npages) {
+ next_paddr = __sme_page_pa(inpages[i++]);
+ if ((paddr + PAGE_SIZE) == next_paddr) {
+ pages++;
+ paddr = next_paddr;
+ continue;
+ }
+ break;
+ }
+
+ return pages;
+}
+
+static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
+{
+ unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
+ struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
+ struct kvm_sev_launch_update_data params;
+ struct sev_data_launch_update_data *data;
+ struct page **inpages;
+ int ret;
+
+ if (!sev_guest(kvm))
+ return -ENOTTY;
+
+ if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
+ return -EFAULT;
+
+ data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
+ if (!data)
+ return -ENOMEM;
+
+ vaddr = params.uaddr;
+ size = params.len;
+ vaddr_end = vaddr + size;
+
+ /* Lock the user memory. */
+ inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
+ if (!inpages) {
+ ret = -ENOMEM;
+ goto e_free;
+ }
+
+ /*
+ * The LAUNCH_UPDATE command will perform in-place encryption of the
+ * memory content (i.e it will write the same memory region with C=1).
+ * It's possible that the cache may contain the data with C=0, i.e.,
+ * unencrypted so invalidate it first.
+ */
+ sev_clflush_pages(inpages, npages);
+
+ for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
+ int offset, len;
+
+ /*
+ * If the user buffer is not page-aligned, calculate the offset
+ * within the page.
+ */
+ offset = vaddr & (PAGE_SIZE - 1);
+
+ /* Calculate the number of pages that can be encrypted in one go. */
+ pages = get_num_contig_pages(i, inpages, npages);
+
+ len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
+
+ data->handle = sev->handle;
+ data->len = len;
+ data->address = __sme_page_pa(inpages[i]) + offset;
+ ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, data, &argp->error);
+ if (ret)
+ goto e_unpin;
+
+ size -= len;
+ next_vaddr = vaddr + len;
+ }
+
+e_unpin:
+ /* content of memory is updated, mark pages dirty */
+ for (i = 0; i < npages; i++) {
+ set_page_dirty_lock(inpages[i]);
+ mark_page_accessed(inpages[i]);
+ }
+ /* unlock the user pages */
+ sev_unpin_memory(kvm, inpages, npages);
+e_free:
+ kfree(data);
+ return ret;
+}
+
+static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
+{
+ void __user *measure = (void __user *)(uintptr_t)argp->data;
+ struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
+ struct sev_data_launch_measure *data;
+ struct kvm_sev_launch_measure params;
+ void __user *p = NULL;
+ void *blob = NULL;
+ int ret;
+
+ if (!sev_guest(kvm))
+ return -ENOTTY;
+
+ if (copy_from_user(&params, measure, sizeof(params)))
+ return -EFAULT;
+
+ data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
+ if (!data)
+ return -ENOMEM;
+
+ /* User wants to query the blob length */
+ if (!params.len)
+ goto cmd;
+
+ p = (void __user *)(uintptr_t)params.uaddr;
+ if (p) {
+ if (params.len > SEV_FW_BLOB_MAX_SIZE) {
+ ret = -EINVAL;
+ goto e_free;
+ }
+
+ ret = -ENOMEM;
+ blob = kmalloc(params.len, GFP_KERNEL);
+ if (!blob)
+ goto e_free;
+
+ data->address = __psp_pa(blob);
+ data->len = params.len;
+ }
+
+cmd:
+ data->handle = sev->handle;
+ ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, data, &argp->error);
+
+ /*
+ * If we query the session length, FW responded with expected data.
+ */
+ if (!params.len)
+ goto done;
+
+ if (ret)
+ goto e_free_blob;
+
+ if (blob) {
+ if (copy_to_user(p, blob, params.len))
+ ret = -EFAULT;
+ }
+
+done:
+ params.len = data->len;
+ if (copy_to_user(measure, &params, sizeof(params)))
+ ret = -EFAULT;
+e_free_blob:
+ kfree(blob);
+e_free:
+ kfree(data);
+ return ret;
+}
+
+static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
+{
+ struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
+ struct sev_data_launch_finish *data;
+ int ret;
+
+ if (!sev_guest(kvm))
+ return -ENOTTY;
+
+ data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
+ if (!data)
+ return -ENOMEM;
+
+ data->handle = sev->handle;
+ ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, data, &argp->error);
+
+ kfree(data);
+ return ret;
+}
+
+static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
+{
+ struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
+ struct kvm_sev_guest_status params;
+ struct sev_data_guest_status *data;
+ int ret;
+
+ if (!sev_guest(kvm))
+ return -ENOTTY;
+
+ data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
+ if (!data)
+ return -ENOMEM;
+
+ data->handle = sev->handle;
+ ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, data, &argp->error);
+ if (ret)
+ goto e_free;
+
+ params.policy = data->policy;
+ params.state = data->state;
+ params.handle = data->handle;
+
+ if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
+ ret = -EFAULT;
+e_free:
+ kfree(data);
+ return ret;
+}
+
+static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
+ unsigned long dst, int size,
+ int *error, bool enc)
+{
+ struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
+ struct sev_data_dbg *data;
+ int ret;
+
+ data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
+ if (!data)
+ return -ENOMEM;
+
+ data->handle = sev->handle;
+ data->dst_addr = dst;
+ data->src_addr = src;
+ data->len = size;
+
+ ret = sev_issue_cmd(kvm,
+ enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
+ data, error);
+ kfree(data);
+ return ret;
+}
+
+static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
+ unsigned long dst_paddr, int sz, int *err)
+{
+ int offset;
+
+ /*
+ * Its safe to read more than we are asked, caller should ensure that
+ * destination has enough space.
+ */
+ src_paddr = round_down(src_paddr, 16);
+ offset = src_paddr & 15;
+ sz = round_up(sz + offset, 16);
+
+ return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
+}
+
+static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
+ unsigned long __user dst_uaddr,
+ unsigned long dst_paddr,
+ int size, int *err)
+{
+ struct page *tpage = NULL;
+ int ret, offset;
+
+ /* if inputs are not 16-byte then use intermediate buffer */
+ if (!IS_ALIGNED(dst_paddr, 16) ||
+ !IS_ALIGNED(paddr, 16) ||
+ !IS_ALIGNED(size, 16)) {
+ tpage = (void *)alloc_page(GFP_KERNEL);
+ if (!tpage)
+ return -ENOMEM;
+
+ dst_paddr = __sme_page_pa(tpage);
+ }
+
+ ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
+ if (ret)
+ goto e_free;
+
+ if (tpage) {
+ offset = paddr & 15;
+ if (copy_to_user((void __user *)(uintptr_t)dst_uaddr,
+ page_address(tpage) + offset, size))
+ ret = -EFAULT;
+ }
+
+e_free:
+ if (tpage)
+ __free_page(tpage);
+
+ return ret;
+}
+
+static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
+ unsigned long __user vaddr,
+ unsigned long dst_paddr,
+ unsigned long __user dst_vaddr,
+ int size, int *error)
+{
+ struct page *src_tpage = NULL;
+ struct page *dst_tpage = NULL;
+ int ret, len = size;
+
+ /* If source buffer is not aligned then use an intermediate buffer */
+ if (!IS_ALIGNED(vaddr, 16)) {
+ src_tpage = alloc_page(GFP_KERNEL);
+ if (!src_tpage)
+ return -ENOMEM;
+
+ if (copy_from_user(page_address(src_tpage),
+ (void __user *)(uintptr_t)vaddr, size)) {
+ __free_page(src_tpage);
+ return -EFAULT;
+ }
+
+ paddr = __sme_page_pa(src_tpage);
+ }
+
+ /*
+ * If destination buffer or length is not aligned then do read-modify-write:
+ * - decrypt destination in an intermediate buffer
+ * - copy the source buffer in an intermediate buffer
+ * - use the intermediate buffer as source buffer
+ */
+ if (!IS_ALIGNED(dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
+ int dst_offset;
+
+ dst_tpage = alloc_page(GFP_KERNEL);
+ if (!dst_tpage) {
+ ret = -ENOMEM;
+ goto e_free;
+ }
+
+ ret = __sev_dbg_decrypt(kvm, dst_paddr,
+ __sme_page_pa(dst_tpage), size, error);
+ if (ret)
+ goto e_free;
+
+ /*
+ * If source is kernel buffer then use memcpy() otherwise
+ * copy_from_user().
+ */
+ dst_offset = dst_paddr & 15;
+
+ if (src_tpage)
+ memcpy(page_address(dst_tpage) + dst_offset,
+ page_address(src_tpage), size);
+ else {
+ if (copy_from_user(page_address(dst_tpage) + dst_offset,
+ (void __user *)(uintptr_t)vaddr, size)) {
+ ret = -EFAULT;
+ goto e_free;
+ }
+ }
+
+ paddr = __sme_page_pa(dst_tpage);
+ dst_paddr = round_down(dst_paddr, 16);
+ len = round_up(size, 16);
+ }
+
+ ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
+
+e_free:
+ if (src_tpage)
+ __free_page(src_tpage);
+ if (dst_tpage)
+ __free_page(dst_tpage);
+ return ret;
+}
+
+static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
+{
+ unsigned long vaddr, vaddr_end, next_vaddr;
+ unsigned long dst_vaddr;
+ struct page **src_p, **dst_p;
+ struct kvm_sev_dbg debug;
+ unsigned long n;
+ unsigned int size;
+ int ret;
+
+ if (!sev_guest(kvm))
+ return -ENOTTY;
+
+ if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
+ return -EFAULT;
+
+ if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
+ return -EINVAL;
+ if (!debug.dst_uaddr)
+ return -EINVAL;
+
+ vaddr = debug.src_uaddr;
+ size = debug.len;
+ vaddr_end = vaddr + size;
+ dst_vaddr = debug.dst_uaddr;
+
+ for (; vaddr < vaddr_end; vaddr = next_vaddr) {
+ int len, s_off, d_off;
+
+ /* lock userspace source and destination page */
+ src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
+ if (!src_p)
+ return -EFAULT;
+
+ dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
+ if (!dst_p) {
+ sev_unpin_memory(kvm, src_p, n);
+ return -EFAULT;
+ }
+
+ /*
+ * The DBG_{DE,EN}CRYPT commands will perform {dec,en}cryption of the
+ * memory content (i.e it will write the same memory region with C=1).
+ * It's possible that the cache may contain the data with C=0, i.e.,
+ * unencrypted so invalidate it first.
+ */
+ sev_clflush_pages(src_p, 1);
+ sev_clflush_pages(dst_p, 1);
+
+ /*
+ * Since user buffer may not be page aligned, calculate the
+ * offset within the page.
+ */
+ s_off = vaddr & ~PAGE_MASK;
+ d_off = dst_vaddr & ~PAGE_MASK;
+ len = min_t(size_t, (PAGE_SIZE - s_off), size);
+
+ if (dec)
+ ret = __sev_dbg_decrypt_user(kvm,
+ __sme_page_pa(src_p[0]) + s_off,
+ dst_vaddr,
+ __sme_page_pa(dst_p[0]) + d_off,
+ len, &argp->error);
+ else
+ ret = __sev_dbg_encrypt_user(kvm,
+ __sme_page_pa(src_p[0]) + s_off,
+ vaddr,
+ __sme_page_pa(dst_p[0]) + d_off,
+ dst_vaddr,
+ len, &argp->error);
+
+ sev_unpin_memory(kvm, src_p, n);
+ sev_unpin_memory(kvm, dst_p, n);
+
+ if (ret)
+ goto err;
+
+ next_vaddr = vaddr + len;
+ dst_vaddr = dst_vaddr + len;
+ size -= len;
+ }
+err:
+ return ret;
+}
+
+static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
+{
+ struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
+ struct sev_data_launch_secret *data;
+ struct kvm_sev_launch_secret params;
+ struct page **pages;
+ void *blob, *hdr;
+ unsigned long n;
+ int ret, offset;
+
+ if (!sev_guest(kvm))
+ return -ENOTTY;
+
+ if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
+ return -EFAULT;
+
+ pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
+ if (!pages)
+ return -ENOMEM;
+
+ /*
+ * The secret must be copied into contiguous memory region, lets verify
+ * that userspace memory pages are contiguous before we issue command.
+ */
+ if (get_num_contig_pages(0, pages, n) != n) {
+ ret = -EINVAL;
+ goto e_unpin_memory;
+ }
+
+ ret = -ENOMEM;
+ data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
+ if (!data)
+ goto e_unpin_memory;
+
+ offset = params.guest_uaddr & (PAGE_SIZE - 1);
+ data->guest_address = __sme_page_pa(pages[0]) + offset;
+ data->guest_len = params.guest_len;
+
+ blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
+ if (IS_ERR(blob)) {
+ ret = PTR_ERR(blob);
+ goto e_free;
+ }
+
+ data->trans_address = __psp_pa(blob);
+ data->trans_len = params.trans_len;
+
+ hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
+ if (IS_ERR(hdr)) {
+ ret = PTR_ERR(hdr);
+ goto e_free_blob;
+ }
+ data->hdr_address = __psp_pa(hdr);
+ data->hdr_len = params.hdr_len;
+
+ data->handle = sev->handle;
+ ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, data, &argp->error);
+
+ kfree(hdr);
+
+e_free_blob:
+ kfree(blob);
+e_free:
+ kfree(data);
+e_unpin_memory:
+ sev_unpin_memory(kvm, pages, n);
+ return ret;
+}
+
+int svm_mem_enc_op(struct kvm *kvm, void __user *argp)
+{
+ struct kvm_sev_cmd sev_cmd;
+ int r;
+
+ if (!svm_sev_enabled())
+ return -ENOTTY;
+
+ if (!argp)
+ return 0;
+
+ if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
+ return -EFAULT;
+
+ mutex_lock(&kvm->lock);
+
+ switch (sev_cmd.id) {
+ case KVM_SEV_INIT:
+ r = sev_guest_init(kvm, &sev_cmd);
+ break;
+ case KVM_SEV_LAUNCH_START:
+ r = sev_launch_start(kvm, &sev_cmd);
+ break;
+ case KVM_SEV_LAUNCH_UPDATE_DATA:
+ r = sev_launch_update_data(kvm, &sev_cmd);
+ break;
+ case KVM_SEV_LAUNCH_MEASURE:
+ r = sev_launch_measure(kvm, &sev_cmd);
+ break;
+ case KVM_SEV_LAUNCH_FINISH:
+ r = sev_launch_finish(kvm, &sev_cmd);
+ break;
+ case KVM_SEV_GUEST_STATUS:
+ r = sev_guest_status(kvm, &sev_cmd);
+ break;
+ case KVM_SEV_DBG_DECRYPT:
+ r = sev_dbg_crypt(kvm, &sev_cmd, true);
+ break;
+ case KVM_SEV_DBG_ENCRYPT:
+ r = sev_dbg_crypt(kvm, &sev_cmd, false);
+ break;
+ case KVM_SEV_LAUNCH_SECRET:
+ r = sev_launch_secret(kvm, &sev_cmd);
+ break;
+ default:
+ r = -EINVAL;
+ goto out;
+ }
+
+ if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
+ r = -EFAULT;
+
+out:
+ mutex_unlock(&kvm->lock);
+ return r;
+}
+
+int svm_register_enc_region(struct kvm *kvm,
+ struct kvm_enc_region *range)
+{
+ struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
+ struct enc_region *region;
+ int ret = 0;
+
+ if (!sev_guest(kvm))
+ return -ENOTTY;
+
+ if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
+ return -EINVAL;
+
+ region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
+ if (!region)
+ return -ENOMEM;
+
+ region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
+ if (!region->pages) {
+ ret = -ENOMEM;
+ goto e_free;
+ }
+
+ /*
+ * The guest may change the memory encryption attribute from C=0 -> C=1
+ * or vice versa for this memory range. Lets make sure caches are
+ * flushed to ensure that guest data gets written into memory with
+ * correct C-bit.
+ */
+ sev_clflush_pages(region->pages, region->npages);
+
+ region->uaddr = range->addr;
+ region->size = range->size;
+
+ mutex_lock(&kvm->lock);
+ list_add_tail(&region->list, &sev->regions_list);
+ mutex_unlock(&kvm->lock);
+
+ return ret;
+
+e_free:
+ kfree(region);
+ return ret;
+}
+
+static struct enc_region *
+find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
+{
+ struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
+ struct list_head *head = &sev->regions_list;
+ struct enc_region *i;
+
+ list_for_each_entry(i, head, list) {
+ if (i->uaddr == range->addr &&
+ i->size == range->size)
+ return i;
+ }
+
+ return NULL;
+}
+
+static void __unregister_enc_region_locked(struct kvm *kvm,
+ struct enc_region *region)
+{
+ sev_unpin_memory(kvm, region->pages, region->npages);
+ list_del(&region->list);
+ kfree(region);
+}
+
+int svm_unregister_enc_region(struct kvm *kvm,
+ struct kvm_enc_region *range)
+{
+ struct enc_region *region;
+ int ret;
+
+ mutex_lock(&kvm->lock);
+
+ if (!sev_guest(kvm)) {
+ ret = -ENOTTY;
+ goto failed;
+ }
+
+ region = find_enc_region(kvm, range);
+ if (!region) {
+ ret = -EINVAL;
+ goto failed;
+ }
+
+ /*
+ * Ensure that all guest tagged cache entries are flushed before
+ * releasing the pages back to the system for use. CLFLUSH will
+ * not do this, so issue a WBINVD.
+ */
+ wbinvd_on_all_cpus();
+
+ __unregister_enc_region_locked(kvm, region);
+
+ mutex_unlock(&kvm->lock);
+ return 0;
+
+failed:
+ mutex_unlock(&kvm->lock);
+ return ret;
+}
+
+void sev_vm_destroy(struct kvm *kvm)
+{
+ struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
+ struct list_head *head = &sev->regions_list;
+ struct list_head *pos, *q;
+
+ if (!sev_guest(kvm))
+ return;
+
+ mutex_lock(&kvm->lock);
+
+ /*
+ * Ensure that all guest tagged cache entries are flushed before
+ * releasing the pages back to the system for use. CLFLUSH will
+ * not do this, so issue a WBINVD.
+ */
+ wbinvd_on_all_cpus();
+
+ /*
+ * if userspace was terminated before unregistering the memory regions
+ * then lets unpin all the registered memory.
+ */
+ if (!list_empty(head)) {
+ list_for_each_safe(pos, q, head) {
+ __unregister_enc_region_locked(kvm,
+ list_entry(pos, struct enc_region, list));
+ }
+ }
+
+ mutex_unlock(&kvm->lock);
+
+ sev_unbind_asid(kvm, sev->handle);
+ sev_asid_free(sev->asid);
+}
+
+int __init sev_hardware_setup(void)
+{
+ struct sev_user_data_status *status;
+ int rc;
+
+ /* Maximum number of encrypted guests supported simultaneously */
+ max_sev_asid = cpuid_ecx(0x8000001F);
+
+ if (!max_sev_asid)
+ return 1;
+
+ /* Minimum ASID value that should be used for SEV guest */
+ min_sev_asid = cpuid_edx(0x8000001F);
+
+ /* Initialize SEV ASID bitmaps */
+ sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
+ if (!sev_asid_bitmap)
+ return 1;
+
+ sev_reclaim_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
+ if (!sev_reclaim_asid_bitmap)
+ return 1;
+
+ status = kmalloc(sizeof(*status), GFP_KERNEL);
+ if (!status)
+ return 1;
+
+ /*
+ * Check SEV platform status.
+ *
+ * PLATFORM_STATUS can be called in any state, if we failed to query
+ * the PLATFORM status then either PSP firmware does not support SEV
+ * feature or SEV firmware is dead.
+ */
+ rc = sev_platform_status(status, NULL);
+ if (rc)
+ goto err;
+
+ pr_info("SEV supported\n");
+
+err:
+ kfree(status);
+ return rc;
+}
+
+void sev_hardware_teardown(void)
+{
+ bitmap_free(sev_asid_bitmap);
+ bitmap_free(sev_reclaim_asid_bitmap);
+
+ sev_flush_asids();
+}
+
+void pre_sev_run(struct vcpu_svm *svm, int cpu)
+{
+ struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
+ int asid = sev_get_asid(svm->vcpu.kvm);
+
+ /* Assign the asid allocated with this SEV guest */
+ svm->vmcb->control.asid = asid;
+
+ /*
+ * Flush guest TLB:
+ *
+ * 1) when different VMCB for the same ASID is to be run on the same host CPU.
+ * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
+ */
+ if (sd->sev_vmcbs[asid] == svm->vmcb &&
+ svm->last_cpu == cpu)
+ return;
+
+ svm->last_cpu = cpu;
+ sd->sev_vmcbs[asid] = svm->vmcb;
+ svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
+ mark_dirty(svm->vmcb, VMCB_ASID);
+}
diff --git a/arch/x86/kvm/svm.c b/arch/x86/kvm/svm/svm.c
index 851e9cc79930..2be5bbae3a40 100644
--- a/arch/x86/kvm/svm.c
+++ b/arch/x86/kvm/svm/svm.c
@@ -1,17 +1,3 @@
-// SPDX-License-Identifier: GPL-2.0-only
-/*
- * Kernel-based Virtual Machine driver for Linux
- *
- * AMD SVM support
- *
- * Copyright (C) 2006 Qumranet, Inc.
- * Copyright 2010 Red Hat, Inc. and/or its affiliates.
- *
- * Authors:
- * Yaniv Kamay <yaniv@qumranet.com>
- * Avi Kivity <avi@qumranet.com>
- */
-
#define pr_fmt(fmt) "SVM: " fmt
#include <linux/kvm_host.h>
@@ -28,10 +14,10 @@
#include <linux/kernel.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
+#include <linux/amd-iommu.h>
#include <linux/sched.h>
#include <linux/trace_events.h>
#include <linux/slab.h>
-#include <linux/amd-iommu.h>
#include <linux/hashtable.h>
#include <linux/frame.h>
#include <linux/psp-sev.h>
@@ -53,6 +39,8 @@
#include <asm/virtext.h>
#include "trace.h"
+#include "svm.h"
+
#define __ex(x) __kvm_handle_fault_on_reboot(x)
MODULE_AUTHOR("Qumranet");
@@ -80,107 +68,15 @@ MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
#define SVM_FEATURE_DECODE_ASSIST (1 << 7)
#define SVM_FEATURE_PAUSE_FILTER (1 << 10)
-#define SVM_AVIC_DOORBELL 0xc001011b
-
-#define NESTED_EXIT_HOST 0 /* Exit handled on host level */
-#define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
-#define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
-
#define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
#define TSC_RATIO_RSVD 0xffffff0000000000ULL
#define TSC_RATIO_MIN 0x0000000000000001ULL
#define TSC_RATIO_MAX 0x000000ffffffffffULL
-#define AVIC_HPA_MASK ~((0xFFFULL << 52) | 0xFFF)
-
-/*
- * 0xff is broadcast, so the max index allowed for physical APIC ID
- * table is 0xfe. APIC IDs above 0xff are reserved.
- */
-#define AVIC_MAX_PHYSICAL_ID_COUNT 255
-
-#define AVIC_UNACCEL_ACCESS_WRITE_MASK 1
-#define AVIC_UNACCEL_ACCESS_OFFSET_MASK 0xFF0
-#define AVIC_UNACCEL_ACCESS_VECTOR_MASK 0xFFFFFFFF
-
-/* AVIC GATAG is encoded using VM and VCPU IDs */
-#define AVIC_VCPU_ID_BITS 8
-#define AVIC_VCPU_ID_MASK ((1 << AVIC_VCPU_ID_BITS) - 1)
-
-#define AVIC_VM_ID_BITS 24
-#define AVIC_VM_ID_NR (1 << AVIC_VM_ID_BITS)
-#define AVIC_VM_ID_MASK ((1 << AVIC_VM_ID_BITS) - 1)
-
-#define AVIC_GATAG(x, y) (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
- (y & AVIC_VCPU_ID_MASK))
-#define AVIC_GATAG_TO_VMID(x) ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
-#define AVIC_GATAG_TO_VCPUID(x) (x & AVIC_VCPU_ID_MASK)
-
static bool erratum_383_found __read_mostly;
-static const u32 host_save_user_msrs[] = {
-#ifdef CONFIG_X86_64
- MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
- MSR_FS_BASE,
-#endif
- MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
- MSR_TSC_AUX,
-};
-
-#define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
-
-struct kvm_sev_info {
- bool active; /* SEV enabled guest */
- unsigned int asid; /* ASID used for this guest */
- unsigned int handle; /* SEV firmware handle */
- int fd; /* SEV device fd */
- unsigned long pages_locked; /* Number of pages locked */
- struct list_head regions_list; /* List of registered regions */
-};
-
-struct kvm_svm {
- struct kvm kvm;
-
- /* Struct members for AVIC */
- u32 avic_vm_id;
- struct page *avic_logical_id_table_page;
- struct page *avic_physical_id_table_page;
- struct hlist_node hnode;
-
- struct kvm_sev_info sev_info;
-};
-
-struct kvm_vcpu;
-
-struct nested_state {
- struct vmcb *hsave;
- u64 hsave_msr;
- u64 vm_cr_msr;
- u64 vmcb;
-
- /* These are the merged vectors */
- u32 *msrpm;
-
- /* gpa pointers to the real vectors */
- u64 vmcb_msrpm;
- u64 vmcb_iopm;
-
- /* A VMEXIT is required but not yet emulated */
- bool exit_required;
-
- /* cache for intercepts of the guest */
- u32 intercept_cr;
- u32 intercept_dr;
- u32 intercept_exceptions;
- u64 intercept;
-
- /* Nested Paging related state */
- u64 nested_cr3;
-};
-
-#define MSRPM_OFFSETS 16
-static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
+u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
/*
* Set osvw_len to higher value when updated Revision Guides
@@ -188,92 +84,9 @@ static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
*/
static uint64_t osvw_len = 4, osvw_status;
-struct vcpu_svm {
- struct kvm_vcpu vcpu;
- struct vmcb *vmcb;
- unsigned long vmcb_pa;
- struct svm_cpu_data *svm_data;
- uint64_t asid_generation;
- uint64_t sysenter_esp;
- uint64_t sysenter_eip;
- uint64_t tsc_aux;
-
- u64 msr_decfg;
-
- u64 next_rip;
-
- u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
- struct {
- u16 fs;
- u16 gs;
- u16 ldt;
- u64 gs_base;
- } host;
-
- u64 spec_ctrl;
- /*
- * Contains guest-controlled bits of VIRT_SPEC_CTRL, which will be
- * translated into the appropriate L2_CFG bits on the host to
- * perform speculative control.
- */
- u64 virt_spec_ctrl;
-
- u32 *msrpm;
-
- ulong nmi_iret_rip;
-
- struct nested_state nested;
-
- bool nmi_singlestep;
- u64 nmi_singlestep_guest_rflags;
-
- unsigned int3_injected;
- unsigned long int3_rip;
-
- /* cached guest cpuid flags for faster access */
- bool nrips_enabled : 1;
-
- u32 ldr_reg;
- u32 dfr_reg;
- struct page *avic_backing_page;
- u64 *avic_physical_id_cache;
- bool avic_is_running;
-
- /*
- * Per-vcpu list of struct amd_svm_iommu_ir:
- * This is used mainly to store interrupt remapping information used
- * when update the vcpu affinity. This avoids the need to scan for
- * IRTE and try to match ga_tag in the IOMMU driver.
- */
- struct list_head ir_list;
- spinlock_t ir_list_lock;
-
- /* which host CPU was used for running this vcpu */
- unsigned int last_cpu;
-};
-
-/*
- * This is a wrapper of struct amd_iommu_ir_data.
- */
-struct amd_svm_iommu_ir {
- struct list_head node; /* Used by SVM for per-vcpu ir_list */
- void *data; /* Storing pointer to struct amd_ir_data */
-};
-
-#define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK (0xFF)
-#define AVIC_LOGICAL_ID_ENTRY_VALID_BIT 31
-#define AVIC_LOGICAL_ID_ENTRY_VALID_MASK (1 << 31)
-
-#define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK (0xFFULL)
-#define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK (0xFFFFFFFFFFULL << 12)
-#define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK (1ULL << 62)
-#define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK (1ULL << 63)
-
static DEFINE_PER_CPU(u64, current_tsc_ratio);
#define TSC_RATIO_DEFAULT 0x0100000000ULL
-#define MSR_INVALID 0xffffffffU
-
static const struct svm_direct_access_msrs {
u32 index; /* Index of the MSR */
bool always; /* True if intercept is always on */
@@ -299,9 +112,9 @@ static const struct svm_direct_access_msrs {
/* enable NPT for AMD64 and X86 with PAE */
#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
-static bool npt_enabled = true;
+bool npt_enabled = true;
#else
-static bool npt_enabled;
+bool npt_enabled;
#endif
/*
@@ -360,12 +173,6 @@ module_param(npt, int, S_IRUGO);
static int nested = true;
module_param(nested, int, S_IRUGO);
-/* enable / disable AVIC */
-static int avic;
-#ifdef CONFIG_X86_LOCAL_APIC
-module_param(avic, int, S_IRUGO);
-#endif
-
/* enable/disable Next RIP Save */
static int nrips = true;
module_param(nrips, int, 0444);
@@ -387,303 +194,7 @@ module_param(dump_invalid_vmcb, bool, 0644);
static u8 rsm_ins_bytes[] = "\x0f\xaa";
-static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
-static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa);
static void svm_complete_interrupts(struct vcpu_svm *svm);
-static void svm_toggle_avic_for_irq_window(struct kvm_vcpu *vcpu, bool activate);
-static inline void avic_post_state_restore(struct kvm_vcpu *vcpu);
-
-static int nested_svm_exit_handled(struct vcpu_svm *svm);
-static int nested_svm_intercept(struct vcpu_svm *svm);
-static int nested_svm_vmexit(struct vcpu_svm *svm);
-static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
- bool has_error_code, u32 error_code);
-
-enum {
- VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
- pause filter count */
- VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
- VMCB_ASID, /* ASID */
- VMCB_INTR, /* int_ctl, int_vector */
- VMCB_NPT, /* npt_en, nCR3, gPAT */
- VMCB_CR, /* CR0, CR3, CR4, EFER */
- VMCB_DR, /* DR6, DR7 */
- VMCB_DT, /* GDT, IDT */
- VMCB_SEG, /* CS, DS, SS, ES, CPL */
- VMCB_CR2, /* CR2 only */
- VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
- VMCB_AVIC, /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
- * AVIC PHYSICAL_TABLE pointer,
- * AVIC LOGICAL_TABLE pointer
- */
- VMCB_DIRTY_MAX,
-};
-
-/* TPR and CR2 are always written before VMRUN */
-#define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
-
-#define VMCB_AVIC_APIC_BAR_MASK 0xFFFFFFFFFF000ULL
-
-static int sev_flush_asids(void);
-static DECLARE_RWSEM(sev_deactivate_lock);
-static DEFINE_MUTEX(sev_bitmap_lock);
-static unsigned int max_sev_asid;
-static unsigned int min_sev_asid;
-static unsigned long *sev_asid_bitmap;
-static unsigned long *sev_reclaim_asid_bitmap;
-#define __sme_page_pa(x) __sme_set(page_to_pfn(x) << PAGE_SHIFT)
-
-struct enc_region {
- struct list_head list;
- unsigned long npages;
- struct page **pages;
- unsigned long uaddr;
- unsigned long size;
-};
-
-
-static inline struct kvm_svm *to_kvm_svm(struct kvm *kvm)
-{
- return container_of(kvm, struct kvm_svm, kvm);
-}
-
-static inline bool svm_sev_enabled(void)
-{
- return IS_ENABLED(CONFIG_KVM_AMD_SEV) ? max_sev_asid : 0;
-}
-
-static inline bool sev_guest(struct kvm *kvm)
-{
-#ifdef CONFIG_KVM_AMD_SEV
- struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
-
- return sev->active;
-#else
- return false;
-#endif
-}
-
-static inline int sev_get_asid(struct kvm *kvm)
-{
- struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
-
- return sev->asid;
-}
-
-static inline void mark_all_dirty(struct vmcb *vmcb)
-{
- vmcb->control.clean = 0;
-}
-
-static inline void mark_all_clean(struct vmcb *vmcb)
-{
- vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
- & ~VMCB_ALWAYS_DIRTY_MASK;
-}
-
-static inline void mark_dirty(struct vmcb *vmcb, int bit)
-{
- vmcb->control.clean &= ~(1 << bit);
-}
-
-static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
-{
- return container_of(vcpu, struct vcpu_svm, vcpu);
-}
-
-static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data)
-{
- svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK;
- mark_dirty(svm->vmcb, VMCB_AVIC);
-}
-
-static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu)
-{
- struct vcpu_svm *svm = to_svm(vcpu);
- u64 *entry = svm->avic_physical_id_cache;
-
- if (!entry)
- return false;
-
- return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
-}
-
-static void recalc_intercepts(struct vcpu_svm *svm)
-{
- struct vmcb_control_area *c, *h;
- struct nested_state *g;
-
- mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
-
- if (!is_guest_mode(&svm->vcpu))
- return;
-
- c = &svm->vmcb->control;
- h = &svm->nested.hsave->control;
- g = &svm->nested;
-
- c->intercept_cr = h->intercept_cr;
- c->intercept_dr = h->intercept_dr;
- c->intercept_exceptions = h->intercept_exceptions;
- c->intercept = h->intercept;
-
- if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
- /* We only want the cr8 intercept bits of L1 */
- c->intercept_cr &= ~(1U << INTERCEPT_CR8_READ);
- c->intercept_cr &= ~(1U << INTERCEPT_CR8_WRITE);
-
- /*
- * Once running L2 with HF_VINTR_MASK, EFLAGS.IF does not
- * affect any interrupt we may want to inject; therefore,
- * interrupt window vmexits are irrelevant to L0.
- */
- c->intercept &= ~(1ULL << INTERCEPT_VINTR);
- }
-
- /* We don't want to see VMMCALLs from a nested guest */
- c->intercept &= ~(1ULL << INTERCEPT_VMMCALL);
-
- c->intercept_cr |= g->intercept_cr;
- c->intercept_dr |= g->intercept_dr;
- c->intercept_exceptions |= g->intercept_exceptions;
- c->intercept |= g->intercept;
-}
-
-static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
-{
- if (is_guest_mode(&svm->vcpu))
- return svm->nested.hsave;
- else
- return svm->vmcb;
-}
-
-static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
-{
- struct vmcb *vmcb = get_host_vmcb(svm);
-
- vmcb->control.intercept_cr |= (1U << bit);
-
- recalc_intercepts(svm);
-}
-
-static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
-{
- struct vmcb *vmcb = get_host_vmcb(svm);
-
- vmcb->control.intercept_cr &= ~(1U << bit);
-
- recalc_intercepts(svm);
-}
-
-static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
-{
- struct vmcb *vmcb = get_host_vmcb(svm);
-
- return vmcb->control.intercept_cr & (1U << bit);
-}
-
-static inline void set_dr_intercepts(struct vcpu_svm *svm)
-{
- struct vmcb *vmcb = get_host_vmcb(svm);
-
- vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
- | (1 << INTERCEPT_DR1_READ)
- | (1 << INTERCEPT_DR2_READ)
- | (1 << INTERCEPT_DR3_READ)
- | (1 << INTERCEPT_DR4_READ)
- | (1 << INTERCEPT_DR5_READ)
- | (1 << INTERCEPT_DR6_READ)
- | (1 << INTERCEPT_DR7_READ)
- | (1 << INTERCEPT_DR0_WRITE)
- | (1 << INTERCEPT_DR1_WRITE)
- | (1 << INTERCEPT_DR2_WRITE)
- | (1 << INTERCEPT_DR3_WRITE)
- | (1 << INTERCEPT_DR4_WRITE)
- | (1 << INTERCEPT_DR5_WRITE)
- | (1 << INTERCEPT_DR6_WRITE)
- | (1 << INTERCEPT_DR7_WRITE);
-
- recalc_intercepts(svm);
-}
-
-static inline void clr_dr_intercepts(struct vcpu_svm *svm)
-{
- struct vmcb *vmcb = get_host_vmcb(svm);
-
- vmcb->control.intercept_dr = 0;
-
- recalc_intercepts(svm);
-}
-
-static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
-{
- struct vmcb *vmcb = get_host_vmcb(svm);
-
- vmcb->control.intercept_exceptions |= (1U << bit);
-
- recalc_intercepts(svm);
-}
-
-static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
-{
- struct vmcb *vmcb = get_host_vmcb(svm);
-
- vmcb->control.intercept_exceptions &= ~(1U << bit);
-
- recalc_intercepts(svm);
-}
-
-static inline void set_intercept(struct vcpu_svm *svm, int bit)
-{
- struct vmcb *vmcb = get_host_vmcb(svm);
-
- vmcb->control.intercept |= (1ULL << bit);
-
- recalc_intercepts(svm);
-}
-
-static inline void clr_intercept(struct vcpu_svm *svm, int bit)
-{
- struct vmcb *vmcb = get_host_vmcb(svm);
-
- vmcb->control.intercept &= ~(1ULL << bit);
-
- recalc_intercepts(svm);
-}
-
-static inline bool is_intercept(struct vcpu_svm *svm, int bit)
-{
- return (svm->vmcb->control.intercept & (1ULL << bit)) != 0;
-}
-
-static inline bool vgif_enabled(struct vcpu_svm *svm)
-{
- return !!(svm->vmcb->control.int_ctl & V_GIF_ENABLE_MASK);
-}
-
-static inline void enable_gif(struct vcpu_svm *svm)
-{
- if (vgif_enabled(svm))
- svm->vmcb->control.int_ctl |= V_GIF_MASK;
- else
- svm->vcpu.arch.hflags |= HF_GIF_MASK;
-}
-
-static inline void disable_gif(struct vcpu_svm *svm)
-{
- if (vgif_enabled(svm))
- svm->vmcb->control.int_ctl &= ~V_GIF_MASK;
- else
- svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
-}
-
-static inline bool gif_set(struct vcpu_svm *svm)
-{
- if (vgif_enabled(svm))
- return !!(svm->vmcb->control.int_ctl & V_GIF_MASK);
- else
- return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
-}
static unsigned long iopm_base;
@@ -696,23 +207,7 @@ struct kvm_ldttss_desc {
u32 zero1;
} __attribute__((packed));
-struct svm_cpu_data {
- int cpu;
-
- u64 asid_generation;
- u32 max_asid;
- u32 next_asid;
- u32 min_asid;
- struct kvm_ldttss_desc *tss_desc;
-
- struct page *save_area;
- struct vmcb *current_vmcb;
-
- /* index = sev_asid, value = vmcb pointer */
- struct vmcb **sev_vmcbs;
-};
-
-static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
+DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
@@ -720,7 +215,7 @@ static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
#define MSRS_RANGE_SIZE 2048
#define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
-static u32 svm_msrpm_offset(u32 msr)
+u32 svm_msrpm_offset(u32 msr)
{
u32 offset;
int i;
@@ -767,7 +262,7 @@ static int get_npt_level(struct kvm_vcpu *vcpu)
#endif
}
-static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
+void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
{
vcpu->arch.efer = efer;
@@ -1198,7 +693,7 @@ static void svm_disable_lbrv(struct vcpu_svm *svm)
set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
}
-static void disable_nmi_singlestep(struct vcpu_svm *svm)
+void disable_nmi_singlestep(struct vcpu_svm *svm)
{
svm->nmi_singlestep = false;
@@ -1211,97 +706,6 @@ static void disable_nmi_singlestep(struct vcpu_svm *svm)
}
}
-/* Note:
- * This hash table is used to map VM_ID to a struct kvm_svm,
- * when handling AMD IOMMU GALOG notification to schedule in
- * a particular vCPU.
- */
-#define SVM_VM_DATA_HASH_BITS 8
-static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
-static u32 next_vm_id = 0;
-static bool next_vm_id_wrapped = 0;
-static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
-
-/* Note:
- * This function is called from IOMMU driver to notify
- * SVM to schedule in a particular vCPU of a particular VM.
- */
-static int avic_ga_log_notifier(u32 ga_tag)
-{
- unsigned long flags;
- struct kvm_svm *kvm_svm;
- struct kvm_vcpu *vcpu = NULL;
- u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
- u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
-
- pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
- trace_kvm_avic_ga_log(vm_id, vcpu_id);
-
- spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
- hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) {
- if (kvm_svm->avic_vm_id != vm_id)
- continue;
- vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id);
- break;
- }
- spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
-
- /* Note:
- * At this point, the IOMMU should have already set the pending
- * bit in the vAPIC backing page. So, we just need to schedule
- * in the vcpu.
- */
- if (vcpu)
- kvm_vcpu_wake_up(vcpu);
-
- return 0;
-}
-
-static __init int sev_hardware_setup(void)
-{
- struct sev_user_data_status *status;
- int rc;
-
- /* Maximum number of encrypted guests supported simultaneously */
- max_sev_asid = cpuid_ecx(0x8000001F);
-
- if (!max_sev_asid)
- return 1;
-
- /* Minimum ASID value that should be used for SEV guest */
- min_sev_asid = cpuid_edx(0x8000001F);
-
- /* Initialize SEV ASID bitmaps */
- sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
- if (!sev_asid_bitmap)
- return 1;
-
- sev_reclaim_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
- if (!sev_reclaim_asid_bitmap)
- return 1;
-
- status = kmalloc(sizeof(*status), GFP_KERNEL);
- if (!status)
- return 1;
-
- /*
- * Check SEV platform status.
- *
- * PLATFORM_STATUS can be called in any state, if we failed to query
- * the PLATFORM status then either PSP firmware does not support SEV
- * feature or SEV firmware is dead.
- */
- rc = sev_platform_status(status, NULL);
- if (rc)
- goto err;
-
- pr_info("SEV supported\n");
-
-err:
- kfree(status);
- return rc;
-}
-
static void grow_ple_window(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
@@ -1383,12 +787,8 @@ static void svm_hardware_teardown(void)
{
int cpu;
- if (svm_sev_enabled()) {
- bitmap_free(sev_asid_bitmap);
- bitmap_free(sev_reclaim_asid_bitmap);
-
- sev_flush_asids();
- }
+ if (svm_sev_enabled())
+ sev_hardware_teardown();
for_each_possible_cpu(cpu)
svm_cpu_uninit(cpu);
@@ -1585,24 +985,6 @@ static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
return svm->vmcb->control.tsc_offset;
}
-static void avic_init_vmcb(struct vcpu_svm *svm)
-{
- struct vmcb *vmcb = svm->vmcb;
- struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm);
- phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
- phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page));
- phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page));
-
- vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
- vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
- vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
- vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
- if (kvm_apicv_activated(svm->vcpu.kvm))
- vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
- else
- vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
-}
-
static void init_vmcb(struct vcpu_svm *svm)
{
struct vmcb_control_area *control = &svm->vmcb->control;
@@ -1762,449 +1144,6 @@ static void init_vmcb(struct vcpu_svm *svm)
}
-static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
- unsigned int index)
-{
- u64 *avic_physical_id_table;
- struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
-
- if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
- return NULL;
-
- avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page);
-
- return &avic_physical_id_table[index];
-}
-
-/**
- * Note:
- * AVIC hardware walks the nested page table to check permissions,
- * but does not use the SPA address specified in the leaf page
- * table entry since it uses address in the AVIC_BACKING_PAGE pointer
- * field of the VMCB. Therefore, we set up the
- * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
- */
-static int avic_update_access_page(struct kvm *kvm, bool activate)
-{
- int ret = 0;
-
- mutex_lock(&kvm->slots_lock);
- /*
- * During kvm_destroy_vm(), kvm_pit_set_reinject() could trigger
- * APICv mode change, which update APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
- * memory region. So, we need to ensure that kvm->mm == current->mm.
- */
- if ((kvm->arch.apic_access_page_done == activate) ||
- (kvm->mm != current->mm))
- goto out;
-
- ret = __x86_set_memory_region(kvm,
- APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
- APIC_DEFAULT_PHYS_BASE,
- activate ? PAGE_SIZE : 0);
- if (ret)
- goto out;
-
- kvm->arch.apic_access_page_done = activate;
-out:
- mutex_unlock(&kvm->slots_lock);
- return ret;
-}
-
-static int avic_init_backing_page(struct kvm_vcpu *vcpu)
-{
- u64 *entry, new_entry;
- int id = vcpu->vcpu_id;
- struct vcpu_svm *svm = to_svm(vcpu);
-
- if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
- return -EINVAL;
-
- if (!svm->vcpu.arch.apic->regs)
- return -EINVAL;
-
- if (kvm_apicv_activated(vcpu->kvm)) {
- int ret;
-
- ret = avic_update_access_page(vcpu->kvm, true);
- if (ret)
- return ret;
- }
-
- svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
-
- /* Setting AVIC backing page address in the phy APIC ID table */
- entry = avic_get_physical_id_entry(vcpu, id);
- if (!entry)
- return -EINVAL;
-
- new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
- AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
- AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
- WRITE_ONCE(*entry, new_entry);
-
- svm->avic_physical_id_cache = entry;
-
- return 0;
-}
-
-static void sev_asid_free(int asid)
-{
- struct svm_cpu_data *sd;
- int cpu, pos;
-
- mutex_lock(&sev_bitmap_lock);
-
- pos = asid - 1;
- __set_bit(pos, sev_reclaim_asid_bitmap);
-
- for_each_possible_cpu(cpu) {
- sd = per_cpu(svm_data, cpu);
- sd->sev_vmcbs[pos] = NULL;
- }
-
- mutex_unlock(&sev_bitmap_lock);
-}
-
-static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
-{
- struct sev_data_decommission *decommission;
- struct sev_data_deactivate *data;
-
- if (!handle)
- return;
-
- data = kzalloc(sizeof(*data), GFP_KERNEL);
- if (!data)
- return;
-
- /* deactivate handle */
- data->handle = handle;
-
- /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
- down_read(&sev_deactivate_lock);
- sev_guest_deactivate(data, NULL);
- up_read(&sev_deactivate_lock);
-
- kfree(data);
-
- decommission = kzalloc(sizeof(*decommission), GFP_KERNEL);
- if (!decommission)
- return;
-
- /* decommission handle */
- decommission->handle = handle;
- sev_guest_decommission(decommission, NULL);
-
- kfree(decommission);
-}
-
-static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
- unsigned long ulen, unsigned long *n,
- int write)
-{
- struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
- unsigned long npages, npinned, size;
- unsigned long locked, lock_limit;
- struct page **pages;
- unsigned long first, last;
-
- if (ulen == 0 || uaddr + ulen < uaddr)
- return NULL;
-
- /* Calculate number of pages. */
- first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
- last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
- npages = (last - first + 1);
-
- locked = sev->pages_locked + npages;
- lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
- if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
- pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
- return NULL;
- }
-
- /* Avoid using vmalloc for smaller buffers. */
- size = npages * sizeof(struct page *);
- if (size > PAGE_SIZE)
- pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO,
- PAGE_KERNEL);
- else
- pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
-
- if (!pages)
- return NULL;
-
- /* Pin the user virtual address. */
- npinned = get_user_pages_fast(uaddr, npages, FOLL_WRITE, pages);
- if (npinned != npages) {
- pr_err("SEV: Failure locking %lu pages.\n", npages);
- goto err;
- }
-
- *n = npages;
- sev->pages_locked = locked;
-
- return pages;
-
-err:
- if (npinned > 0)
- release_pages(pages, npinned);
-
- kvfree(pages);
- return NULL;
-}
-
-static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
- unsigned long npages)
-{
- struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
-
- release_pages(pages, npages);
- kvfree(pages);
- sev->pages_locked -= npages;
-}
-
-static void sev_clflush_pages(struct page *pages[], unsigned long npages)
-{
- uint8_t *page_virtual;
- unsigned long i;
-
- if (npages == 0 || pages == NULL)
- return;
-
- for (i = 0; i < npages; i++) {
- page_virtual = kmap_atomic(pages[i]);
- clflush_cache_range(page_virtual, PAGE_SIZE);
- kunmap_atomic(page_virtual);
- }
-}
-
-static void __unregister_enc_region_locked(struct kvm *kvm,
- struct enc_region *region)
-{
- sev_unpin_memory(kvm, region->pages, region->npages);
- list_del(&region->list);
- kfree(region);
-}
-
-static void sev_vm_destroy(struct kvm *kvm)
-{
- struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
- struct list_head *head = &sev->regions_list;
- struct list_head *pos, *q;
-
- if (!sev_guest(kvm))
- return;
-
- mutex_lock(&kvm->lock);
-
- /*
- * Ensure that all guest tagged cache entries are flushed before
- * releasing the pages back to the system for use. CLFLUSH will
- * not do this, so issue a WBINVD.
- */
- wbinvd_on_all_cpus();
-
- /*
- * if userspace was terminated before unregistering the memory regions
- * then lets unpin all the registered memory.
- */
- if (!list_empty(head)) {
- list_for_each_safe(pos, q, head) {
- __unregister_enc_region_locked(kvm,
- list_entry(pos, struct enc_region, list));
- }
- }
-
- mutex_unlock(&kvm->lock);
-
- sev_unbind_asid(kvm, sev->handle);
- sev_asid_free(sev->asid);
-}
-
-static void avic_vm_destroy(struct kvm *kvm)
-{
- unsigned long flags;
- struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
-
- if (!avic)
- return;
-
- if (kvm_svm->avic_logical_id_table_page)
- __free_page(kvm_svm->avic_logical_id_table_page);
- if (kvm_svm->avic_physical_id_table_page)
- __free_page(kvm_svm->avic_physical_id_table_page);
-
- spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
- hash_del(&kvm_svm->hnode);
- spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
-}
-
-static void svm_vm_destroy(struct kvm *kvm)
-{
- avic_vm_destroy(kvm);
- sev_vm_destroy(kvm);
-}
-
-static int avic_vm_init(struct kvm *kvm)
-{
- unsigned long flags;
- int err = -ENOMEM;
- struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
- struct kvm_svm *k2;
- struct page *p_page;
- struct page *l_page;
- u32 vm_id;
-
- if (!avic)
- return 0;
-
- /* Allocating physical APIC ID table (4KB) */
- p_page = alloc_page(GFP_KERNEL_ACCOUNT);
- if (!p_page)
- goto free_avic;
-
- kvm_svm->avic_physical_id_table_page = p_page;
- clear_page(page_address(p_page));
-
- /* Allocating logical APIC ID table (4KB) */
- l_page = alloc_page(GFP_KERNEL_ACCOUNT);
- if (!l_page)
- goto free_avic;
-
- kvm_svm->avic_logical_id_table_page = l_page;
- clear_page(page_address(l_page));
-
- spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
- again:
- vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
- if (vm_id == 0) { /* id is 1-based, zero is not okay */
- next_vm_id_wrapped = 1;
- goto again;
- }
- /* Is it still in use? Only possible if wrapped at least once */
- if (next_vm_id_wrapped) {
- hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) {
- if (k2->avic_vm_id == vm_id)
- goto again;
- }
- }
- kvm_svm->avic_vm_id = vm_id;
- hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id);
- spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
-
- return 0;
-
-free_avic:
- avic_vm_destroy(kvm);
- return err;
-}
-
-static int svm_vm_init(struct kvm *kvm)
-{
- if (avic) {
- int ret = avic_vm_init(kvm);
- if (ret)
- return ret;
- }
-
- kvm_apicv_init(kvm, avic);
- return 0;
-}
-
-static inline int
-avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
-{
- int ret = 0;
- unsigned long flags;
- struct amd_svm_iommu_ir *ir;
- struct vcpu_svm *svm = to_svm(vcpu);
-
- if (!kvm_arch_has_assigned_device(vcpu->kvm))
- return 0;
-
- /*
- * Here, we go through the per-vcpu ir_list to update all existing
- * interrupt remapping table entry targeting this vcpu.
- */
- spin_lock_irqsave(&svm->ir_list_lock, flags);
-
- if (list_empty(&svm->ir_list))
- goto out;
-
- list_for_each_entry(ir, &svm->ir_list, node) {
- ret = amd_iommu_update_ga(cpu, r, ir->data);
- if (ret)
- break;
- }
-out:
- spin_unlock_irqrestore(&svm->ir_list_lock, flags);
- return ret;
-}
-
-static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
-{
- u64 entry;
- /* ID = 0xff (broadcast), ID > 0xff (reserved) */
- int h_physical_id = kvm_cpu_get_apicid(cpu);
- struct vcpu_svm *svm = to_svm(vcpu);
-
- if (!kvm_vcpu_apicv_active(vcpu))
- return;
-
- /*
- * Since the host physical APIC id is 8 bits,
- * we can support host APIC ID upto 255.
- */
- if (WARN_ON(h_physical_id > AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK))
- return;
-
- entry = READ_ONCE(*(svm->avic_physical_id_cache));
- WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
-
- entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
- entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
-
- entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
- if (svm->avic_is_running)
- entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
-
- WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
- avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
- svm->avic_is_running);
-}
-
-static void avic_vcpu_put(struct kvm_vcpu *vcpu)
-{
- u64 entry;
- struct vcpu_svm *svm = to_svm(vcpu);
-
- if (!kvm_vcpu_apicv_active(vcpu))
- return;
-
- entry = READ_ONCE(*(svm->avic_physical_id_cache));
- if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
- avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
-
- entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
- WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
-}
-
-/**
- * This function is called during VCPU halt/unhalt.
- */
-static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
-{
- struct vcpu_svm *svm = to_svm(vcpu);
-
- svm->avic_is_running = is_run;
- if (is_run)
- avic_vcpu_load(vcpu, vcpu->cpu);
- else
- avic_vcpu_put(vcpu);
-}
-
static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
{
struct vcpu_svm *svm = to_svm(vcpu);
@@ -2229,25 +1168,6 @@ static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
}
-static int avic_init_vcpu(struct vcpu_svm *svm)
-{
- int ret;
- struct kvm_vcpu *vcpu = &svm->vcpu;
-
- if (!avic || !irqchip_in_kernel(vcpu->kvm))
- return 0;
-
- ret = avic_init_backing_page(&svm->vcpu);
- if (ret)
- return ret;
-
- INIT_LIST_HEAD(&svm->ir_list);
- spin_lock_init(&svm->ir_list_lock);
- svm->dfr_reg = APIC_DFR_FLAT;
-
- return ret;
-}
-
static int svm_create_vcpu(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm;
@@ -2404,18 +1324,6 @@ static void svm_vcpu_put(struct kvm_vcpu *vcpu)
wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
}
-static void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
-{
- avic_set_running(vcpu, false);
-}
-
-static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
-{
- if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
- kvm_vcpu_update_apicv(vcpu);
- avic_set_running(vcpu, true);
-}
-
static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
@@ -2652,7 +1560,7 @@ static void update_cr0_intercept(struct vcpu_svm *svm)
}
}
-static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
+void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
{
struct vcpu_svm *svm = to_svm(vcpu);
@@ -2686,7 +1594,7 @@ static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
update_cr0_intercept(svm);
}
-static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
+int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
{
unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
@@ -3022,776 +1930,6 @@ static int vmmcall_interception(struct vcpu_svm *svm)
return kvm_emulate_hypercall(&svm->vcpu);
}
-static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
-{
- struct vcpu_svm *svm = to_svm(vcpu);
-
- return svm->nested.nested_cr3;
-}
-
-static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
-{
- struct vcpu_svm *svm = to_svm(vcpu);
- u64 cr3 = svm->nested.nested_cr3;
- u64 pdpte;
- int ret;
-
- ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(__sme_clr(cr3)), &pdpte,
- offset_in_page(cr3) + index * 8, 8);
- if (ret)
- return 0;
- return pdpte;
-}
-
-static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
- struct x86_exception *fault)
-{
- struct vcpu_svm *svm = to_svm(vcpu);
-
- if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
- /*
- * TODO: track the cause of the nested page fault, and
- * correctly fill in the high bits of exit_info_1.
- */
- svm->vmcb->control.exit_code = SVM_EXIT_NPF;
- svm->vmcb->control.exit_code_hi = 0;
- svm->vmcb->control.exit_info_1 = (1ULL << 32);
- svm->vmcb->control.exit_info_2 = fault->address;
- }
-
- svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
- svm->vmcb->control.exit_info_1 |= fault->error_code;
-
- /*
- * The present bit is always zero for page structure faults on real
- * hardware.
- */
- if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
- svm->vmcb->control.exit_info_1 &= ~1;
-
- nested_svm_vmexit(svm);
-}
-
-static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
-{
- WARN_ON(mmu_is_nested(vcpu));
-
- vcpu->arch.mmu = &vcpu->arch.guest_mmu;
- kvm_init_shadow_mmu(vcpu);
- vcpu->arch.mmu->get_guest_pgd = nested_svm_get_tdp_cr3;
- vcpu->arch.mmu->get_pdptr = nested_svm_get_tdp_pdptr;
- vcpu->arch.mmu->inject_page_fault = nested_svm_inject_npf_exit;
- vcpu->arch.mmu->shadow_root_level = get_npt_level(vcpu);
- reset_shadow_zero_bits_mask(vcpu, vcpu->arch.mmu);
- vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
-}
-
-static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
-{
- vcpu->arch.mmu = &vcpu->arch.root_mmu;
- vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
-}
-
-static int nested_svm_check_permissions(struct vcpu_svm *svm)
-{
- if (!(svm->vcpu.arch.efer & EFER_SVME) ||
- !is_paging(&svm->vcpu)) {
- kvm_queue_exception(&svm->vcpu, UD_VECTOR);
- return 1;
- }
-
- if (svm->vmcb->save.cpl) {
- kvm_inject_gp(&svm->vcpu, 0);
- return 1;
- }
-
- return 0;
-}
-
-static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
- bool has_error_code, u32 error_code)
-{
- int vmexit;
-
- if (!is_guest_mode(&svm->vcpu))
- return 0;
-
- vmexit = nested_svm_intercept(svm);
- if (vmexit != NESTED_EXIT_DONE)
- return 0;
-
- svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
- svm->vmcb->control.exit_code_hi = 0;
- svm->vmcb->control.exit_info_1 = error_code;
-
- /*
- * EXITINFO2 is undefined for all exception intercepts other
- * than #PF.
- */
- if (svm->vcpu.arch.exception.nested_apf)
- svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token;
- else if (svm->vcpu.arch.exception.has_payload)
- svm->vmcb->control.exit_info_2 = svm->vcpu.arch.exception.payload;
- else
- svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
-
- svm->nested.exit_required = true;
- return vmexit;
-}
-
-static void nested_svm_intr(struct vcpu_svm *svm)
-{
- svm->vmcb->control.exit_code = SVM_EXIT_INTR;
- svm->vmcb->control.exit_info_1 = 0;
- svm->vmcb->control.exit_info_2 = 0;
-
- /* nested_svm_vmexit this gets called afterwards from handle_exit */
- svm->nested.exit_required = true;
- trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
-}
-
-static bool nested_exit_on_intr(struct vcpu_svm *svm)
-{
- return (svm->nested.intercept & 1ULL);
-}
-
-static int svm_check_nested_events(struct kvm_vcpu *vcpu)
-{
- struct vcpu_svm *svm = to_svm(vcpu);
- bool block_nested_events =
- kvm_event_needs_reinjection(vcpu) || svm->nested.exit_required;
-
- if (kvm_cpu_has_interrupt(vcpu) && nested_exit_on_intr(svm)) {
- if (block_nested_events)
- return -EBUSY;
- nested_svm_intr(svm);
- return 0;
- }
-
- return 0;
-}
-
-/* This function returns true if it is save to enable the nmi window */
-static inline bool nested_svm_nmi(struct vcpu_svm *svm)
-{
- if (!is_guest_mode(&svm->vcpu))
- return true;
-
- if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
- return true;
-
- svm->vmcb->control.exit_code = SVM_EXIT_NMI;
- svm->nested.exit_required = true;
-
- return false;
-}
-
-static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
-{
- unsigned port, size, iopm_len;
- u16 val, mask;
- u8 start_bit;
- u64 gpa;
-
- if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
- return NESTED_EXIT_HOST;
-
- port = svm->vmcb->control.exit_info_1 >> 16;
- size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
- SVM_IOIO_SIZE_SHIFT;
- gpa = svm->nested.vmcb_iopm + (port / 8);
- start_bit = port % 8;
- iopm_len = (start_bit + size > 8) ? 2 : 1;
- mask = (0xf >> (4 - size)) << start_bit;
- val = 0;
-
- if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
- return NESTED_EXIT_DONE;
-
- return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
-}
-
-static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
-{
- u32 offset, msr, value;
- int write, mask;
-
- if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
- return NESTED_EXIT_HOST;
-
- msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
- offset = svm_msrpm_offset(msr);
- write = svm->vmcb->control.exit_info_1 & 1;
- mask = 1 << ((2 * (msr & 0xf)) + write);
-
- if (offset == MSR_INVALID)
- return NESTED_EXIT_DONE;
-
- /* Offset is in 32 bit units but need in 8 bit units */
- offset *= 4;
-
- if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
- return NESTED_EXIT_DONE;
-
- return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
-}
-
-/* DB exceptions for our internal use must not cause vmexit */
-static int nested_svm_intercept_db(struct vcpu_svm *svm)
-{
- unsigned long dr6;
-
- /* if we're not singlestepping, it's not ours */
- if (!svm->nmi_singlestep)
- return NESTED_EXIT_DONE;
-
- /* if it's not a singlestep exception, it's not ours */
- if (kvm_get_dr(&svm->vcpu, 6, &dr6))
- return NESTED_EXIT_DONE;
- if (!(dr6 & DR6_BS))
- return NESTED_EXIT_DONE;
-
- /* if the guest is singlestepping, it should get the vmexit */
- if (svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF) {
- disable_nmi_singlestep(svm);
- return NESTED_EXIT_DONE;
- }
-
- /* it's ours, the nested hypervisor must not see this one */
- return NESTED_EXIT_HOST;
-}
-
-static int nested_svm_exit_special(struct vcpu_svm *svm)
-{
- u32 exit_code = svm->vmcb->control.exit_code;
-
- switch (exit_code) {
- case SVM_EXIT_INTR:
- case SVM_EXIT_NMI:
- case SVM_EXIT_EXCP_BASE + MC_VECTOR:
- return NESTED_EXIT_HOST;
- case SVM_EXIT_NPF:
- /* For now we are always handling NPFs when using them */
- if (npt_enabled)
- return NESTED_EXIT_HOST;
- break;
- case SVM_EXIT_EXCP_BASE + PF_VECTOR:
- /* When we're shadowing, trap PFs, but not async PF */
- if (!npt_enabled && svm->vcpu.arch.apf.host_apf_reason == 0)
- return NESTED_EXIT_HOST;
- break;
- default:
- break;
- }
-
- return NESTED_EXIT_CONTINUE;
-}
-
-static int nested_svm_intercept(struct vcpu_svm *svm)
-{
- u32 exit_code = svm->vmcb->control.exit_code;
- int vmexit = NESTED_EXIT_HOST;
-
- switch (exit_code) {
- case SVM_EXIT_MSR:
- vmexit = nested_svm_exit_handled_msr(svm);
- break;
- case SVM_EXIT_IOIO:
- vmexit = nested_svm_intercept_ioio(svm);
- break;
- case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
- u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
- if (svm->nested.intercept_cr & bit)
- vmexit = NESTED_EXIT_DONE;
- break;
- }
- case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
- u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
- if (svm->nested.intercept_dr & bit)
- vmexit = NESTED_EXIT_DONE;
- break;
- }
- case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
- u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
- if (svm->nested.intercept_exceptions & excp_bits) {
- if (exit_code == SVM_EXIT_EXCP_BASE + DB_VECTOR)
- vmexit = nested_svm_intercept_db(svm);
- else
- vmexit = NESTED_EXIT_DONE;
- }
- /* async page fault always cause vmexit */
- else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
- svm->vcpu.arch.exception.nested_apf != 0)
- vmexit = NESTED_EXIT_DONE;
- break;
- }
- case SVM_EXIT_ERR: {
- vmexit = NESTED_EXIT_DONE;
- break;
- }
- default: {
- u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
- if (svm->nested.intercept & exit_bits)
- vmexit = NESTED_EXIT_DONE;
- }
- }
-
- return vmexit;
-}
-
-static int nested_svm_exit_handled(struct vcpu_svm *svm)
-{
- int vmexit;
-
- vmexit = nested_svm_intercept(svm);
-
- if (vmexit == NESTED_EXIT_DONE)
- nested_svm_vmexit(svm);
-
- return vmexit;
-}
-
-static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
-{
- struct vmcb_control_area *dst = &dst_vmcb->control;
- struct vmcb_control_area *from = &from_vmcb->control;
-
- dst->intercept_cr = from->intercept_cr;
- dst->intercept_dr = from->intercept_dr;
- dst->intercept_exceptions = from->intercept_exceptions;
- dst->intercept = from->intercept;
- dst->iopm_base_pa = from->iopm_base_pa;
- dst->msrpm_base_pa = from->msrpm_base_pa;
- dst->tsc_offset = from->tsc_offset;
- dst->asid = from->asid;
- dst->tlb_ctl = from->tlb_ctl;
- dst->int_ctl = from->int_ctl;
- dst->int_vector = from->int_vector;
- dst->int_state = from->int_state;
- dst->exit_code = from->exit_code;
- dst->exit_code_hi = from->exit_code_hi;
- dst->exit_info_1 = from->exit_info_1;
- dst->exit_info_2 = from->exit_info_2;
- dst->exit_int_info = from->exit_int_info;
- dst->exit_int_info_err = from->exit_int_info_err;
- dst->nested_ctl = from->nested_ctl;
- dst->event_inj = from->event_inj;
- dst->event_inj_err = from->event_inj_err;
- dst->nested_cr3 = from->nested_cr3;
- dst->virt_ext = from->virt_ext;
- dst->pause_filter_count = from->pause_filter_count;
- dst->pause_filter_thresh = from->pause_filter_thresh;
-}
-
-static int nested_svm_vmexit(struct vcpu_svm *svm)
-{
- int rc;
- struct vmcb *nested_vmcb;
- struct vmcb *hsave = svm->nested.hsave;
- struct vmcb *vmcb = svm->vmcb;
- struct kvm_host_map map;
-
- trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
- vmcb->control.exit_info_1,
- vmcb->control.exit_info_2,
- vmcb->control.exit_int_info,
- vmcb->control.exit_int_info_err,
- KVM_ISA_SVM);
-
- rc = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->nested.vmcb), &map);
- if (rc) {
- if (rc == -EINVAL)
- kvm_inject_gp(&svm->vcpu, 0);
- return 1;
- }
-
- nested_vmcb = map.hva;
-
- /* Exit Guest-Mode */
- leave_guest_mode(&svm->vcpu);
- svm->nested.vmcb = 0;
-
- /* Give the current vmcb to the guest */
- disable_gif(svm);
-
- nested_vmcb->save.es = vmcb->save.es;
- nested_vmcb->save.cs = vmcb->save.cs;
- nested_vmcb->save.ss = vmcb->save.ss;
- nested_vmcb->save.ds = vmcb->save.ds;
- nested_vmcb->save.gdtr = vmcb->save.gdtr;
- nested_vmcb->save.idtr = vmcb->save.idtr;
- nested_vmcb->save.efer = svm->vcpu.arch.efer;
- nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
- nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu);
- nested_vmcb->save.cr2 = vmcb->save.cr2;
- nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
- nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
- nested_vmcb->save.rip = vmcb->save.rip;
- nested_vmcb->save.rsp = vmcb->save.rsp;
- nested_vmcb->save.rax = vmcb->save.rax;
- nested_vmcb->save.dr7 = vmcb->save.dr7;
- nested_vmcb->save.dr6 = vmcb->save.dr6;
- nested_vmcb->save.cpl = vmcb->save.cpl;
-
- nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
- nested_vmcb->control.int_vector = vmcb->control.int_vector;
- nested_vmcb->control.int_state = vmcb->control.int_state;
- nested_vmcb->control.exit_code = vmcb->control.exit_code;
- nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
- nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
- nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
- nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
- nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
-
- if (svm->nrips_enabled)
- nested_vmcb->control.next_rip = vmcb->control.next_rip;
-
- /*
- * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
- * to make sure that we do not lose injected events. So check event_inj
- * here and copy it to exit_int_info if it is valid.
- * Exit_int_info and event_inj can't be both valid because the case
- * below only happens on a VMRUN instruction intercept which has
- * no valid exit_int_info set.
- */
- if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
- struct vmcb_control_area *nc = &nested_vmcb->control;
-
- nc->exit_int_info = vmcb->control.event_inj;
- nc->exit_int_info_err = vmcb->control.event_inj_err;
- }
-
- nested_vmcb->control.tlb_ctl = 0;
- nested_vmcb->control.event_inj = 0;
- nested_vmcb->control.event_inj_err = 0;
-
- nested_vmcb->control.pause_filter_count =
- svm->vmcb->control.pause_filter_count;
- nested_vmcb->control.pause_filter_thresh =
- svm->vmcb->control.pause_filter_thresh;
-
- /* We always set V_INTR_MASKING and remember the old value in hflags */
- if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
- nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
-
- /* Restore the original control entries */
- copy_vmcb_control_area(vmcb, hsave);
-
- svm->vcpu.arch.tsc_offset = svm->vmcb->control.tsc_offset;
- kvm_clear_exception_queue(&svm->vcpu);
- kvm_clear_interrupt_queue(&svm->vcpu);
-
- svm->nested.nested_cr3 = 0;
-
- /* Restore selected save entries */
- svm->vmcb->save.es = hsave->save.es;
- svm->vmcb->save.cs = hsave->save.cs;
- svm->vmcb->save.ss = hsave->save.ss;
- svm->vmcb->save.ds = hsave->save.ds;
- svm->vmcb->save.gdtr = hsave->save.gdtr;
- svm->vmcb->save.idtr = hsave->save.idtr;
- kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
- svm_set_efer(&svm->vcpu, hsave->save.efer);
- svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
- svm_set_cr4(&svm->vcpu, hsave->save.cr4);
- if (npt_enabled) {
- svm->vmcb->save.cr3 = hsave->save.cr3;
- svm->vcpu.arch.cr3 = hsave->save.cr3;
- } else {
- (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
- }
- kvm_rax_write(&svm->vcpu, hsave->save.rax);
- kvm_rsp_write(&svm->vcpu, hsave->save.rsp);
- kvm_rip_write(&svm->vcpu, hsave->save.rip);
- svm->vmcb->save.dr7 = 0;
- svm->vmcb->save.cpl = 0;
- svm->vmcb->control.exit_int_info = 0;
-
- mark_all_dirty(svm->vmcb);
-
- kvm_vcpu_unmap(&svm->vcpu, &map, true);
-
- nested_svm_uninit_mmu_context(&svm->vcpu);
- kvm_mmu_reset_context(&svm->vcpu);
- kvm_mmu_load(&svm->vcpu);
-
- /*
- * Drop what we picked up for L2 via svm_complete_interrupts() so it
- * doesn't end up in L1.
- */
- svm->vcpu.arch.nmi_injected = false;
- kvm_clear_exception_queue(&svm->vcpu);
- kvm_clear_interrupt_queue(&svm->vcpu);
-
- return 0;
-}
-
-static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
-{
- /*
- * This function merges the msr permission bitmaps of kvm and the
- * nested vmcb. It is optimized in that it only merges the parts where
- * the kvm msr permission bitmap may contain zero bits
- */
- int i;
-
- if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
- return true;
-
- for (i = 0; i < MSRPM_OFFSETS; i++) {
- u32 value, p;
- u64 offset;
-
- if (msrpm_offsets[i] == 0xffffffff)
- break;
-
- p = msrpm_offsets[i];
- offset = svm->nested.vmcb_msrpm + (p * 4);
-
- if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
- return false;
-
- svm->nested.msrpm[p] = svm->msrpm[p] | value;
- }
-
- svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm));
-
- return true;
-}
-
-static bool nested_vmcb_checks(struct vmcb *vmcb)
-{
- if ((vmcb->save.efer & EFER_SVME) == 0)
- return false;
-
- if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
- return false;
-
- if (vmcb->control.asid == 0)
- return false;
-
- if ((vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) &&
- !npt_enabled)
- return false;
-
- return true;
-}
-
-static void enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb_gpa,
- struct vmcb *nested_vmcb, struct kvm_host_map *map)
-{
- bool evaluate_pending_interrupts =
- is_intercept(svm, INTERCEPT_VINTR) ||
- is_intercept(svm, INTERCEPT_IRET);
-
- if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
- svm->vcpu.arch.hflags |= HF_HIF_MASK;
- else
- svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
-
- if (nested_vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) {
- svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
- nested_svm_init_mmu_context(&svm->vcpu);
- }
-
- /* Load the nested guest state */
- svm->vmcb->save.es = nested_vmcb->save.es;
- svm->vmcb->save.cs = nested_vmcb->save.cs;
- svm->vmcb->save.ss = nested_vmcb->save.ss;
- svm->vmcb->save.ds = nested_vmcb->save.ds;
- svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
- svm->vmcb->save.idtr = nested_vmcb->save.idtr;
- kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
- svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
- svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
- svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
- if (npt_enabled) {
- svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
- svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
- } else
- (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
-
- /* Guest paging mode is active - reset mmu */
- kvm_mmu_reset_context(&svm->vcpu);
-
- svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
- kvm_rax_write(&svm->vcpu, nested_vmcb->save.rax);
- kvm_rsp_write(&svm->vcpu, nested_vmcb->save.rsp);
- kvm_rip_write(&svm->vcpu, nested_vmcb->save.rip);
-
- /* In case we don't even reach vcpu_run, the fields are not updated */
- svm->vmcb->save.rax = nested_vmcb->save.rax;
- svm->vmcb->save.rsp = nested_vmcb->save.rsp;
- svm->vmcb->save.rip = nested_vmcb->save.rip;
- svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
- svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
- svm->vmcb->save.cpl = nested_vmcb->save.cpl;
-
- svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
- svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
-
- /* cache intercepts */
- svm->nested.intercept_cr = nested_vmcb->control.intercept_cr;
- svm->nested.intercept_dr = nested_vmcb->control.intercept_dr;
- svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
- svm->nested.intercept = nested_vmcb->control.intercept;
-
- svm_flush_tlb(&svm->vcpu, true);
- svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
- if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
- svm->vcpu.arch.hflags |= HF_VINTR_MASK;
- else
- svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
-
- svm->vcpu.arch.tsc_offset += nested_vmcb->control.tsc_offset;
- svm->vmcb->control.tsc_offset = svm->vcpu.arch.tsc_offset;
-
- svm->vmcb->control.virt_ext = nested_vmcb->control.virt_ext;
- svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
- svm->vmcb->control.int_state = nested_vmcb->control.int_state;
- svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
- svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
-
- svm->vmcb->control.pause_filter_count =
- nested_vmcb->control.pause_filter_count;
- svm->vmcb->control.pause_filter_thresh =
- nested_vmcb->control.pause_filter_thresh;
-
- kvm_vcpu_unmap(&svm->vcpu, map, true);
-
- /* Enter Guest-Mode */
- enter_guest_mode(&svm->vcpu);
-
- /*
- * Merge guest and host intercepts - must be called with vcpu in
- * guest-mode to take affect here
- */
- recalc_intercepts(svm);
-
- svm->nested.vmcb = vmcb_gpa;
-
- /*
- * If L1 had a pending IRQ/NMI before executing VMRUN,
- * which wasn't delivered because it was disallowed (e.g.
- * interrupts disabled), L0 needs to evaluate if this pending
- * event should cause an exit from L2 to L1 or be delivered
- * directly to L2.
- *
- * Usually this would be handled by the processor noticing an
- * IRQ/NMI window request. However, VMRUN can unblock interrupts
- * by implicitly setting GIF, so force L0 to perform pending event
- * evaluation by requesting a KVM_REQ_EVENT.
- */
- enable_gif(svm);
- if (unlikely(evaluate_pending_interrupts))
- kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
-
- mark_all_dirty(svm->vmcb);
-}
-
-static int nested_svm_vmrun(struct vcpu_svm *svm)
-{
- int ret;
- struct vmcb *nested_vmcb;
- struct vmcb *hsave = svm->nested.hsave;
- struct vmcb *vmcb = svm->vmcb;
- struct kvm_host_map map;
- u64 vmcb_gpa;
-
- vmcb_gpa = svm->vmcb->save.rax;
-
- ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(vmcb_gpa), &map);
- if (ret == -EINVAL) {
- kvm_inject_gp(&svm->vcpu, 0);
- return 1;
- } else if (ret) {
- return kvm_skip_emulated_instruction(&svm->vcpu);
- }
-
- ret = kvm_skip_emulated_instruction(&svm->vcpu);
-
- nested_vmcb = map.hva;
-
- if (!nested_vmcb_checks(nested_vmcb)) {
- nested_vmcb->control.exit_code = SVM_EXIT_ERR;
- nested_vmcb->control.exit_code_hi = 0;
- nested_vmcb->control.exit_info_1 = 0;
- nested_vmcb->control.exit_info_2 = 0;
-
- kvm_vcpu_unmap(&svm->vcpu, &map, true);
-
- return ret;
- }
-
- trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
- nested_vmcb->save.rip,
- nested_vmcb->control.int_ctl,
- nested_vmcb->control.event_inj,
- nested_vmcb->control.nested_ctl);
-
- trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
- nested_vmcb->control.intercept_cr >> 16,
- nested_vmcb->control.intercept_exceptions,
- nested_vmcb->control.intercept);
-
- /* Clear internal status */
- kvm_clear_exception_queue(&svm->vcpu);
- kvm_clear_interrupt_queue(&svm->vcpu);
-
- /*
- * Save the old vmcb, so we don't need to pick what we save, but can
- * restore everything when a VMEXIT occurs
- */
- hsave->save.es = vmcb->save.es;
- hsave->save.cs = vmcb->save.cs;
- hsave->save.ss = vmcb->save.ss;
- hsave->save.ds = vmcb->save.ds;
- hsave->save.gdtr = vmcb->save.gdtr;
- hsave->save.idtr = vmcb->save.idtr;
- hsave->save.efer = svm->vcpu.arch.efer;
- hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
- hsave->save.cr4 = svm->vcpu.arch.cr4;
- hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
- hsave->save.rip = kvm_rip_read(&svm->vcpu);
- hsave->save.rsp = vmcb->save.rsp;
- hsave->save.rax = vmcb->save.rax;
- if (npt_enabled)
- hsave->save.cr3 = vmcb->save.cr3;
- else
- hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);
-
- copy_vmcb_control_area(hsave, vmcb);
-
- enter_svm_guest_mode(svm, vmcb_gpa, nested_vmcb, &map);
-
- if (!nested_svm_vmrun_msrpm(svm)) {
- svm->vmcb->control.exit_code = SVM_EXIT_ERR;
- svm->vmcb->control.exit_code_hi = 0;
- svm->vmcb->control.exit_info_1 = 0;
- svm->vmcb->control.exit_info_2 = 0;
-
- nested_svm_vmexit(svm);
- }
-
- return ret;
-}
-
-static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
-{
- to_vmcb->save.fs = from_vmcb->save.fs;
- to_vmcb->save.gs = from_vmcb->save.gs;
- to_vmcb->save.tr = from_vmcb->save.tr;
- to_vmcb->save.ldtr = from_vmcb->save.ldtr;
- to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
- to_vmcb->save.star = from_vmcb->save.star;
- to_vmcb->save.lstar = from_vmcb->save.lstar;
- to_vmcb->save.cstar = from_vmcb->save.cstar;
- to_vmcb->save.sfmask = from_vmcb->save.sfmask;
- to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
- to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
- to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
-}
-
static int vmload_interception(struct vcpu_svm *svm)
{
struct vmcb *nested_vmcb;
@@ -4565,276 +2703,6 @@ static int mwait_interception(struct vcpu_svm *svm)
return nop_interception(svm);
}
-enum avic_ipi_failure_cause {
- AVIC_IPI_FAILURE_INVALID_INT_TYPE,
- AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
- AVIC_IPI_FAILURE_INVALID_TARGET,
- AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
-};
-
-static int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
-{
- u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
- u32 icrl = svm->vmcb->control.exit_info_1;
- u32 id = svm->vmcb->control.exit_info_2 >> 32;
- u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
- struct kvm_lapic *apic = svm->vcpu.arch.apic;
-
- trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
-
- switch (id) {
- case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
- /*
- * AVIC hardware handles the generation of
- * IPIs when the specified Message Type is Fixed
- * (also known as fixed delivery mode) and
- * the Trigger Mode is edge-triggered. The hardware
- * also supports self and broadcast delivery modes
- * specified via the Destination Shorthand(DSH)
- * field of the ICRL. Logical and physical APIC ID
- * formats are supported. All other IPI types cause
- * a #VMEXIT, which needs to emulated.
- */
- kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
- kvm_lapic_reg_write(apic, APIC_ICR, icrl);
- break;
- case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
- int i;
- struct kvm_vcpu *vcpu;
- struct kvm *kvm = svm->vcpu.kvm;
- struct kvm_lapic *apic = svm->vcpu.arch.apic;
-
- /*
- * At this point, we expect that the AVIC HW has already
- * set the appropriate IRR bits on the valid target
- * vcpus. So, we just need to kick the appropriate vcpu.
- */
- kvm_for_each_vcpu(i, vcpu, kvm) {
- bool m = kvm_apic_match_dest(vcpu, apic,
- icrl & APIC_SHORT_MASK,
- GET_APIC_DEST_FIELD(icrh),
- icrl & APIC_DEST_MASK);
-
- if (m && !avic_vcpu_is_running(vcpu))
- kvm_vcpu_wake_up(vcpu);
- }
- break;
- }
- case AVIC_IPI_FAILURE_INVALID_TARGET:
- WARN_ONCE(1, "Invalid IPI target: index=%u, vcpu=%d, icr=%#0x:%#0x\n",
- index, svm->vcpu.vcpu_id, icrh, icrl);
- break;
- case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
- WARN_ONCE(1, "Invalid backing page\n");
- break;
- default:
- pr_err("Unknown IPI interception\n");
- }
-
- return 1;
-}
-
-static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
-{
- struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
- int index;
- u32 *logical_apic_id_table;
- int dlid = GET_APIC_LOGICAL_ID(ldr);
-
- if (!dlid)
- return NULL;
-
- if (flat) { /* flat */
- index = ffs(dlid) - 1;
- if (index > 7)
- return NULL;
- } else { /* cluster */
- int cluster = (dlid & 0xf0) >> 4;
- int apic = ffs(dlid & 0x0f) - 1;
-
- if ((apic < 0) || (apic > 7) ||
- (cluster >= 0xf))
- return NULL;
- index = (cluster << 2) + apic;
- }
-
- logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page);
-
- return &logical_apic_id_table[index];
-}
-
-static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr)
-{
- bool flat;
- u32 *entry, new_entry;
-
- flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
- entry = avic_get_logical_id_entry(vcpu, ldr, flat);
- if (!entry)
- return -EINVAL;
-
- new_entry = READ_ONCE(*entry);
- new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
- new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
- new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
- WRITE_ONCE(*entry, new_entry);
-
- return 0;
-}
-
-static void avic_invalidate_logical_id_entry(struct kvm_vcpu *vcpu)
-{
- struct vcpu_svm *svm = to_svm(vcpu);
- bool flat = svm->dfr_reg == APIC_DFR_FLAT;
- u32 *entry = avic_get_logical_id_entry(vcpu, svm->ldr_reg, flat);
-
- if (entry)
- clear_bit(AVIC_LOGICAL_ID_ENTRY_VALID_BIT, (unsigned long *)entry);
-}
-
-static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
-{
- int ret = 0;
- struct vcpu_svm *svm = to_svm(vcpu);
- u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
- u32 id = kvm_xapic_id(vcpu->arch.apic);
-
- if (ldr == svm->ldr_reg)
- return 0;
-
- avic_invalidate_logical_id_entry(vcpu);
-
- if (ldr)
- ret = avic_ldr_write(vcpu, id, ldr);
-
- if (!ret)
- svm->ldr_reg = ldr;
-
- return ret;
-}
-
-static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
-{
- u64 *old, *new;
- struct vcpu_svm *svm = to_svm(vcpu);
- u32 id = kvm_xapic_id(vcpu->arch.apic);
-
- if (vcpu->vcpu_id == id)
- return 0;
-
- old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
- new = avic_get_physical_id_entry(vcpu, id);
- if (!new || !old)
- return 1;
-
- /* We need to move physical_id_entry to new offset */
- *new = *old;
- *old = 0ULL;
- to_svm(vcpu)->avic_physical_id_cache = new;
-
- /*
- * Also update the guest physical APIC ID in the logical
- * APIC ID table entry if already setup the LDR.
- */
- if (svm->ldr_reg)
- avic_handle_ldr_update(vcpu);
-
- return 0;
-}
-
-static void avic_handle_dfr_update(struct kvm_vcpu *vcpu)
-{
- struct vcpu_svm *svm = to_svm(vcpu);
- u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
-
- if (svm->dfr_reg == dfr)
- return;
-
- avic_invalidate_logical_id_entry(vcpu);
- svm->dfr_reg = dfr;
-}
-
-static int avic_unaccel_trap_write(struct vcpu_svm *svm)
-{
- struct kvm_lapic *apic = svm->vcpu.arch.apic;
- u32 offset = svm->vmcb->control.exit_info_1 &
- AVIC_UNACCEL_ACCESS_OFFSET_MASK;
-
- switch (offset) {
- case APIC_ID:
- if (avic_handle_apic_id_update(&svm->vcpu))
- return 0;
- break;
- case APIC_LDR:
- if (avic_handle_ldr_update(&svm->vcpu))
- return 0;
- break;
- case APIC_DFR:
- avic_handle_dfr_update(&svm->vcpu);
- break;
- default:
- break;
- }
-
- kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
-
- return 1;
-}
-
-static bool is_avic_unaccelerated_access_trap(u32 offset)
-{
- bool ret = false;
-
- switch (offset) {
- case APIC_ID:
- case APIC_EOI:
- case APIC_RRR:
- case APIC_LDR:
- case APIC_DFR:
- case APIC_SPIV:
- case APIC_ESR:
- case APIC_ICR:
- case APIC_LVTT:
- case APIC_LVTTHMR:
- case APIC_LVTPC:
- case APIC_LVT0:
- case APIC_LVT1:
- case APIC_LVTERR:
- case APIC_TMICT:
- case APIC_TDCR:
- ret = true;
- break;
- default:
- break;
- }
- return ret;
-}
-
-static int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
-{
- int ret = 0;
- u32 offset = svm->vmcb->control.exit_info_1 &
- AVIC_UNACCEL_ACCESS_OFFSET_MASK;
- u32 vector = svm->vmcb->control.exit_info_2 &
- AVIC_UNACCEL_ACCESS_VECTOR_MASK;
- bool write = (svm->vmcb->control.exit_info_1 >> 32) &
- AVIC_UNACCEL_ACCESS_WRITE_MASK;
- bool trap = is_avic_unaccelerated_access_trap(offset);
-
- trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
- trap, write, vector);
- if (trap) {
- /* Handling Trap */
- WARN_ONCE(!write, "svm: Handling trap read.\n");
- ret = avic_unaccel_trap_write(svm);
- } else {
- /* Handling Fault */
- ret = kvm_emulate_instruction(&svm->vcpu, 0);
- }
-
- return ret;
-}
-
static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
[SVM_EXIT_READ_CR0] = cr_interception,
[SVM_EXIT_READ_CR3] = cr_interception,
@@ -5125,30 +2993,6 @@ static void reload_tss(struct kvm_vcpu *vcpu)
load_TR_desc();
}
-static void pre_sev_run(struct vcpu_svm *svm, int cpu)
-{
- struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
- int asid = sev_get_asid(svm->vcpu.kvm);
-
- /* Assign the asid allocated with this SEV guest */
- svm->vmcb->control.asid = asid;
-
- /*
- * Flush guest TLB:
- *
- * 1) when different VMCB for the same ASID is to be run on the same host CPU.
- * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
- */
- if (sd->sev_vmcbs[asid] == svm->vmcb &&
- svm->last_cpu == cpu)
- return;
-
- svm->last_cpu = cpu;
- sd->sev_vmcbs[asid] = svm->vmcb;
- svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
- mark_dirty(svm->vmcb, VMCB_ASID);
-}
-
static void pre_svm_run(struct vcpu_svm *svm)
{
int cpu = raw_smp_processor_id();
@@ -5186,11 +3030,6 @@ static void svm_set_irq(struct kvm_vcpu *vcpu)
SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
}
-static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu)
-{
- return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK);
-}
-
static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
{
struct vcpu_svm *svm = to_svm(vcpu);
@@ -5207,324 +3046,6 @@ static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
}
-static void svm_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
-{
- return;
-}
-
-static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
-{
-}
-
-static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
-{
-}
-
-static void svm_toggle_avic_for_irq_window(struct kvm_vcpu *vcpu, bool activate)
-{
- if (!avic || !lapic_in_kernel(vcpu))
- return;
-
- srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
- kvm_request_apicv_update(vcpu->kvm, activate,
- APICV_INHIBIT_REASON_IRQWIN);
- vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
-}
-
-static int svm_set_pi_irte_mode(struct kvm_vcpu *vcpu, bool activate)
-{
- int ret = 0;
- unsigned long flags;
- struct amd_svm_iommu_ir *ir;
- struct vcpu_svm *svm = to_svm(vcpu);
-
- if (!kvm_arch_has_assigned_device(vcpu->kvm))
- return 0;
-
- /*
- * Here, we go through the per-vcpu ir_list to update all existing
- * interrupt remapping table entry targeting this vcpu.
- */
- spin_lock_irqsave(&svm->ir_list_lock, flags);
-
- if (list_empty(&svm->ir_list))
- goto out;
-
- list_for_each_entry(ir, &svm->ir_list, node) {
- if (activate)
- ret = amd_iommu_activate_guest_mode(ir->data);
- else
- ret = amd_iommu_deactivate_guest_mode(ir->data);
- if (ret)
- break;
- }
-out:
- spin_unlock_irqrestore(&svm->ir_list_lock, flags);
- return ret;
-}
-
-static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
-{
- struct vcpu_svm *svm = to_svm(vcpu);
- struct vmcb *vmcb = svm->vmcb;
- bool activated = kvm_vcpu_apicv_active(vcpu);
-
- if (!avic)
- return;
-
- if (activated) {
- /**
- * During AVIC temporary deactivation, guest could update
- * APIC ID, DFR and LDR registers, which would not be trapped
- * by avic_unaccelerated_access_interception(). In this case,
- * we need to check and update the AVIC logical APIC ID table
- * accordingly before re-activating.
- */
- avic_post_state_restore(vcpu);
- vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
- } else {
- vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
- }
- mark_dirty(vmcb, VMCB_AVIC);
-
- svm_set_pi_irte_mode(vcpu, activated);
-}
-
-static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
-{
- return;
-}
-
-static int svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
-{
- if (!vcpu->arch.apicv_active)
- return -1;
-
- kvm_lapic_set_irr(vec, vcpu->arch.apic);
- smp_mb__after_atomic();
-
- if (avic_vcpu_is_running(vcpu)) {
- int cpuid = vcpu->cpu;
-
- if (cpuid != get_cpu())
- wrmsrl(SVM_AVIC_DOORBELL, kvm_cpu_get_apicid(cpuid));
- put_cpu();
- } else
- kvm_vcpu_wake_up(vcpu);
-
- return 0;
-}
-
-static bool svm_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
-{
- return false;
-}
-
-static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
-{
- unsigned long flags;
- struct amd_svm_iommu_ir *cur;
-
- spin_lock_irqsave(&svm->ir_list_lock, flags);
- list_for_each_entry(cur, &svm->ir_list, node) {
- if (cur->data != pi->ir_data)
- continue;
- list_del(&cur->node);
- kfree(cur);
- break;
- }
- spin_unlock_irqrestore(&svm->ir_list_lock, flags);
-}
-
-static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
-{
- int ret = 0;
- unsigned long flags;
- struct amd_svm_iommu_ir *ir;
-
- /**
- * In some cases, the existing irte is updaed and re-set,
- * so we need to check here if it's already been * added
- * to the ir_list.
- */
- if (pi->ir_data && (pi->prev_ga_tag != 0)) {
- struct kvm *kvm = svm->vcpu.kvm;
- u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
- struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
- struct vcpu_svm *prev_svm;
-
- if (!prev_vcpu) {
- ret = -EINVAL;
- goto out;
- }
-
- prev_svm = to_svm(prev_vcpu);
- svm_ir_list_del(prev_svm, pi);
- }
-
- /**
- * Allocating new amd_iommu_pi_data, which will get
- * add to the per-vcpu ir_list.
- */
- ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL_ACCOUNT);
- if (!ir) {
- ret = -ENOMEM;
- goto out;
- }
- ir->data = pi->ir_data;
-
- spin_lock_irqsave(&svm->ir_list_lock, flags);
- list_add(&ir->node, &svm->ir_list);
- spin_unlock_irqrestore(&svm->ir_list_lock, flags);
-out:
- return ret;
-}
-
-/**
- * Note:
- * The HW cannot support posting multicast/broadcast
- * interrupts to a vCPU. So, we still use legacy interrupt
- * remapping for these kind of interrupts.
- *
- * For lowest-priority interrupts, we only support
- * those with single CPU as the destination, e.g. user
- * configures the interrupts via /proc/irq or uses
- * irqbalance to make the interrupts single-CPU.
- */
-static int
-get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
- struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
-{
- struct kvm_lapic_irq irq;
- struct kvm_vcpu *vcpu = NULL;
-
- kvm_set_msi_irq(kvm, e, &irq);
-
- if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
- !kvm_irq_is_postable(&irq)) {
- pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
- __func__, irq.vector);
- return -1;
- }
-
- pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
- irq.vector);
- *svm = to_svm(vcpu);
- vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
- vcpu_info->vector = irq.vector;
-
- return 0;
-}
-
-/*
- * svm_update_pi_irte - set IRTE for Posted-Interrupts
- *
- * @kvm: kvm
- * @host_irq: host irq of the interrupt
- * @guest_irq: gsi of the interrupt
- * @set: set or unset PI
- * returns 0 on success, < 0 on failure
- */
-static int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
- uint32_t guest_irq, bool set)
-{
- struct kvm_kernel_irq_routing_entry *e;
- struct kvm_irq_routing_table *irq_rt;
- int idx, ret = -EINVAL;
-
- if (!kvm_arch_has_assigned_device(kvm) ||
- !irq_remapping_cap(IRQ_POSTING_CAP))
- return 0;
-
- pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
- __func__, host_irq, guest_irq, set);
-
- idx = srcu_read_lock(&kvm->irq_srcu);
- irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
- WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
-
- hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
- struct vcpu_data vcpu_info;
- struct vcpu_svm *svm = NULL;
-
- if (e->type != KVM_IRQ_ROUTING_MSI)
- continue;
-
- /**
- * Here, we setup with legacy mode in the following cases:
- * 1. When cannot target interrupt to a specific vcpu.
- * 2. Unsetting posted interrupt.
- * 3. APIC virtialization is disabled for the vcpu.
- * 4. IRQ has incompatible delivery mode (SMI, INIT, etc)
- */
- if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
- kvm_vcpu_apicv_active(&svm->vcpu)) {
- struct amd_iommu_pi_data pi;
-
- /* Try to enable guest_mode in IRTE */
- pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
- AVIC_HPA_MASK);
- pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
- svm->vcpu.vcpu_id);
- pi.is_guest_mode = true;
- pi.vcpu_data = &vcpu_info;
- ret = irq_set_vcpu_affinity(host_irq, &pi);
-
- /**
- * Here, we successfully setting up vcpu affinity in
- * IOMMU guest mode. Now, we need to store the posted
- * interrupt information in a per-vcpu ir_list so that
- * we can reference to them directly when we update vcpu
- * scheduling information in IOMMU irte.
- */
- if (!ret && pi.is_guest_mode)
- svm_ir_list_add(svm, &pi);
- } else {
- /* Use legacy mode in IRTE */
- struct amd_iommu_pi_data pi;
-
- /**
- * Here, pi is used to:
- * - Tell IOMMU to use legacy mode for this interrupt.
- * - Retrieve ga_tag of prior interrupt remapping data.
- */
- pi.is_guest_mode = false;
- ret = irq_set_vcpu_affinity(host_irq, &pi);
-
- /**
- * Check if the posted interrupt was previously
- * setup with the guest_mode by checking if the ga_tag
- * was cached. If so, we need to clean up the per-vcpu
- * ir_list.
- */
- if (!ret && pi.prev_ga_tag) {
- int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
- struct kvm_vcpu *vcpu;
-
- vcpu = kvm_get_vcpu_by_id(kvm, id);
- if (vcpu)
- svm_ir_list_del(to_svm(vcpu), &pi);
- }
- }
-
- if (!ret && svm) {
- trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
- e->gsi, vcpu_info.vector,
- vcpu_info.pi_desc_addr, set);
- }
-
- if (ret < 0) {
- pr_err("%s: failed to update PI IRTE\n", __func__);
- goto out;
- }
- }
-
- ret = 0;
-out:
- srcu_read_unlock(&kvm->irq_srcu, idx);
- return ret;
-}
-
static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
@@ -5632,7 +3153,7 @@ static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
return 0;
}
-static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
+void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
{
struct vcpu_svm *svm = to_svm(vcpu);
@@ -5755,6 +3276,8 @@ static void svm_cancel_injection(struct kvm_vcpu *vcpu)
svm_complete_interrupts(svm);
}
+bool __svm_vcpu_run(unsigned long vmcb_pa, unsigned long *regs);
+
static void svm_vcpu_run(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
@@ -5809,95 +3332,7 @@ static void svm_vcpu_run(struct kvm_vcpu *vcpu)
local_irq_enable();
- asm volatile (
- "push %%" _ASM_BP "; \n\t"
- "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
- "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
- "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
- "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
- "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
- "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
-#ifdef CONFIG_X86_64
- "mov %c[r8](%[svm]), %%r8 \n\t"
- "mov %c[r9](%[svm]), %%r9 \n\t"
- "mov %c[r10](%[svm]), %%r10 \n\t"
- "mov %c[r11](%[svm]), %%r11 \n\t"
- "mov %c[r12](%[svm]), %%r12 \n\t"
- "mov %c[r13](%[svm]), %%r13 \n\t"
- "mov %c[r14](%[svm]), %%r14 \n\t"
- "mov %c[r15](%[svm]), %%r15 \n\t"
-#endif
-
- /* Enter guest mode */
- "push %%" _ASM_AX " \n\t"
- "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
- __ex("vmload %%" _ASM_AX) "\n\t"
- __ex("vmrun %%" _ASM_AX) "\n\t"
- __ex("vmsave %%" _ASM_AX) "\n\t"
- "pop %%" _ASM_AX " \n\t"
-
- /* Save guest registers, load host registers */
- "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
- "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
- "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
- "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
- "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
- "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
-#ifdef CONFIG_X86_64
- "mov %%r8, %c[r8](%[svm]) \n\t"
- "mov %%r9, %c[r9](%[svm]) \n\t"
- "mov %%r10, %c[r10](%[svm]) \n\t"
- "mov %%r11, %c[r11](%[svm]) \n\t"
- "mov %%r12, %c[r12](%[svm]) \n\t"
- "mov %%r13, %c[r13](%[svm]) \n\t"
- "mov %%r14, %c[r14](%[svm]) \n\t"
- "mov %%r15, %c[r15](%[svm]) \n\t"
- /*
- * Clear host registers marked as clobbered to prevent
- * speculative use.
- */
- "xor %%r8d, %%r8d \n\t"
- "xor %%r9d, %%r9d \n\t"
- "xor %%r10d, %%r10d \n\t"
- "xor %%r11d, %%r11d \n\t"
- "xor %%r12d, %%r12d \n\t"
- "xor %%r13d, %%r13d \n\t"
- "xor %%r14d, %%r14d \n\t"
- "xor %%r15d, %%r15d \n\t"
-#endif
- "xor %%ebx, %%ebx \n\t"
- "xor %%ecx, %%ecx \n\t"
- "xor %%edx, %%edx \n\t"
- "xor %%esi, %%esi \n\t"
- "xor %%edi, %%edi \n\t"
- "pop %%" _ASM_BP
- :
- : [svm]"a"(svm),
- [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
- [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
- [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
- [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
- [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
- [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
- [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
-#ifdef CONFIG_X86_64
- , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
- [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
- [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
- [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
- [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
- [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
- [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
- [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
-#endif
- : "cc", "memory"
-#ifdef CONFIG_X86_64
- , "rbx", "rcx", "rdx", "rsi", "rdi"
- , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
-#else
- , "ebx", "ecx", "edx", "esi", "edi"
-#endif
- );
+ __svm_vcpu_run(svm->vmcb_pa, (unsigned long *)&svm->vcpu.arch.regs);
/* Eliminate branch target predictions from guest mode */
vmexit_fill_RSB();
@@ -6292,14 +3727,6 @@ static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
shrink_ple_window(vcpu);
}
-static inline void avic_post_state_restore(struct kvm_vcpu *vcpu)
-{
- if (avic_handle_apic_id_update(vcpu) != 0)
- return;
- avic_handle_dfr_update(vcpu);
- avic_handle_ldr_update(vcpu);
-}
-
static void svm_setup_mce(struct kvm_vcpu *vcpu)
{
/* [63:9] are reserved. */
@@ -6380,900 +3807,6 @@ static int enable_smi_window(struct kvm_vcpu *vcpu)
return 0;
}
-static int sev_flush_asids(void)
-{
- int ret, error;
-
- /*
- * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
- * so it must be guarded.
- */
- down_write(&sev_deactivate_lock);
-
- wbinvd_on_all_cpus();
- ret = sev_guest_df_flush(&error);
-
- up_write(&sev_deactivate_lock);
-
- if (ret)
- pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error);
-
- return ret;
-}
-
-/* Must be called with the sev_bitmap_lock held */
-static bool __sev_recycle_asids(void)
-{
- int pos;
-
- /* Check if there are any ASIDs to reclaim before performing a flush */
- pos = find_next_bit(sev_reclaim_asid_bitmap,
- max_sev_asid, min_sev_asid - 1);
- if (pos >= max_sev_asid)
- return false;
-
- if (sev_flush_asids())
- return false;
-
- bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
- max_sev_asid);
- bitmap_zero(sev_reclaim_asid_bitmap, max_sev_asid);
-
- return true;
-}
-
-static int sev_asid_new(void)
-{
- bool retry = true;
- int pos;
-
- mutex_lock(&sev_bitmap_lock);
-
- /*
- * SEV-enabled guest must use asid from min_sev_asid to max_sev_asid.
- */
-again:
- pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_sev_asid - 1);
- if (pos >= max_sev_asid) {
- if (retry && __sev_recycle_asids()) {
- retry = false;
- goto again;
- }
- mutex_unlock(&sev_bitmap_lock);
- return -EBUSY;
- }
-
- __set_bit(pos, sev_asid_bitmap);
-
- mutex_unlock(&sev_bitmap_lock);
-
- return pos + 1;
-}
-
-static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
-{
- struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
- int asid, ret;
-
- ret = -EBUSY;
- if (unlikely(sev->active))
- return ret;
-
- asid = sev_asid_new();
- if (asid < 0)
- return ret;
-
- ret = sev_platform_init(&argp->error);
- if (ret)
- goto e_free;
-
- sev->active = true;
- sev->asid = asid;
- INIT_LIST_HEAD(&sev->regions_list);
-
- return 0;
-
-e_free:
- sev_asid_free(asid);
- return ret;
-}
-
-static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
-{
- struct sev_data_activate *data;
- int asid = sev_get_asid(kvm);
- int ret;
-
- data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
- if (!data)
- return -ENOMEM;
-
- /* activate ASID on the given handle */
- data->handle = handle;
- data->asid = asid;
- ret = sev_guest_activate(data, error);
- kfree(data);
-
- return ret;
-}
-
-static int __sev_issue_cmd(int fd, int id, void *data, int *error)
-{
- struct fd f;
- int ret;
-
- f = fdget(fd);
- if (!f.file)
- return -EBADF;
-
- ret = sev_issue_cmd_external_user(f.file, id, data, error);
-
- fdput(f);
- return ret;
-}
-
-static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
-{
- struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
-
- return __sev_issue_cmd(sev->fd, id, data, error);
-}
-
-static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
-{
- struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
- struct sev_data_launch_start *start;
- struct kvm_sev_launch_start params;
- void *dh_blob, *session_blob;
- int *error = &argp->error;
- int ret;
-
- if (!sev_guest(kvm))
- return -ENOTTY;
-
- if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
- return -EFAULT;
-
- start = kzalloc(sizeof(*start), GFP_KERNEL_ACCOUNT);
- if (!start)
- return -ENOMEM;
-
- dh_blob = NULL;
- if (params.dh_uaddr) {
- dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
- if (IS_ERR(dh_blob)) {
- ret = PTR_ERR(dh_blob);
- goto e_free;
- }
-
- start->dh_cert_address = __sme_set(__pa(dh_blob));
- start->dh_cert_len = params.dh_len;
- }
-
- session_blob = NULL;
- if (params.session_uaddr) {
- session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
- if (IS_ERR(session_blob)) {
- ret = PTR_ERR(session_blob);
- goto e_free_dh;
- }
-
- start->session_address = __sme_set(__pa(session_blob));
- start->session_len = params.session_len;
- }
-
- start->handle = params.handle;
- start->policy = params.policy;
-
- /* create memory encryption context */
- ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, start, error);
- if (ret)
- goto e_free_session;
-
- /* Bind ASID to this guest */
- ret = sev_bind_asid(kvm, start->handle, error);
- if (ret)
- goto e_free_session;
-
- /* return handle to userspace */
- params.handle = start->handle;
- if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
- sev_unbind_asid(kvm, start->handle);
- ret = -EFAULT;
- goto e_free_session;
- }
-
- sev->handle = start->handle;
- sev->fd = argp->sev_fd;
-
-e_free_session:
- kfree(session_blob);
-e_free_dh:
- kfree(dh_blob);
-e_free:
- kfree(start);
- return ret;
-}
-
-static unsigned long get_num_contig_pages(unsigned long idx,
- struct page **inpages, unsigned long npages)
-{
- unsigned long paddr, next_paddr;
- unsigned long i = idx + 1, pages = 1;
-
- /* find the number of contiguous pages starting from idx */
- paddr = __sme_page_pa(inpages[idx]);
- while (i < npages) {
- next_paddr = __sme_page_pa(inpages[i++]);
- if ((paddr + PAGE_SIZE) == next_paddr) {
- pages++;
- paddr = next_paddr;
- continue;
- }
- break;
- }
-
- return pages;
-}
-
-static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
-{
- unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
- struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
- struct kvm_sev_launch_update_data params;
- struct sev_data_launch_update_data *data;
- struct page **inpages;
- int ret;
-
- if (!sev_guest(kvm))
- return -ENOTTY;
-
- if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
- return -EFAULT;
-
- data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
- if (!data)
- return -ENOMEM;
-
- vaddr = params.uaddr;
- size = params.len;
- vaddr_end = vaddr + size;
-
- /* Lock the user memory. */
- inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
- if (!inpages) {
- ret = -ENOMEM;
- goto e_free;
- }
-
- /*
- * The LAUNCH_UPDATE command will perform in-place encryption of the
- * memory content (i.e it will write the same memory region with C=1).
- * It's possible that the cache may contain the data with C=0, i.e.,
- * unencrypted so invalidate it first.
- */
- sev_clflush_pages(inpages, npages);
-
- for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
- int offset, len;
-
- /*
- * If the user buffer is not page-aligned, calculate the offset
- * within the page.
- */
- offset = vaddr & (PAGE_SIZE - 1);
-
- /* Calculate the number of pages that can be encrypted in one go. */
- pages = get_num_contig_pages(i, inpages, npages);
-
- len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
-
- data->handle = sev->handle;
- data->len = len;
- data->address = __sme_page_pa(inpages[i]) + offset;
- ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, data, &argp->error);
- if (ret)
- goto e_unpin;
-
- size -= len;
- next_vaddr = vaddr + len;
- }
-
-e_unpin:
- /* content of memory is updated, mark pages dirty */
- for (i = 0; i < npages; i++) {
- set_page_dirty_lock(inpages[i]);
- mark_page_accessed(inpages[i]);
- }
- /* unlock the user pages */
- sev_unpin_memory(kvm, inpages, npages);
-e_free:
- kfree(data);
- return ret;
-}
-
-static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
-{
- void __user *measure = (void __user *)(uintptr_t)argp->data;
- struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
- struct sev_data_launch_measure *data;
- struct kvm_sev_launch_measure params;
- void __user *p = NULL;
- void *blob = NULL;
- int ret;
-
- if (!sev_guest(kvm))
- return -ENOTTY;
-
- if (copy_from_user(&params, measure, sizeof(params)))
- return -EFAULT;
-
- data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
- if (!data)
- return -ENOMEM;
-
- /* User wants to query the blob length */
- if (!params.len)
- goto cmd;
-
- p = (void __user *)(uintptr_t)params.uaddr;
- if (p) {
- if (params.len > SEV_FW_BLOB_MAX_SIZE) {
- ret = -EINVAL;
- goto e_free;
- }
-
- ret = -ENOMEM;
- blob = kmalloc(params.len, GFP_KERNEL);
- if (!blob)
- goto e_free;
-
- data->address = __psp_pa(blob);
- data->len = params.len;
- }
-
-cmd:
- data->handle = sev->handle;
- ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, data, &argp->error);
-
- /*
- * If we query the session length, FW responded with expected data.
- */
- if (!params.len)
- goto done;
-
- if (ret)
- goto e_free_blob;
-
- if (blob) {
- if (copy_to_user(p, blob, params.len))
- ret = -EFAULT;
- }
-
-done:
- params.len = data->len;
- if (copy_to_user(measure, &params, sizeof(params)))
- ret = -EFAULT;
-e_free_blob:
- kfree(blob);
-e_free:
- kfree(data);
- return ret;
-}
-
-static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
-{
- struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
- struct sev_data_launch_finish *data;
- int ret;
-
- if (!sev_guest(kvm))
- return -ENOTTY;
-
- data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
- if (!data)
- return -ENOMEM;
-
- data->handle = sev->handle;
- ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, data, &argp->error);
-
- kfree(data);
- return ret;
-}
-
-static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
-{
- struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
- struct kvm_sev_guest_status params;
- struct sev_data_guest_status *data;
- int ret;
-
- if (!sev_guest(kvm))
- return -ENOTTY;
-
- data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
- if (!data)
- return -ENOMEM;
-
- data->handle = sev->handle;
- ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, data, &argp->error);
- if (ret)
- goto e_free;
-
- params.policy = data->policy;
- params.state = data->state;
- params.handle = data->handle;
-
- if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
- ret = -EFAULT;
-e_free:
- kfree(data);
- return ret;
-}
-
-static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
- unsigned long dst, int size,
- int *error, bool enc)
-{
- struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
- struct sev_data_dbg *data;
- int ret;
-
- data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
- if (!data)
- return -ENOMEM;
-
- data->handle = sev->handle;
- data->dst_addr = dst;
- data->src_addr = src;
- data->len = size;
-
- ret = sev_issue_cmd(kvm,
- enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
- data, error);
- kfree(data);
- return ret;
-}
-
-static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
- unsigned long dst_paddr, int sz, int *err)
-{
- int offset;
-
- /*
- * Its safe to read more than we are asked, caller should ensure that
- * destination has enough space.
- */
- src_paddr = round_down(src_paddr, 16);
- offset = src_paddr & 15;
- sz = round_up(sz + offset, 16);
-
- return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
-}
-
-static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
- unsigned long __user dst_uaddr,
- unsigned long dst_paddr,
- int size, int *err)
-{
- struct page *tpage = NULL;
- int ret, offset;
-
- /* if inputs are not 16-byte then use intermediate buffer */
- if (!IS_ALIGNED(dst_paddr, 16) ||
- !IS_ALIGNED(paddr, 16) ||
- !IS_ALIGNED(size, 16)) {
- tpage = (void *)alloc_page(GFP_KERNEL);
- if (!tpage)
- return -ENOMEM;
-
- dst_paddr = __sme_page_pa(tpage);
- }
-
- ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
- if (ret)
- goto e_free;
-
- if (tpage) {
- offset = paddr & 15;
- if (copy_to_user((void __user *)(uintptr_t)dst_uaddr,
- page_address(tpage) + offset, size))
- ret = -EFAULT;
- }
-
-e_free:
- if (tpage)
- __free_page(tpage);
-
- return ret;
-}
-
-static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
- unsigned long __user vaddr,
- unsigned long dst_paddr,
- unsigned long __user dst_vaddr,
- int size, int *error)
-{
- struct page *src_tpage = NULL;
- struct page *dst_tpage = NULL;
- int ret, len = size;
-
- /* If source buffer is not aligned then use an intermediate buffer */
- if (!IS_ALIGNED(vaddr, 16)) {
- src_tpage = alloc_page(GFP_KERNEL);
- if (!src_tpage)
- return -ENOMEM;
-
- if (copy_from_user(page_address(src_tpage),
- (void __user *)(uintptr_t)vaddr, size)) {
- __free_page(src_tpage);
- return -EFAULT;
- }
-
- paddr = __sme_page_pa(src_tpage);
- }
-
- /*
- * If destination buffer or length is not aligned then do read-modify-write:
- * - decrypt destination in an intermediate buffer
- * - copy the source buffer in an intermediate buffer
- * - use the intermediate buffer as source buffer
- */
- if (!IS_ALIGNED(dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
- int dst_offset;
-
- dst_tpage = alloc_page(GFP_KERNEL);
- if (!dst_tpage) {
- ret = -ENOMEM;
- goto e_free;
- }
-
- ret = __sev_dbg_decrypt(kvm, dst_paddr,
- __sme_page_pa(dst_tpage), size, error);
- if (ret)
- goto e_free;
-
- /*
- * If source is kernel buffer then use memcpy() otherwise
- * copy_from_user().
- */
- dst_offset = dst_paddr & 15;
-
- if (src_tpage)
- memcpy(page_address(dst_tpage) + dst_offset,
- page_address(src_tpage), size);
- else {
- if (copy_from_user(page_address(dst_tpage) + dst_offset,
- (void __user *)(uintptr_t)vaddr, size)) {
- ret = -EFAULT;
- goto e_free;
- }
- }
-
- paddr = __sme_page_pa(dst_tpage);
- dst_paddr = round_down(dst_paddr, 16);
- len = round_up(size, 16);
- }
-
- ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
-
-e_free:
- if (src_tpage)
- __free_page(src_tpage);
- if (dst_tpage)
- __free_page(dst_tpage);
- return ret;
-}
-
-static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
-{
- unsigned long vaddr, vaddr_end, next_vaddr;
- unsigned long dst_vaddr;
- struct page **src_p, **dst_p;
- struct kvm_sev_dbg debug;
- unsigned long n;
- unsigned int size;
- int ret;
-
- if (!sev_guest(kvm))
- return -ENOTTY;
-
- if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
- return -EFAULT;
-
- if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
- return -EINVAL;
- if (!debug.dst_uaddr)
- return -EINVAL;
-
- vaddr = debug.src_uaddr;
- size = debug.len;
- vaddr_end = vaddr + size;
- dst_vaddr = debug.dst_uaddr;
-
- for (; vaddr < vaddr_end; vaddr = next_vaddr) {
- int len, s_off, d_off;
-
- /* lock userspace source and destination page */
- src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
- if (!src_p)
- return -EFAULT;
-
- dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
- if (!dst_p) {
- sev_unpin_memory(kvm, src_p, n);
- return -EFAULT;
- }
-
- /*
- * The DBG_{DE,EN}CRYPT commands will perform {dec,en}cryption of the
- * memory content (i.e it will write the same memory region with C=1).
- * It's possible that the cache may contain the data with C=0, i.e.,
- * unencrypted so invalidate it first.
- */
- sev_clflush_pages(src_p, 1);
- sev_clflush_pages(dst_p, 1);
-
- /*
- * Since user buffer may not be page aligned, calculate the
- * offset within the page.
- */
- s_off = vaddr & ~PAGE_MASK;
- d_off = dst_vaddr & ~PAGE_MASK;
- len = min_t(size_t, (PAGE_SIZE - s_off), size);
-
- if (dec)
- ret = __sev_dbg_decrypt_user(kvm,
- __sme_page_pa(src_p[0]) + s_off,
- dst_vaddr,
- __sme_page_pa(dst_p[0]) + d_off,
- len, &argp->error);
- else
- ret = __sev_dbg_encrypt_user(kvm,
- __sme_page_pa(src_p[0]) + s_off,
- vaddr,
- __sme_page_pa(dst_p[0]) + d_off,
- dst_vaddr,
- len, &argp->error);
-
- sev_unpin_memory(kvm, src_p, n);
- sev_unpin_memory(kvm, dst_p, n);
-
- if (ret)
- goto err;
-
- next_vaddr = vaddr + len;
- dst_vaddr = dst_vaddr + len;
- size -= len;
- }
-err:
- return ret;
-}
-
-static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
-{
- struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
- struct sev_data_launch_secret *data;
- struct kvm_sev_launch_secret params;
- struct page **pages;
- void *blob, *hdr;
- unsigned long n;
- int ret, offset;
-
- if (!sev_guest(kvm))
- return -ENOTTY;
-
- if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
- return -EFAULT;
-
- pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
- if (!pages)
- return -ENOMEM;
-
- /*
- * The secret must be copied into contiguous memory region, lets verify
- * that userspace memory pages are contiguous before we issue command.
- */
- if (get_num_contig_pages(0, pages, n) != n) {
- ret = -EINVAL;
- goto e_unpin_memory;
- }
-
- ret = -ENOMEM;
- data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
- if (!data)
- goto e_unpin_memory;
-
- offset = params.guest_uaddr & (PAGE_SIZE - 1);
- data->guest_address = __sme_page_pa(pages[0]) + offset;
- data->guest_len = params.guest_len;
-
- blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
- if (IS_ERR(blob)) {
- ret = PTR_ERR(blob);
- goto e_free;
- }
-
- data->trans_address = __psp_pa(blob);
- data->trans_len = params.trans_len;
-
- hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
- if (IS_ERR(hdr)) {
- ret = PTR_ERR(hdr);
- goto e_free_blob;
- }
- data->hdr_address = __psp_pa(hdr);
- data->hdr_len = params.hdr_len;
-
- data->handle = sev->handle;
- ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, data, &argp->error);
-
- kfree(hdr);
-
-e_free_blob:
- kfree(blob);
-e_free:
- kfree(data);
-e_unpin_memory:
- sev_unpin_memory(kvm, pages, n);
- return ret;
-}
-
-static int svm_mem_enc_op(struct kvm *kvm, void __user *argp)
-{
- struct kvm_sev_cmd sev_cmd;
- int r;
-
- if (!svm_sev_enabled())
- return -ENOTTY;
-
- if (!argp)
- return 0;
-
- if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
- return -EFAULT;
-
- mutex_lock(&kvm->lock);
-
- switch (sev_cmd.id) {
- case KVM_SEV_INIT:
- r = sev_guest_init(kvm, &sev_cmd);
- break;
- case KVM_SEV_LAUNCH_START:
- r = sev_launch_start(kvm, &sev_cmd);
- break;
- case KVM_SEV_LAUNCH_UPDATE_DATA:
- r = sev_launch_update_data(kvm, &sev_cmd);
- break;
- case KVM_SEV_LAUNCH_MEASURE:
- r = sev_launch_measure(kvm, &sev_cmd);
- break;
- case KVM_SEV_LAUNCH_FINISH:
- r = sev_launch_finish(kvm, &sev_cmd);
- break;
- case KVM_SEV_GUEST_STATUS:
- r = sev_guest_status(kvm, &sev_cmd);
- break;
- case KVM_SEV_DBG_DECRYPT:
- r = sev_dbg_crypt(kvm, &sev_cmd, true);
- break;
- case KVM_SEV_DBG_ENCRYPT:
- r = sev_dbg_crypt(kvm, &sev_cmd, false);
- break;
- case KVM_SEV_LAUNCH_SECRET:
- r = sev_launch_secret(kvm, &sev_cmd);
- break;
- default:
- r = -EINVAL;
- goto out;
- }
-
- if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
- r = -EFAULT;
-
-out:
- mutex_unlock(&kvm->lock);
- return r;
-}
-
-static int svm_register_enc_region(struct kvm *kvm,
- struct kvm_enc_region *range)
-{
- struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
- struct enc_region *region;
- int ret = 0;
-
- if (!sev_guest(kvm))
- return -ENOTTY;
-
- if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
- return -EINVAL;
-
- region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
- if (!region)
- return -ENOMEM;
-
- region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
- if (!region->pages) {
- ret = -ENOMEM;
- goto e_free;
- }
-
- /*
- * The guest may change the memory encryption attribute from C=0 -> C=1
- * or vice versa for this memory range. Lets make sure caches are
- * flushed to ensure that guest data gets written into memory with
- * correct C-bit.
- */
- sev_clflush_pages(region->pages, region->npages);
-
- region->uaddr = range->addr;
- region->size = range->size;
-
- mutex_lock(&kvm->lock);
- list_add_tail(&region->list, &sev->regions_list);
- mutex_unlock(&kvm->lock);
-
- return ret;
-
-e_free:
- kfree(region);
- return ret;
-}
-
-static struct enc_region *
-find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
-{
- struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
- struct list_head *head = &sev->regions_list;
- struct enc_region *i;
-
- list_for_each_entry(i, head, list) {
- if (i->uaddr == range->addr &&
- i->size == range->size)
- return i;
- }
-
- return NULL;
-}
-
-
-static int svm_unregister_enc_region(struct kvm *kvm,
- struct kvm_enc_region *range)
-{
- struct enc_region *region;
- int ret;
-
- mutex_lock(&kvm->lock);
-
- if (!sev_guest(kvm)) {
- ret = -ENOTTY;
- goto failed;
- }
-
- region = find_enc_region(kvm, range);
- if (!region) {
- ret = -EINVAL;
- goto failed;
- }
-
- /*
- * Ensure that all guest tagged cache entries are flushed before
- * releasing the pages back to the system for use. CLFLUSH will
- * not do this, so issue a WBINVD.
- */
- wbinvd_on_all_cpus();
-
- __unregister_enc_region_locked(kvm, region);
-
- mutex_unlock(&kvm->lock);
- return 0;
-
-failed:
- mutex_unlock(&kvm->lock);
- return ret;
-}
-
static bool svm_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
{
unsigned long cr4 = kvm_read_cr4(vcpu);
@@ -7347,21 +3880,22 @@ static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
(svm->vmcb->control.intercept & (1ULL << INTERCEPT_INIT));
}
-static bool svm_check_apicv_inhibit_reasons(ulong bit)
+static void svm_vm_destroy(struct kvm *kvm)
{
- ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
- BIT(APICV_INHIBIT_REASON_HYPERV) |
- BIT(APICV_INHIBIT_REASON_NESTED) |
- BIT(APICV_INHIBIT_REASON_IRQWIN) |
- BIT(APICV_INHIBIT_REASON_PIT_REINJ) |
- BIT(APICV_INHIBIT_REASON_X2APIC);
-
- return supported & BIT(bit);
+ avic_vm_destroy(kvm);
+ sev_vm_destroy(kvm);
}
-static void svm_pre_update_apicv_exec_ctrl(struct kvm *kvm, bool activate)
+static int svm_vm_init(struct kvm *kvm)
{
- avic_update_access_page(kvm, activate);
+ if (avic) {
+ int ret = avic_vm_init(kvm);
+ if (ret)
+ return ret;
+ }
+
+ kvm_apicv_init(kvm, avic);
+ return 0;
}
static struct kvm_x86_ops svm_x86_ops __initdata = {
diff --git a/arch/x86/kvm/svm/svm.h b/arch/x86/kvm/svm/svm.h
new file mode 100644
index 000000000000..df3474f4fb02
--- /dev/null
+++ b/arch/x86/kvm/svm/svm.h
@@ -0,0 +1,491 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Kernel-based Virtual Machine driver for Linux
+ *
+ * AMD SVM support
+ *
+ * Copyright (C) 2006 Qumranet, Inc.
+ * Copyright 2010 Red Hat, Inc. and/or its affiliates.
+ *
+ * Authors:
+ * Yaniv Kamay <yaniv@qumranet.com>
+ * Avi Kivity <avi@qumranet.com>
+ */
+
+#ifndef __SVM_SVM_H
+#define __SVM_SVM_H
+
+#include <linux/kvm_types.h>
+#include <linux/kvm_host.h>
+
+#include <asm/svm.h>
+
+static const u32 host_save_user_msrs[] = {
+#ifdef CONFIG_X86_64
+ MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
+ MSR_FS_BASE,
+#endif
+ MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
+ MSR_TSC_AUX,
+};
+
+#define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
+
+#define MSRPM_OFFSETS 16
+extern u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
+extern bool npt_enabled;
+
+enum {
+ VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
+ pause filter count */
+ VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
+ VMCB_ASID, /* ASID */
+ VMCB_INTR, /* int_ctl, int_vector */
+ VMCB_NPT, /* npt_en, nCR3, gPAT */
+ VMCB_CR, /* CR0, CR3, CR4, EFER */
+ VMCB_DR, /* DR6, DR7 */
+ VMCB_DT, /* GDT, IDT */
+ VMCB_SEG, /* CS, DS, SS, ES, CPL */
+ VMCB_CR2, /* CR2 only */
+ VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
+ VMCB_AVIC, /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
+ * AVIC PHYSICAL_TABLE pointer,
+ * AVIC LOGICAL_TABLE pointer
+ */
+ VMCB_DIRTY_MAX,
+};
+
+/* TPR and CR2 are always written before VMRUN */
+#define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
+
+struct kvm_sev_info {
+ bool active; /* SEV enabled guest */
+ unsigned int asid; /* ASID used for this guest */
+ unsigned int handle; /* SEV firmware handle */
+ int fd; /* SEV device fd */
+ unsigned long pages_locked; /* Number of pages locked */
+ struct list_head regions_list; /* List of registered regions */
+};
+
+struct kvm_svm {
+ struct kvm kvm;
+
+ /* Struct members for AVIC */
+ u32 avic_vm_id;
+ struct page *avic_logical_id_table_page;
+ struct page *avic_physical_id_table_page;
+ struct hlist_node hnode;
+
+ struct kvm_sev_info sev_info;
+};
+
+struct kvm_vcpu;
+
+struct nested_state {
+ struct vmcb *hsave;
+ u64 hsave_msr;
+ u64 vm_cr_msr;
+ u64 vmcb;
+
+ /* These are the merged vectors */
+ u32 *msrpm;
+
+ /* gpa pointers to the real vectors */
+ u64 vmcb_msrpm;
+ u64 vmcb_iopm;
+
+ /* A VMEXIT is required but not yet emulated */
+ bool exit_required;
+
+ /* cache for intercepts of the guest */
+ u32 intercept_cr;
+ u32 intercept_dr;
+ u32 intercept_exceptions;
+ u64 intercept;
+
+ /* Nested Paging related state */
+ u64 nested_cr3;
+};
+
+struct vcpu_svm {
+ struct kvm_vcpu vcpu;
+ struct vmcb *vmcb;
+ unsigned long vmcb_pa;
+ struct svm_cpu_data *svm_data;
+ uint64_t asid_generation;
+ uint64_t sysenter_esp;
+ uint64_t sysenter_eip;
+ uint64_t tsc_aux;
+
+ u64 msr_decfg;
+
+ u64 next_rip;
+
+ u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
+ struct {
+ u16 fs;
+ u16 gs;
+ u16 ldt;
+ u64 gs_base;
+ } host;
+
+ u64 spec_ctrl;
+ /*
+ * Contains guest-controlled bits of VIRT_SPEC_CTRL, which will be
+ * translated into the appropriate L2_CFG bits on the host to
+ * perform speculative control.
+ */
+ u64 virt_spec_ctrl;
+
+ u32 *msrpm;
+
+ ulong nmi_iret_rip;
+
+ struct nested_state nested;
+
+ bool nmi_singlestep;
+ u64 nmi_singlestep_guest_rflags;
+
+ unsigned int3_injected;
+ unsigned long int3_rip;
+
+ /* cached guest cpuid flags for faster access */
+ bool nrips_enabled : 1;
+
+ u32 ldr_reg;
+ u32 dfr_reg;
+ struct page *avic_backing_page;
+ u64 *avic_physical_id_cache;
+ bool avic_is_running;
+
+ /*
+ * Per-vcpu list of struct amd_svm_iommu_ir:
+ * This is used mainly to store interrupt remapping information used
+ * when update the vcpu affinity. This avoids the need to scan for
+ * IRTE and try to match ga_tag in the IOMMU driver.
+ */
+ struct list_head ir_list;
+ spinlock_t ir_list_lock;
+
+ /* which host CPU was used for running this vcpu */
+ unsigned int last_cpu;
+};
+
+struct svm_cpu_data {
+ int cpu;
+
+ u64 asid_generation;
+ u32 max_asid;
+ u32 next_asid;
+ u32 min_asid;
+ struct kvm_ldttss_desc *tss_desc;
+
+ struct page *save_area;
+ struct vmcb *current_vmcb;
+
+ /* index = sev_asid, value = vmcb pointer */
+ struct vmcb **sev_vmcbs;
+};
+
+DECLARE_PER_CPU(struct svm_cpu_data *, svm_data);
+
+void recalc_intercepts(struct vcpu_svm *svm);
+
+static inline struct kvm_svm *to_kvm_svm(struct kvm *kvm)
+{
+ return container_of(kvm, struct kvm_svm, kvm);
+}
+
+static inline void mark_all_dirty(struct vmcb *vmcb)
+{
+ vmcb->control.clean = 0;
+}
+
+static inline void mark_all_clean(struct vmcb *vmcb)
+{
+ vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
+ & ~VMCB_ALWAYS_DIRTY_MASK;
+}
+
+static inline void mark_dirty(struct vmcb *vmcb, int bit)
+{
+ vmcb->control.clean &= ~(1 << bit);
+}
+
+static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
+{
+ return container_of(vcpu, struct vcpu_svm, vcpu);
+}
+
+static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
+{
+ if (is_guest_mode(&svm->vcpu))
+ return svm->nested.hsave;
+ else
+ return svm->vmcb;
+}
+
+static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
+{
+ struct vmcb *vmcb = get_host_vmcb(svm);
+
+ vmcb->control.intercept_cr |= (1U << bit);
+
+ recalc_intercepts(svm);
+}
+
+static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
+{
+ struct vmcb *vmcb = get_host_vmcb(svm);
+
+ vmcb->control.intercept_cr &= ~(1U << bit);
+
+ recalc_intercepts(svm);
+}
+
+static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
+{
+ struct vmcb *vmcb = get_host_vmcb(svm);
+
+ return vmcb->control.intercept_cr & (1U << bit);
+}
+
+static inline void set_dr_intercepts(struct vcpu_svm *svm)
+{
+ struct vmcb *vmcb = get_host_vmcb(svm);
+
+ vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
+ | (1 << INTERCEPT_DR1_READ)
+ | (1 << INTERCEPT_DR2_READ)
+ | (1 << INTERCEPT_DR3_READ)
+ | (1 << INTERCEPT_DR4_READ)
+ | (1 << INTERCEPT_DR5_READ)
+ | (1 << INTERCEPT_DR6_READ)
+ | (1 << INTERCEPT_DR7_READ)
+ | (1 << INTERCEPT_DR0_WRITE)
+ | (1 << INTERCEPT_DR1_WRITE)
+ | (1 << INTERCEPT_DR2_WRITE)
+ | (1 << INTERCEPT_DR3_WRITE)
+ | (1 << INTERCEPT_DR4_WRITE)
+ | (1 << INTERCEPT_DR5_WRITE)
+ | (1 << INTERCEPT_DR6_WRITE)
+ | (1 << INTERCEPT_DR7_WRITE);
+
+ recalc_intercepts(svm);
+}
+
+static inline void clr_dr_intercepts(struct vcpu_svm *svm)
+{
+ struct vmcb *vmcb = get_host_vmcb(svm);
+
+ vmcb->control.intercept_dr = 0;
+
+ recalc_intercepts(svm);
+}
+
+static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
+{
+ struct vmcb *vmcb = get_host_vmcb(svm);
+
+ vmcb->control.intercept_exceptions |= (1U << bit);
+
+ recalc_intercepts(svm);
+}
+
+static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
+{
+ struct vmcb *vmcb = get_host_vmcb(svm);
+
+ vmcb->control.intercept_exceptions &= ~(1U << bit);
+
+ recalc_intercepts(svm);
+}
+
+static inline void set_intercept(struct vcpu_svm *svm, int bit)
+{
+ struct vmcb *vmcb = get_host_vmcb(svm);
+
+ vmcb->control.intercept |= (1ULL << bit);
+
+ recalc_intercepts(svm);
+}
+
+static inline void clr_intercept(struct vcpu_svm *svm, int bit)
+{
+ struct vmcb *vmcb = get_host_vmcb(svm);
+
+ vmcb->control.intercept &= ~(1ULL << bit);
+
+ recalc_intercepts(svm);
+}
+
+static inline bool is_intercept(struct vcpu_svm *svm, int bit)
+{
+ return (svm->vmcb->control.intercept & (1ULL << bit)) != 0;
+}
+
+static inline bool vgif_enabled(struct vcpu_svm *svm)
+{
+ return !!(svm->vmcb->control.int_ctl & V_GIF_ENABLE_MASK);
+}
+
+static inline void enable_gif(struct vcpu_svm *svm)
+{
+ if (vgif_enabled(svm))
+ svm->vmcb->control.int_ctl |= V_GIF_MASK;
+ else
+ svm->vcpu.arch.hflags |= HF_GIF_MASK;
+}
+
+static inline void disable_gif(struct vcpu_svm *svm)
+{
+ if (vgif_enabled(svm))
+ svm->vmcb->control.int_ctl &= ~V_GIF_MASK;
+ else
+ svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
+}
+
+static inline bool gif_set(struct vcpu_svm *svm)
+{
+ if (vgif_enabled(svm))
+ return !!(svm->vmcb->control.int_ctl & V_GIF_MASK);
+ else
+ return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
+}
+
+/* svm.c */
+#define MSR_INVALID 0xffffffffU
+
+u32 svm_msrpm_offset(u32 msr);
+void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer);
+void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
+int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
+void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa);
+void disable_nmi_singlestep(struct vcpu_svm *svm);
+
+/* nested.c */
+
+#define NESTED_EXIT_HOST 0 /* Exit handled on host level */
+#define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
+#define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
+
+/* This function returns true if it is save to enable the nmi window */
+static inline bool nested_svm_nmi(struct vcpu_svm *svm)
+{
+ if (!is_guest_mode(&svm->vcpu))
+ return true;
+
+ if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
+ return true;
+
+ svm->vmcb->control.exit_code = SVM_EXIT_NMI;
+ svm->nested.exit_required = true;
+
+ return false;
+}
+
+static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu)
+{
+ return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK);
+}
+
+void enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb_gpa,
+ struct vmcb *nested_vmcb, struct kvm_host_map *map);
+int nested_svm_vmrun(struct vcpu_svm *svm);
+void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb);
+int nested_svm_vmexit(struct vcpu_svm *svm);
+int nested_svm_exit_handled(struct vcpu_svm *svm);
+int nested_svm_check_permissions(struct vcpu_svm *svm);
+int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
+ bool has_error_code, u32 error_code);
+int svm_check_nested_events(struct kvm_vcpu *vcpu);
+int nested_svm_exit_special(struct vcpu_svm *svm);
+
+/* avic.c */
+
+#define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK (0xFF)
+#define AVIC_LOGICAL_ID_ENTRY_VALID_BIT 31
+#define AVIC_LOGICAL_ID_ENTRY_VALID_MASK (1 << 31)
+
+#define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK (0xFFULL)
+#define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK (0xFFFFFFFFFFULL << 12)
+#define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK (1ULL << 62)
+#define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK (1ULL << 63)
+
+#define VMCB_AVIC_APIC_BAR_MASK 0xFFFFFFFFFF000ULL
+
+extern int avic;
+
+static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data)
+{
+ svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK;
+ mark_dirty(svm->vmcb, VMCB_AVIC);
+}
+
+static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+ u64 *entry = svm->avic_physical_id_cache;
+
+ if (!entry)
+ return false;
+
+ return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
+}
+
+int avic_ga_log_notifier(u32 ga_tag);
+void avic_vm_destroy(struct kvm *kvm);
+int avic_vm_init(struct kvm *kvm);
+void avic_init_vmcb(struct vcpu_svm *svm);
+void svm_toggle_avic_for_irq_window(struct kvm_vcpu *vcpu, bool activate);
+int avic_incomplete_ipi_interception(struct vcpu_svm *svm);
+int avic_unaccelerated_access_interception(struct vcpu_svm *svm);
+int avic_init_vcpu(struct vcpu_svm *svm);
+void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
+void avic_vcpu_put(struct kvm_vcpu *vcpu);
+void avic_post_state_restore(struct kvm_vcpu *vcpu);
+void svm_set_virtual_apic_mode(struct kvm_vcpu *vcpu);
+void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu);
+bool svm_check_apicv_inhibit_reasons(ulong bit);
+void svm_pre_update_apicv_exec_ctrl(struct kvm *kvm, bool activate);
+void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);
+void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr);
+void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr);
+int svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec);
+bool svm_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu);
+int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
+ uint32_t guest_irq, bool set);
+void svm_vcpu_blocking(struct kvm_vcpu *vcpu);
+void svm_vcpu_unblocking(struct kvm_vcpu *vcpu);
+
+/* sev.c */
+
+extern unsigned int max_sev_asid;
+
+static inline bool sev_guest(struct kvm *kvm)
+{
+#ifdef CONFIG_KVM_AMD_SEV
+ struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
+
+ return sev->active;
+#else
+ return false;
+#endif
+}
+
+static inline bool svm_sev_enabled(void)
+{
+ return IS_ENABLED(CONFIG_KVM_AMD_SEV) ? max_sev_asid : 0;
+}
+
+void sev_vm_destroy(struct kvm *kvm);
+int svm_mem_enc_op(struct kvm *kvm, void __user *argp);
+int svm_register_enc_region(struct kvm *kvm,
+ struct kvm_enc_region *range);
+int svm_unregister_enc_region(struct kvm *kvm,
+ struct kvm_enc_region *range);
+void pre_sev_run(struct vcpu_svm *svm, int cpu);
+int __init sev_hardware_setup(void);
+void sev_hardware_teardown(void);
+
+#endif
diff --git a/arch/x86/kvm/svm/vmenter.S b/arch/x86/kvm/svm/vmenter.S
new file mode 100644
index 000000000000..fa1af90067e9
--- /dev/null
+++ b/arch/x86/kvm/svm/vmenter.S
@@ -0,0 +1,162 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#include <linux/linkage.h>
+#include <asm/asm.h>
+#include <asm/bitsperlong.h>
+#include <asm/kvm_vcpu_regs.h>
+
+#define WORD_SIZE (BITS_PER_LONG / 8)
+
+/* Intentionally omit RAX as it's context switched by hardware */
+#define VCPU_RCX __VCPU_REGS_RCX * WORD_SIZE
+#define VCPU_RDX __VCPU_REGS_RDX * WORD_SIZE
+#define VCPU_RBX __VCPU_REGS_RBX * WORD_SIZE
+/* Intentionally omit RSP as it's context switched by hardware */
+#define VCPU_RBP __VCPU_REGS_RBP * WORD_SIZE
+#define VCPU_RSI __VCPU_REGS_RSI * WORD_SIZE
+#define VCPU_RDI __VCPU_REGS_RDI * WORD_SIZE
+
+#ifdef CONFIG_X86_64
+#define VCPU_R8 __VCPU_REGS_R8 * WORD_SIZE
+#define VCPU_R9 __VCPU_REGS_R9 * WORD_SIZE
+#define VCPU_R10 __VCPU_REGS_R10 * WORD_SIZE
+#define VCPU_R11 __VCPU_REGS_R11 * WORD_SIZE
+#define VCPU_R12 __VCPU_REGS_R12 * WORD_SIZE
+#define VCPU_R13 __VCPU_REGS_R13 * WORD_SIZE
+#define VCPU_R14 __VCPU_REGS_R14 * WORD_SIZE
+#define VCPU_R15 __VCPU_REGS_R15 * WORD_SIZE
+#endif
+
+ .text
+
+/**
+ * __svm_vcpu_run - Run a vCPU via a transition to SVM guest mode
+ * @vmcb_pa: unsigned long
+ * @regs: unsigned long * (to guest registers)
+ */
+SYM_FUNC_START(__svm_vcpu_run)
+ push %_ASM_BP
+ mov %_ASM_SP, %_ASM_BP
+#ifdef CONFIG_X86_64
+ push %r15
+ push %r14
+ push %r13
+ push %r12
+#else
+ push %edi
+ push %esi
+#endif
+ push %_ASM_BX
+
+ /* Save @regs. */
+ push %_ASM_ARG2
+
+ /* Save @vmcb. */
+ push %_ASM_ARG1
+
+ /* Move @regs to RAX. */
+ mov %_ASM_ARG2, %_ASM_AX
+
+ /* Load guest registers. */
+ mov VCPU_RCX(%_ASM_AX), %_ASM_CX
+ mov VCPU_RDX(%_ASM_AX), %_ASM_DX
+ mov VCPU_RBX(%_ASM_AX), %_ASM_BX
+ mov VCPU_RBP(%_ASM_AX), %_ASM_BP
+ mov VCPU_RSI(%_ASM_AX), %_ASM_SI
+ mov VCPU_RDI(%_ASM_AX), %_ASM_DI
+#ifdef CONFIG_X86_64
+ mov VCPU_R8 (%_ASM_AX), %r8
+ mov VCPU_R9 (%_ASM_AX), %r9
+ mov VCPU_R10(%_ASM_AX), %r10
+ mov VCPU_R11(%_ASM_AX), %r11
+ mov VCPU_R12(%_ASM_AX), %r12
+ mov VCPU_R13(%_ASM_AX), %r13
+ mov VCPU_R14(%_ASM_AX), %r14
+ mov VCPU_R15(%_ASM_AX), %r15
+#endif
+
+ /* "POP" @vmcb to RAX. */
+ pop %_ASM_AX
+
+ /* Enter guest mode */
+1: vmload %_ASM_AX
+ jmp 3f
+2: cmpb $0, kvm_rebooting
+ jne 3f
+ ud2
+ _ASM_EXTABLE(1b, 2b)
+
+3: vmrun %_ASM_AX
+ jmp 5f
+4: cmpb $0, kvm_rebooting
+ jne 5f
+ ud2
+ _ASM_EXTABLE(3b, 4b)
+
+5: vmsave %_ASM_AX
+ jmp 7f
+6: cmpb $0, kvm_rebooting
+ jne 7f
+ ud2
+ _ASM_EXTABLE(5b, 6b)
+7:
+ /* "POP" @regs to RAX. */
+ pop %_ASM_AX
+
+ /* Save all guest registers. */
+ mov %_ASM_CX, VCPU_RCX(%_ASM_AX)
+ mov %_ASM_DX, VCPU_RDX(%_ASM_AX)
+ mov %_ASM_BX, VCPU_RBX(%_ASM_AX)
+ mov %_ASM_BP, VCPU_RBP(%_ASM_AX)
+ mov %_ASM_SI, VCPU_RSI(%_ASM_AX)
+ mov %_ASM_DI, VCPU_RDI(%_ASM_AX)
+#ifdef CONFIG_X86_64
+ mov %r8, VCPU_R8 (%_ASM_AX)
+ mov %r9, VCPU_R9 (%_ASM_AX)
+ mov %r10, VCPU_R10(%_ASM_AX)
+ mov %r11, VCPU_R11(%_ASM_AX)
+ mov %r12, VCPU_R12(%_ASM_AX)
+ mov %r13, VCPU_R13(%_ASM_AX)
+ mov %r14, VCPU_R14(%_ASM_AX)
+ mov %r15, VCPU_R15(%_ASM_AX)
+#endif
+
+ /*
+ * Clear all general purpose registers except RSP and RAX to prevent
+ * speculative use of the guest's values, even those that are reloaded
+ * via the stack. In theory, an L1 cache miss when restoring registers
+ * could lead to speculative execution with the guest's values.
+ * Zeroing XORs are dirt cheap, i.e. the extra paranoia is essentially
+ * free. RSP and RAX are exempt as they are restored by hardware
+ * during VM-Exit.
+ */
+ xor %ecx, %ecx
+ xor %edx, %edx
+ xor %ebx, %ebx
+ xor %ebp, %ebp
+ xor %esi, %esi
+ xor %edi, %edi
+#ifdef CONFIG_X86_64
+ xor %r8d, %r8d
+ xor %r9d, %r9d
+ xor %r10d, %r10d
+ xor %r11d, %r11d
+ xor %r12d, %r12d
+ xor %r13d, %r13d
+ xor %r14d, %r14d
+ xor %r15d, %r15d
+#endif
+
+ pop %_ASM_BX
+
+#ifdef CONFIG_X86_64
+ pop %r12
+ pop %r13
+ pop %r14
+ pop %r15
+#else
+ pop %esi
+ pop %edi
+#endif
+ pop %_ASM_BP
+ ret
+SYM_FUNC_END(__svm_vcpu_run)
diff --git a/arch/x86/kvm/vmx/nested.c b/arch/x86/kvm/vmx/nested.c
index de232306561a..cbc9ea2de28f 100644
--- a/arch/x86/kvm/vmx/nested.c
+++ b/arch/x86/kvm/vmx/nested.c
@@ -3645,7 +3645,8 @@ static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
* Clear the MTF state. If a higher priority VM-exit is delivered first,
* this state is discarded.
*/
- vmx->nested.mtf_pending = false;
+ if (!block_nested_events)
+ vmx->nested.mtf_pending = false;
if (lapic_in_kernel(vcpu) &&
test_bit(KVM_APIC_INIT, &apic->pending_events)) {
diff --git a/arch/x86/kvm/vmx/vmenter.S b/arch/x86/kvm/vmx/vmenter.S
index 9651ba388ba9..87f3f24fef37 100644
--- a/arch/x86/kvm/vmx/vmenter.S
+++ b/arch/x86/kvm/vmx/vmenter.S
@@ -58,12 +58,8 @@ SYM_FUNC_START(vmx_vmenter)
ret
4: ud2
- .pushsection .fixup, "ax"
-5: jmp 3b
- .popsection
-
- _ASM_EXTABLE(1b, 5b)
- _ASM_EXTABLE(2b, 5b)
+ _ASM_EXTABLE(1b, 3b)
+ _ASM_EXTABLE(2b, 3b)
SYM_FUNC_END(vmx_vmenter)
diff --git a/arch/x86/kvm/vmx/vmx.c b/arch/x86/kvm/vmx/vmx.c
index 91749f1254e8..8959514eaf0f 100644
--- a/arch/x86/kvm/vmx/vmx.c
+++ b/arch/x86/kvm/vmx/vmx.c
@@ -2261,10 +2261,6 @@ static int hardware_enable(void)
!hv_get_vp_assist_page(cpu))
return -EFAULT;
- INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
- INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
- spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
-
r = kvm_cpu_vmxon(phys_addr);
if (r)
return r;
@@ -8044,7 +8040,7 @@ module_exit(vmx_exit);
static int __init vmx_init(void)
{
- int r;
+ int r, cpu;
#if IS_ENABLED(CONFIG_HYPERV)
/*
@@ -8098,6 +8094,12 @@ static int __init vmx_init(void)
return r;
}
+ for_each_possible_cpu(cpu) {
+ INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
+ INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
+ spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
+ }
+
#ifdef CONFIG_KEXEC_CORE
rcu_assign_pointer(crash_vmclear_loaded_vmcss,
crash_vmclear_local_loaded_vmcss);
diff --git a/arch/x86/kvm/x86.c b/arch/x86/kvm/x86.c
index b8124b562dea..027dfd278a97 100644
--- a/arch/x86/kvm/x86.c
+++ b/arch/x86/kvm/x86.c
@@ -1586,7 +1586,8 @@ static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data
if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
- ((data & APIC_MODE_MASK) == APIC_DM_FIXED)) {
+ ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
+ ((u32)(data >> 32) != X2APIC_BROADCAST)) {
data &= ~(1 << 12);
kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));