diff options
author | Sean Christopherson <seanjc@google.com> | 2023-08-24 18:36:18 -0700 |
---|---|---|
committer | Sean Christopherson <seanjc@google.com> | 2023-08-25 09:00:40 -0700 |
commit | cb49631ad111570f1bad37702c11c2ae07fa2e3c (patch) | |
tree | b0f7760fb81828a535a1111eb26ae4b0f04b7dfd /arch/x86/kvm/svm/svm.c | |
parent | 1952e74da96fb3e48b72a2d0ece78c688a5848c1 (diff) |
KVM: SVM: Don't inject #UD if KVM attempts to skip SEV guest insn
Don't inject a #UD if KVM attempts to "emulate" to skip an instruction
for an SEV guest, and instead resume the guest and hope that it can make
forward progress. When commit 04c40f344def ("KVM: SVM: Inject #UD on
attempted emulation for SEV guest w/o insn buffer") added the completely
arbitrary #UD behavior, there were no known scenarios where a well-behaved
guest would induce a VM-Exit that triggered emulation, i.e. it was thought
that injecting #UD would be helpful.
However, now that KVM (correctly) attempts to re-inject INT3/INTO, e.g. if
a #NPF is encountered when attempting to deliver the INT3/INTO, an SEV
guest can trigger emulation without a buffer, through no fault of its own.
Resuming the guest and retrying the INT3/INTO is architecturally wrong,
e.g. the vCPU will incorrectly re-hit code #DBs, but for SEV guests there
is literally no other option that has a chance of making forward progress.
Drop the #UD injection for all "skip" emulation, not just those related to
INT3/INTO, even though that means that the guest will likely end up in an
infinite loop instead of getting a #UD (the vCPU may also crash, e.g. if
KVM emulated everything about an instruction except for advancing RIP).
There's no evidence that suggests that an unexpected #UD is actually
better than hanging the vCPU, e.g. a soft-hung vCPU can still respond to
IRQs and NMIs to generate a backtrace.
Reported-by: Wu Zongyo <wuzongyo@mail.ustc.edu.cn>
Closes: https://lore.kernel.org/all/8eb933fd-2cf3-d7a9-32fe-2a1d82eac42a@mail.ustc.edu.cn
Fixes: 6ef88d6e36c2 ("KVM: SVM: Re-inject INT3/INTO instead of retrying the instruction")
Cc: stable@vger.kernel.org
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20230825013621.2845700-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Diffstat (limited to 'arch/x86/kvm/svm/svm.c')
-rw-r--r-- | arch/x86/kvm/svm/svm.c | 35 |
1 files changed, 27 insertions, 8 deletions
diff --git a/arch/x86/kvm/svm/svm.c b/arch/x86/kvm/svm/svm.c index d76c8a0764f1..d7a474571ff1 100644 --- a/arch/x86/kvm/svm/svm.c +++ b/arch/x86/kvm/svm/svm.c @@ -365,6 +365,8 @@ static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK; } +static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, + void *insn, int insn_len); static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu, bool commit_side_effects) @@ -385,6 +387,14 @@ static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu, } if (!svm->next_rip) { + /* + * FIXME: Drop this when kvm_emulate_instruction() does the + * right thing and treats "can't emulate" as outright failure + * for EMULTYPE_SKIP. + */ + if (!svm_can_emulate_instruction(vcpu, EMULTYPE_SKIP, NULL, 0)) + return 0; + if (unlikely(!commit_side_effects)) old_rflags = svm->vmcb->save.rflags; @@ -4677,16 +4687,25 @@ static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, * and cannot be decrypted by KVM, i.e. KVM would read cyphertext and * decode garbage. * - * Inject #UD if KVM reached this point without an instruction buffer. - * In practice, this path should never be hit by a well-behaved guest, - * e.g. KVM doesn't intercept #UD or #GP for SEV guests, but this path - * is still theoretically reachable, e.g. via unaccelerated fault-like - * AVIC access, and needs to be handled by KVM to avoid putting the - * guest into an infinite loop. Injecting #UD is somewhat arbitrary, - * but its the least awful option given lack of insight into the guest. + * If KVM is NOT trying to simply skip an instruction, inject #UD if + * KVM reached this point without an instruction buffer. In practice, + * this path should never be hit by a well-behaved guest, e.g. KVM + * doesn't intercept #UD or #GP for SEV guests, but this path is still + * theoretically reachable, e.g. via unaccelerated fault-like AVIC + * access, and needs to be handled by KVM to avoid putting the guest + * into an infinite loop. Injecting #UD is somewhat arbitrary, but + * its the least awful option given lack of insight into the guest. + * + * If KVM is trying to skip an instruction, simply resume the guest. + * If a #NPF occurs while the guest is vectoring an INT3/INTO, then KVM + * will attempt to re-inject the INT3/INTO and skip the instruction. + * In that scenario, retrying the INT3/INTO and hoping the guest will + * make forward progress is the only option that has a chance of + * success (and in practice it will work the vast majority of the time). */ if (unlikely(!insn)) { - kvm_queue_exception(vcpu, UD_VECTOR); + if (!(emul_type & EMULTYPE_SKIP)) + kvm_queue_exception(vcpu, UD_VECTOR); return false; } |