summaryrefslogtreecommitdiff
path: root/arch/mips/mm
diff options
context:
space:
mode:
authorHuacai Chen <chenhc@lemote.com>2019-01-15 16:04:54 +0800
committerPaul Burton <paul.burton@mips.com>2019-02-04 10:53:34 -0800
commite02e07e3127d8aec1f4bcdfb2fc52a2d99b4859e (patch)
tree63e6cbcd071acb0a17e9a56833f8806ea1192704 /arch/mips/mm
parent67fc5dc8a541e8f458d7f08bf88ff55933bf9f9d (diff)
MIPS: Loongson: Introduce and use loongson_llsc_mb()
On the Loongson-2G/2H/3A/3B there is a hardware flaw that ll/sc and lld/scd is very weak ordering. We should add sync instructions "before each ll/lld" and "at the branch-target between ll/sc" to workaround. Otherwise, this flaw will cause deadlock occasionally (e.g. when doing heavy load test with LTP). Below is the explaination of CPU designer: "For Loongson 3 family, when a memory access instruction (load, store, or prefetch)'s executing occurs between the execution of LL and SC, the success or failure of SC is not predictable. Although programmer would not insert memory access instructions between LL and SC, the memory instructions before LL in program-order, may dynamically executed between the execution of LL/SC, so a memory fence (SYNC) is needed before LL/LLD to avoid this situation. Since Loongson-3A R2 (3A2000), we have improved our hardware design to handle this case. But we later deduce a rarely circumstance that some speculatively executed memory instructions due to branch misprediction between LL/SC still fall into the above case, so a memory fence (SYNC) at branch-target (if its target is not between LL/SC) is needed for Loongson 3A1000, 3B1500, 3A2000 and 3A3000. Our processor is continually evolving and we aim to to remove all these workaround-SYNCs around LL/SC for new-come processor." Here is an example: Both cpu1 and cpu2 simutaneously run atomic_add by 1 on same atomic var, this bug cause both 'sc' run by two cpus (in atomic_add) succeed at same time('sc' return 1), and the variable is only *added by 1*, sometimes, which is wrong and unacceptable(it should be added by 2). Why disable fix-loongson3-llsc in compiler? Because compiler fix will cause problems in kernel's __ex_table section. This patch fix all the cases in kernel, but: +. the fix at the end of futex_atomic_cmpxchg_inatomic is for branch-target of 'bne', there other cases which smp_mb__before_llsc() and smp_llsc_mb() fix the ll and branch-target coincidently such as atomic_sub_if_positive/ cmpxchg/xchg, just like this one. +. Loongson 3 does support CONFIG_EDAC_ATOMIC_SCRUB, so no need to touch edac.h +. local_ops and cmpxchg_local should not be affected by this bug since only the owner can write. +. mips_atomic_set for syscall.c is deprecated and rarely used, just let it go Signed-off-by: Huacai Chen <chenhc@lemote.com> Signed-off-by: Huang Pei <huangpei@loongson.cn> [paul.burton@mips.com: - Simplify the addition of -mno-fix-loongson3-llsc to cflags, and add a comment describing why it's there. - Make loongson_llsc_mb() a no-op when CONFIG_CPU_LOONGSON3_WORKAROUNDS=n, rather than a compiler memory barrier. - Add a comment describing the bug & how loongson_llsc_mb() helps in asm/barrier.h.] Signed-off-by: Paul Burton <paul.burton@mips.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: ambrosehua@gmail.com Cc: Steven J . Hill <Steven.Hill@cavium.com> Cc: linux-mips@linux-mips.org Cc: Fuxin Zhang <zhangfx@lemote.com> Cc: Zhangjin Wu <wuzhangjin@gmail.com> Cc: Li Xuefeng <lixuefeng@loongson.cn> Cc: Xu Chenghua <xuchenghua@loongson.cn>
Diffstat (limited to 'arch/mips/mm')
-rw-r--r--arch/mips/mm/tlbex.c10
1 files changed, 10 insertions, 0 deletions
diff --git a/arch/mips/mm/tlbex.c b/arch/mips/mm/tlbex.c
index 37b1cb246332..65b6e85447b1 100644
--- a/arch/mips/mm/tlbex.c
+++ b/arch/mips/mm/tlbex.c
@@ -932,6 +932,8 @@ build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
* to mimic that here by taking a load/istream page
* fault.
*/
+ if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
+ uasm_i_sync(p, 0);
UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
uasm_i_jr(p, ptr);
@@ -1646,6 +1648,8 @@ static void
iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
{
#ifdef CONFIG_SMP
+ if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
+ uasm_i_sync(p, 0);
# ifdef CONFIG_PHYS_ADDR_T_64BIT
if (cpu_has_64bits)
uasm_i_lld(p, pte, 0, ptr);
@@ -2259,6 +2263,8 @@ static void build_r4000_tlb_load_handler(void)
#endif
uasm_l_nopage_tlbl(&l, p);
+ if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
+ uasm_i_sync(&p, 0);
build_restore_work_registers(&p);
#ifdef CONFIG_CPU_MICROMIPS
if ((unsigned long)tlb_do_page_fault_0 & 1) {
@@ -2313,6 +2319,8 @@ static void build_r4000_tlb_store_handler(void)
#endif
uasm_l_nopage_tlbs(&l, p);
+ if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
+ uasm_i_sync(&p, 0);
build_restore_work_registers(&p);
#ifdef CONFIG_CPU_MICROMIPS
if ((unsigned long)tlb_do_page_fault_1 & 1) {
@@ -2368,6 +2376,8 @@ static void build_r4000_tlb_modify_handler(void)
#endif
uasm_l_nopage_tlbm(&l, p);
+ if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
+ uasm_i_sync(&p, 0);
build_restore_work_registers(&p);
#ifdef CONFIG_CPU_MICROMIPS
if ((unsigned long)tlb_do_page_fault_1 & 1) {