summaryrefslogtreecommitdiff
path: root/arch/i386/mm
diff options
context:
space:
mode:
authorThomas Gleixner <tglx@linutronix.de>2007-10-11 11:16:47 +0200
committerThomas Gleixner <tglx@linutronix.de>2007-10-11 11:16:47 +0200
commitad757b6aa5801b81dec609d87753604a06313c53 (patch)
tree7bb40460e1729ad370b5ae75e65f9e6a0e824328 /arch/i386/mm
parent96ae6ea0be1b902c28b3b463c27da42b41e2b63a (diff)
i386: move mm
Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'arch/i386/mm')
-rw-r--r--arch/i386/mm/Makefile5
-rw-r--r--arch/i386/mm/Makefile_3210
-rw-r--r--arch/i386/mm/boot_ioremap_32.c100
-rw-r--r--arch/i386/mm/discontig_32.c431
-rw-r--r--arch/i386/mm/extable_32.c35
-rw-r--r--arch/i386/mm/fault_32.c657
-rw-r--r--arch/i386/mm/highmem_32.c113
-rw-r--r--arch/i386/mm/hugetlbpage.c391
-rw-r--r--arch/i386/mm/init_32.c858
-rw-r--r--arch/i386/mm/ioremap_32.c274
-rw-r--r--arch/i386/mm/mmap_32.c77
-rw-r--r--arch/i386/mm/pageattr_32.c278
-rw-r--r--arch/i386/mm/pgtable_32.c373
13 files changed, 0 insertions, 3602 deletions
diff --git a/arch/i386/mm/Makefile b/arch/i386/mm/Makefile
deleted file mode 100644
index 4042f8563a16..000000000000
--- a/arch/i386/mm/Makefile
+++ /dev/null
@@ -1,5 +0,0 @@
-ifeq ($(CONFIG_X86_32),y)
-include ${srctree}/arch/i386/mm/Makefile_32
-else
-include ${srctree}/arch/x86_64/mm/Makefile_64
-endif
diff --git a/arch/i386/mm/Makefile_32 b/arch/i386/mm/Makefile_32
deleted file mode 100644
index 362b4ad082de..000000000000
--- a/arch/i386/mm/Makefile_32
+++ /dev/null
@@ -1,10 +0,0 @@
-#
-# Makefile for the linux i386-specific parts of the memory manager.
-#
-
-obj-y := init_32.o pgtable_32.o fault_32.o ioremap_32.o extable_32.o pageattr_32.o mmap_32.o
-
-obj-$(CONFIG_NUMA) += discontig_32.o
-obj-$(CONFIG_HUGETLB_PAGE) += hugetlbpage.o
-obj-$(CONFIG_HIGHMEM) += highmem_32.o
-obj-$(CONFIG_BOOT_IOREMAP) += boot_ioremap_32.o
diff --git a/arch/i386/mm/boot_ioremap_32.c b/arch/i386/mm/boot_ioremap_32.c
deleted file mode 100644
index 4de95a17a7d4..000000000000
--- a/arch/i386/mm/boot_ioremap_32.c
+++ /dev/null
@@ -1,100 +0,0 @@
-/*
- * arch/i386/mm/boot_ioremap.c
- *
- * Re-map functions for early boot-time before paging_init() when the
- * boot-time pagetables are still in use
- *
- * Written by Dave Hansen <haveblue@us.ibm.com>
- */
-
-
-/*
- * We need to use the 2-level pagetable functions, but CONFIG_X86_PAE
- * keeps that from happenning. If anyone has a better way, I'm listening.
- *
- * boot_pte_t is defined only if this all works correctly
- */
-
-#undef CONFIG_X86_PAE
-#undef CONFIG_PARAVIRT
-#include <asm/page.h>
-#include <asm/pgtable.h>
-#include <asm/tlbflush.h>
-#include <linux/init.h>
-#include <linux/stddef.h>
-
-/*
- * I'm cheating here. It is known that the two boot PTE pages are
- * allocated next to each other. I'm pretending that they're just
- * one big array.
- */
-
-#define BOOT_PTE_PTRS (PTRS_PER_PTE*2)
-
-static unsigned long boot_pte_index(unsigned long vaddr)
-{
- return __pa(vaddr) >> PAGE_SHIFT;
-}
-
-static inline boot_pte_t* boot_vaddr_to_pte(void *address)
-{
- boot_pte_t* boot_pg = (boot_pte_t*)pg0;
- return &boot_pg[boot_pte_index((unsigned long)address)];
-}
-
-/*
- * This is only for a caller who is clever enough to page-align
- * phys_addr and virtual_source, and who also has a preference
- * about which virtual address from which to steal ptes
- */
-static void __boot_ioremap(unsigned long phys_addr, unsigned long nrpages,
- void* virtual_source)
-{
- boot_pte_t* pte;
- int i;
- char *vaddr = virtual_source;
-
- pte = boot_vaddr_to_pte(virtual_source);
- for (i=0; i < nrpages; i++, phys_addr += PAGE_SIZE, pte++) {
- set_pte(pte, pfn_pte(phys_addr>>PAGE_SHIFT, PAGE_KERNEL));
- __flush_tlb_one(&vaddr[i*PAGE_SIZE]);
- }
-}
-
-/* the virtual space we're going to remap comes from this array */
-#define BOOT_IOREMAP_PAGES 4
-#define BOOT_IOREMAP_SIZE (BOOT_IOREMAP_PAGES*PAGE_SIZE)
-static __initdata char boot_ioremap_space[BOOT_IOREMAP_SIZE]
- __attribute__ ((aligned (PAGE_SIZE)));
-
-/*
- * This only applies to things which need to ioremap before paging_init()
- * bt_ioremap() and plain ioremap() are both useless at this point.
- *
- * When used, we're still using the boot-time pagetables, which only
- * have 2 PTE pages mapping the first 8MB
- *
- * There is no unmap. The boot-time PTE pages aren't used after boot.
- * If you really want the space back, just remap it yourself.
- * boot_ioremap(&ioremap_space-PAGE_OFFSET, BOOT_IOREMAP_SIZE)
- */
-__init void* boot_ioremap(unsigned long phys_addr, unsigned long size)
-{
- unsigned long last_addr, offset;
- unsigned int nrpages;
-
- last_addr = phys_addr + size - 1;
-
- /* page align the requested address */
- offset = phys_addr & ~PAGE_MASK;
- phys_addr &= PAGE_MASK;
- size = PAGE_ALIGN(last_addr) - phys_addr;
-
- nrpages = size >> PAGE_SHIFT;
- if (nrpages > BOOT_IOREMAP_PAGES)
- return NULL;
-
- __boot_ioremap(phys_addr, nrpages, boot_ioremap_space);
-
- return &boot_ioremap_space[offset];
-}
diff --git a/arch/i386/mm/discontig_32.c b/arch/i386/mm/discontig_32.c
deleted file mode 100644
index 860e912a3fbb..000000000000
--- a/arch/i386/mm/discontig_32.c
+++ /dev/null
@@ -1,431 +0,0 @@
-/*
- * Written by: Patricia Gaughen <gone@us.ibm.com>, IBM Corporation
- * August 2002: added remote node KVA remap - Martin J. Bligh
- *
- * Copyright (C) 2002, IBM Corp.
- *
- * All rights reserved.
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
- * NON INFRINGEMENT. See the GNU General Public License for more
- * details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- */
-
-#include <linux/mm.h>
-#include <linux/bootmem.h>
-#include <linux/mmzone.h>
-#include <linux/highmem.h>
-#include <linux/initrd.h>
-#include <linux/nodemask.h>
-#include <linux/module.h>
-#include <linux/kexec.h>
-#include <linux/pfn.h>
-#include <linux/swap.h>
-
-#include <asm/e820.h>
-#include <asm/setup.h>
-#include <asm/mmzone.h>
-#include <bios_ebda.h>
-
-struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
-EXPORT_SYMBOL(node_data);
-bootmem_data_t node0_bdata;
-
-/*
- * numa interface - we expect the numa architecture specific code to have
- * populated the following initialisation.
- *
- * 1) node_online_map - the map of all nodes configured (online) in the system
- * 2) node_start_pfn - the starting page frame number for a node
- * 3) node_end_pfn - the ending page fram number for a node
- */
-unsigned long node_start_pfn[MAX_NUMNODES] __read_mostly;
-unsigned long node_end_pfn[MAX_NUMNODES] __read_mostly;
-
-
-#ifdef CONFIG_DISCONTIGMEM
-/*
- * 4) physnode_map - the mapping between a pfn and owning node
- * physnode_map keeps track of the physical memory layout of a generic
- * numa node on a 256Mb break (each element of the array will
- * represent 256Mb of memory and will be marked by the node id. so,
- * if the first gig is on node 0, and the second gig is on node 1
- * physnode_map will contain:
- *
- * physnode_map[0-3] = 0;
- * physnode_map[4-7] = 1;
- * physnode_map[8- ] = -1;
- */
-s8 physnode_map[MAX_ELEMENTS] __read_mostly = { [0 ... (MAX_ELEMENTS - 1)] = -1};
-EXPORT_SYMBOL(physnode_map);
-
-void memory_present(int nid, unsigned long start, unsigned long end)
-{
- unsigned long pfn;
-
- printk(KERN_INFO "Node: %d, start_pfn: %ld, end_pfn: %ld\n",
- nid, start, end);
- printk(KERN_DEBUG " Setting physnode_map array to node %d for pfns:\n", nid);
- printk(KERN_DEBUG " ");
- for (pfn = start; pfn < end; pfn += PAGES_PER_ELEMENT) {
- physnode_map[pfn / PAGES_PER_ELEMENT] = nid;
- printk("%ld ", pfn);
- }
- printk("\n");
-}
-
-unsigned long node_memmap_size_bytes(int nid, unsigned long start_pfn,
- unsigned long end_pfn)
-{
- unsigned long nr_pages = end_pfn - start_pfn;
-
- if (!nr_pages)
- return 0;
-
- return (nr_pages + 1) * sizeof(struct page);
-}
-#endif
-
-extern unsigned long find_max_low_pfn(void);
-extern void add_one_highpage_init(struct page *, int, int);
-extern unsigned long highend_pfn, highstart_pfn;
-
-#define LARGE_PAGE_BYTES (PTRS_PER_PTE * PAGE_SIZE)
-
-unsigned long node_remap_start_pfn[MAX_NUMNODES];
-unsigned long node_remap_size[MAX_NUMNODES];
-unsigned long node_remap_offset[MAX_NUMNODES];
-void *node_remap_start_vaddr[MAX_NUMNODES];
-void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags);
-
-void *node_remap_end_vaddr[MAX_NUMNODES];
-void *node_remap_alloc_vaddr[MAX_NUMNODES];
-static unsigned long kva_start_pfn;
-static unsigned long kva_pages;
-/*
- * FLAT - support for basic PC memory model with discontig enabled, essentially
- * a single node with all available processors in it with a flat
- * memory map.
- */
-int __init get_memcfg_numa_flat(void)
-{
- printk("NUMA - single node, flat memory mode\n");
-
- /* Run the memory configuration and find the top of memory. */
- find_max_pfn();
- node_start_pfn[0] = 0;
- node_end_pfn[0] = max_pfn;
- memory_present(0, 0, max_pfn);
-
- /* Indicate there is one node available. */
- nodes_clear(node_online_map);
- node_set_online(0);
- return 1;
-}
-
-/*
- * Find the highest page frame number we have available for the node
- */
-static void __init find_max_pfn_node(int nid)
-{
- if (node_end_pfn[nid] > max_pfn)
- node_end_pfn[nid] = max_pfn;
- /*
- * if a user has given mem=XXXX, then we need to make sure
- * that the node _starts_ before that, too, not just ends
- */
- if (node_start_pfn[nid] > max_pfn)
- node_start_pfn[nid] = max_pfn;
- BUG_ON(node_start_pfn[nid] > node_end_pfn[nid]);
-}
-
-/*
- * Allocate memory for the pg_data_t for this node via a crude pre-bootmem
- * method. For node zero take this from the bottom of memory, for
- * subsequent nodes place them at node_remap_start_vaddr which contains
- * node local data in physically node local memory. See setup_memory()
- * for details.
- */
-static void __init allocate_pgdat(int nid)
-{
- if (nid && node_has_online_mem(nid))
- NODE_DATA(nid) = (pg_data_t *)node_remap_start_vaddr[nid];
- else {
- NODE_DATA(nid) = (pg_data_t *)(pfn_to_kaddr(min_low_pfn));
- min_low_pfn += PFN_UP(sizeof(pg_data_t));
- }
-}
-
-void *alloc_remap(int nid, unsigned long size)
-{
- void *allocation = node_remap_alloc_vaddr[nid];
-
- size = ALIGN(size, L1_CACHE_BYTES);
-
- if (!allocation || (allocation + size) >= node_remap_end_vaddr[nid])
- return 0;
-
- node_remap_alloc_vaddr[nid] += size;
- memset(allocation, 0, size);
-
- return allocation;
-}
-
-void __init remap_numa_kva(void)
-{
- void *vaddr;
- unsigned long pfn;
- int node;
-
- for_each_online_node(node) {
- for (pfn=0; pfn < node_remap_size[node]; pfn += PTRS_PER_PTE) {
- vaddr = node_remap_start_vaddr[node]+(pfn<<PAGE_SHIFT);
- set_pmd_pfn((ulong) vaddr,
- node_remap_start_pfn[node] + pfn,
- PAGE_KERNEL_LARGE);
- }
- }
-}
-
-static unsigned long calculate_numa_remap_pages(void)
-{
- int nid;
- unsigned long size, reserve_pages = 0;
- unsigned long pfn;
-
- for_each_online_node(nid) {
- unsigned old_end_pfn = node_end_pfn[nid];
-
- /*
- * The acpi/srat node info can show hot-add memroy zones
- * where memory could be added but not currently present.
- */
- if (node_start_pfn[nid] > max_pfn)
- continue;
- if (node_end_pfn[nid] > max_pfn)
- node_end_pfn[nid] = max_pfn;
-
- /* ensure the remap includes space for the pgdat. */
- size = node_remap_size[nid] + sizeof(pg_data_t);
-
- /* convert size to large (pmd size) pages, rounding up */
- size = (size + LARGE_PAGE_BYTES - 1) / LARGE_PAGE_BYTES;
- /* now the roundup is correct, convert to PAGE_SIZE pages */
- size = size * PTRS_PER_PTE;
-
- /*
- * Validate the region we are allocating only contains valid
- * pages.
- */
- for (pfn = node_end_pfn[nid] - size;
- pfn < node_end_pfn[nid]; pfn++)
- if (!page_is_ram(pfn))
- break;
-
- if (pfn != node_end_pfn[nid])
- size = 0;
-
- printk("Reserving %ld pages of KVA for lmem_map of node %d\n",
- size, nid);
- node_remap_size[nid] = size;
- node_remap_offset[nid] = reserve_pages;
- reserve_pages += size;
- printk("Shrinking node %d from %ld pages to %ld pages\n",
- nid, node_end_pfn[nid], node_end_pfn[nid] - size);
-
- if (node_end_pfn[nid] & (PTRS_PER_PTE-1)) {
- /*
- * Align node_end_pfn[] and node_remap_start_pfn[] to
- * pmd boundary. remap_numa_kva will barf otherwise.
- */
- printk("Shrinking node %d further by %ld pages for proper alignment\n",
- nid, node_end_pfn[nid] & (PTRS_PER_PTE-1));
- size += node_end_pfn[nid] & (PTRS_PER_PTE-1);
- }
-
- node_end_pfn[nid] -= size;
- node_remap_start_pfn[nid] = node_end_pfn[nid];
- shrink_active_range(nid, old_end_pfn, node_end_pfn[nid]);
- }
- printk("Reserving total of %ld pages for numa KVA remap\n",
- reserve_pages);
- return reserve_pages;
-}
-
-extern void setup_bootmem_allocator(void);
-unsigned long __init setup_memory(void)
-{
- int nid;
- unsigned long system_start_pfn, system_max_low_pfn;
-
- /*
- * When mapping a NUMA machine we allocate the node_mem_map arrays
- * from node local memory. They are then mapped directly into KVA
- * between zone normal and vmalloc space. Calculate the size of
- * this space and use it to adjust the boundry between ZONE_NORMAL
- * and ZONE_HIGHMEM.
- */
- find_max_pfn();
- get_memcfg_numa();
-
- kva_pages = calculate_numa_remap_pages();
-
- /* partially used pages are not usable - thus round upwards */
- system_start_pfn = min_low_pfn = PFN_UP(init_pg_tables_end);
-
- kva_start_pfn = find_max_low_pfn() - kva_pages;
-
-#ifdef CONFIG_BLK_DEV_INITRD
- /* Numa kva area is below the initrd */
- if (LOADER_TYPE && INITRD_START)
- kva_start_pfn = PFN_DOWN(INITRD_START) - kva_pages;
-#endif
- kva_start_pfn -= kva_start_pfn & (PTRS_PER_PTE-1);
-
- system_max_low_pfn = max_low_pfn = find_max_low_pfn();
- printk("kva_start_pfn ~ %ld find_max_low_pfn() ~ %ld\n",
- kva_start_pfn, max_low_pfn);
- printk("max_pfn = %ld\n", max_pfn);
-#ifdef CONFIG_HIGHMEM
- highstart_pfn = highend_pfn = max_pfn;
- if (max_pfn > system_max_low_pfn)
- highstart_pfn = system_max_low_pfn;
- printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
- pages_to_mb(highend_pfn - highstart_pfn));
- num_physpages = highend_pfn;
- high_memory = (void *) __va(highstart_pfn * PAGE_SIZE - 1) + 1;
-#else
- num_physpages = system_max_low_pfn;
- high_memory = (void *) __va(system_max_low_pfn * PAGE_SIZE - 1) + 1;
-#endif
- printk(KERN_NOTICE "%ldMB LOWMEM available.\n",
- pages_to_mb(system_max_low_pfn));
- printk("min_low_pfn = %ld, max_low_pfn = %ld, highstart_pfn = %ld\n",
- min_low_pfn, max_low_pfn, highstart_pfn);
-
- printk("Low memory ends at vaddr %08lx\n",
- (ulong) pfn_to_kaddr(max_low_pfn));
- for_each_online_node(nid) {
- node_remap_start_vaddr[nid] = pfn_to_kaddr(
- kva_start_pfn + node_remap_offset[nid]);
- /* Init the node remap allocator */
- node_remap_end_vaddr[nid] = node_remap_start_vaddr[nid] +
- (node_remap_size[nid] * PAGE_SIZE);
- node_remap_alloc_vaddr[nid] = node_remap_start_vaddr[nid] +
- ALIGN(sizeof(pg_data_t), PAGE_SIZE);
-
- allocate_pgdat(nid);
- printk ("node %d will remap to vaddr %08lx - %08lx\n", nid,
- (ulong) node_remap_start_vaddr[nid],
- (ulong) pfn_to_kaddr(highstart_pfn
- + node_remap_offset[nid] + node_remap_size[nid]));
- }
- printk("High memory starts at vaddr %08lx\n",
- (ulong) pfn_to_kaddr(highstart_pfn));
- for_each_online_node(nid)
- find_max_pfn_node(nid);
-
- memset(NODE_DATA(0), 0, sizeof(struct pglist_data));
- NODE_DATA(0)->bdata = &node0_bdata;
- setup_bootmem_allocator();
- return max_low_pfn;
-}
-
-void __init numa_kva_reserve(void)
-{
- reserve_bootmem(PFN_PHYS(kva_start_pfn),PFN_PHYS(kva_pages));
-}
-
-void __init zone_sizes_init(void)
-{
- int nid;
- unsigned long max_zone_pfns[MAX_NR_ZONES];
- memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
- max_zone_pfns[ZONE_DMA] =
- virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;
- max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
-#ifdef CONFIG_HIGHMEM
- max_zone_pfns[ZONE_HIGHMEM] = highend_pfn;
-#endif
-
- /* If SRAT has not registered memory, register it now */
- if (find_max_pfn_with_active_regions() == 0) {
- for_each_online_node(nid) {
- if (node_has_online_mem(nid))
- add_active_range(nid, node_start_pfn[nid],
- node_end_pfn[nid]);
- }
- }
-
- free_area_init_nodes(max_zone_pfns);
- return;
-}
-
-void __init set_highmem_pages_init(int bad_ppro)
-{
-#ifdef CONFIG_HIGHMEM
- struct zone *zone;
- struct page *page;
-
- for_each_zone(zone) {
- unsigned long node_pfn, zone_start_pfn, zone_end_pfn;
-
- if (!is_highmem(zone))
- continue;
-
- zone_start_pfn = zone->zone_start_pfn;
- zone_end_pfn = zone_start_pfn + zone->spanned_pages;
-
- printk("Initializing %s for node %d (%08lx:%08lx)\n",
- zone->name, zone_to_nid(zone),
- zone_start_pfn, zone_end_pfn);
-
- for (node_pfn = zone_start_pfn; node_pfn < zone_end_pfn; node_pfn++) {
- if (!pfn_valid(node_pfn))
- continue;
- page = pfn_to_page(node_pfn);
- add_one_highpage_init(page, node_pfn, bad_ppro);
- }
- }
- totalram_pages += totalhigh_pages;
-#endif
-}
-
-#ifdef CONFIG_MEMORY_HOTPLUG
-int paddr_to_nid(u64 addr)
-{
- int nid;
- unsigned long pfn = PFN_DOWN(addr);
-
- for_each_node(nid)
- if (node_start_pfn[nid] <= pfn &&
- pfn < node_end_pfn[nid])
- return nid;
-
- return -1;
-}
-
-/*
- * This function is used to ask node id BEFORE memmap and mem_section's
- * initialization (pfn_to_nid() can't be used yet).
- * If _PXM is not defined on ACPI's DSDT, node id must be found by this.
- */
-int memory_add_physaddr_to_nid(u64 addr)
-{
- int nid = paddr_to_nid(addr);
- return (nid >= 0) ? nid : 0;
-}
-
-EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
-#endif
diff --git a/arch/i386/mm/extable_32.c b/arch/i386/mm/extable_32.c
deleted file mode 100644
index 0ce4f22a2635..000000000000
--- a/arch/i386/mm/extable_32.c
+++ /dev/null
@@ -1,35 +0,0 @@
-/*
- * linux/arch/i386/mm/extable.c
- */
-
-#include <linux/module.h>
-#include <linux/spinlock.h>
-#include <asm/uaccess.h>
-
-int fixup_exception(struct pt_regs *regs)
-{
- const struct exception_table_entry *fixup;
-
-#ifdef CONFIG_PNPBIOS
- if (unlikely(SEGMENT_IS_PNP_CODE(regs->xcs)))
- {
- extern u32 pnp_bios_fault_eip, pnp_bios_fault_esp;
- extern u32 pnp_bios_is_utter_crap;
- pnp_bios_is_utter_crap = 1;
- printk(KERN_CRIT "PNPBIOS fault.. attempting recovery.\n");
- __asm__ volatile(
- "movl %0, %%esp\n\t"
- "jmp *%1\n\t"
- : : "g" (pnp_bios_fault_esp), "g" (pnp_bios_fault_eip));
- panic("do_trap: can't hit this");
- }
-#endif
-
- fixup = search_exception_tables(regs->eip);
- if (fixup) {
- regs->eip = fixup->fixup;
- return 1;
- }
-
- return 0;
-}
diff --git a/arch/i386/mm/fault_32.c b/arch/i386/mm/fault_32.c
deleted file mode 100644
index fcb38e7f3543..000000000000
--- a/arch/i386/mm/fault_32.c
+++ /dev/null
@@ -1,657 +0,0 @@
-/*
- * linux/arch/i386/mm/fault.c
- *
- * Copyright (C) 1995 Linus Torvalds
- */
-
-#include <linux/signal.h>
-#include <linux/sched.h>
-#include <linux/kernel.h>
-#include <linux/errno.h>
-#include <linux/string.h>
-#include <linux/types.h>
-#include <linux/ptrace.h>
-#include <linux/mman.h>
-#include <linux/mm.h>
-#include <linux/smp.h>
-#include <linux/interrupt.h>
-#include <linux/init.h>
-#include <linux/tty.h>
-#include <linux/vt_kern.h> /* For unblank_screen() */
-#include <linux/highmem.h>
-#include <linux/bootmem.h> /* for max_low_pfn */
-#include <linux/vmalloc.h>
-#include <linux/module.h>
-#include <linux/kprobes.h>
-#include <linux/uaccess.h>
-#include <linux/kdebug.h>
-
-#include <asm/system.h>
-#include <asm/desc.h>
-#include <asm/segment.h>
-
-extern void die(const char *,struct pt_regs *,long);
-
-static ATOMIC_NOTIFIER_HEAD(notify_page_fault_chain);
-
-int register_page_fault_notifier(struct notifier_block *nb)
-{
- vmalloc_sync_all();
- return atomic_notifier_chain_register(&notify_page_fault_chain, nb);
-}
-EXPORT_SYMBOL_GPL(register_page_fault_notifier);
-
-int unregister_page_fault_notifier(struct notifier_block *nb)
-{
- return atomic_notifier_chain_unregister(&notify_page_fault_chain, nb);
-}
-EXPORT_SYMBOL_GPL(unregister_page_fault_notifier);
-
-static inline int notify_page_fault(struct pt_regs *regs, long err)
-{
- struct die_args args = {
- .regs = regs,
- .str = "page fault",
- .err = err,
- .trapnr = 14,
- .signr = SIGSEGV
- };
- return atomic_notifier_call_chain(&notify_page_fault_chain,
- DIE_PAGE_FAULT, &args);
-}
-
-/*
- * Return EIP plus the CS segment base. The segment limit is also
- * adjusted, clamped to the kernel/user address space (whichever is
- * appropriate), and returned in *eip_limit.
- *
- * The segment is checked, because it might have been changed by another
- * task between the original faulting instruction and here.
- *
- * If CS is no longer a valid code segment, or if EIP is beyond the
- * limit, or if it is a kernel address when CS is not a kernel segment,
- * then the returned value will be greater than *eip_limit.
- *
- * This is slow, but is very rarely executed.
- */
-static inline unsigned long get_segment_eip(struct pt_regs *regs,
- unsigned long *eip_limit)
-{
- unsigned long eip = regs->eip;
- unsigned seg = regs->xcs & 0xffff;
- u32 seg_ar, seg_limit, base, *desc;
-
- /* Unlikely, but must come before segment checks. */
- if (unlikely(regs->eflags & VM_MASK)) {
- base = seg << 4;
- *eip_limit = base + 0xffff;
- return base + (eip & 0xffff);
- }
-
- /* The standard kernel/user address space limit. */
- *eip_limit = user_mode(regs) ? USER_DS.seg : KERNEL_DS.seg;
-
- /* By far the most common cases. */
- if (likely(SEGMENT_IS_FLAT_CODE(seg)))
- return eip;
-
- /* Check the segment exists, is within the current LDT/GDT size,
- that kernel/user (ring 0..3) has the appropriate privilege,
- that it's a code segment, and get the limit. */
- __asm__ ("larl %3,%0; lsll %3,%1"
- : "=&r" (seg_ar), "=r" (seg_limit) : "0" (0), "rm" (seg));
- if ((~seg_ar & 0x9800) || eip > seg_limit) {
- *eip_limit = 0;
- return 1; /* So that returned eip > *eip_limit. */
- }
-
- /* Get the GDT/LDT descriptor base.
- When you look for races in this code remember that
- LDT and other horrors are only used in user space. */
- if (seg & (1<<2)) {
- /* Must lock the LDT while reading it. */
- down(&current->mm->context.sem);
- desc = current->mm->context.ldt;
- desc = (void *)desc + (seg & ~7);
- } else {
- /* Must disable preemption while reading the GDT. */
- desc = (u32 *)get_cpu_gdt_table(get_cpu());
- desc = (void *)desc + (seg & ~7);
- }
-
- /* Decode the code segment base from the descriptor */
- base = get_desc_base((unsigned long *)desc);
-
- if (seg & (1<<2)) {
- up(&current->mm->context.sem);
- } else
- put_cpu();
-
- /* Adjust EIP and segment limit, and clamp at the kernel limit.
- It's legitimate for segments to wrap at 0xffffffff. */
- seg_limit += base;
- if (seg_limit < *eip_limit && seg_limit >= base)
- *eip_limit = seg_limit;
- return eip + base;
-}
-
-/*
- * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
- * Check that here and ignore it.
- */
-static int __is_prefetch(struct pt_regs *regs, unsigned long addr)
-{
- unsigned long limit;
- unsigned char *instr = (unsigned char *)get_segment_eip (regs, &limit);
- int scan_more = 1;
- int prefetch = 0;
- int i;
-
- for (i = 0; scan_more && i < 15; i++) {
- unsigned char opcode;
- unsigned char instr_hi;
- unsigned char instr_lo;
-
- if (instr > (unsigned char *)limit)
- break;
- if (probe_kernel_address(instr, opcode))
- break;
-
- instr_hi = opcode & 0xf0;
- instr_lo = opcode & 0x0f;
- instr++;
-
- switch (instr_hi) {
- case 0x20:
- case 0x30:
- /* Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. */
- scan_more = ((instr_lo & 7) == 0x6);
- break;
-
- case 0x60:
- /* 0x64 thru 0x67 are valid prefixes in all modes. */
- scan_more = (instr_lo & 0xC) == 0x4;
- break;
- case 0xF0:
- /* 0xF0, 0xF2, and 0xF3 are valid prefixes */
- scan_more = !instr_lo || (instr_lo>>1) == 1;
- break;
- case 0x00:
- /* Prefetch instruction is 0x0F0D or 0x0F18 */
- scan_more = 0;
- if (instr > (unsigned char *)limit)
- break;
- if (probe_kernel_address(instr, opcode))
- break;
- prefetch = (instr_lo == 0xF) &&
- (opcode == 0x0D || opcode == 0x18);
- break;
- default:
- scan_more = 0;
- break;
- }
- }
- return prefetch;
-}
-
-static inline int is_prefetch(struct pt_regs *regs, unsigned long addr,
- unsigned long error_code)
-{
- if (unlikely(boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
- boot_cpu_data.x86 >= 6)) {
- /* Catch an obscure case of prefetch inside an NX page. */
- if (nx_enabled && (error_code & 16))
- return 0;
- return __is_prefetch(regs, addr);
- }
- return 0;
-}
-
-static noinline void force_sig_info_fault(int si_signo, int si_code,
- unsigned long address, struct task_struct *tsk)
-{
- siginfo_t info;
-
- info.si_signo = si_signo;
- info.si_errno = 0;
- info.si_code = si_code;
- info.si_addr = (void __user *)address;
- force_sig_info(si_signo, &info, tsk);
-}
-
-fastcall void do_invalid_op(struct pt_regs *, unsigned long);
-
-static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
-{
- unsigned index = pgd_index(address);
- pgd_t *pgd_k;
- pud_t *pud, *pud_k;
- pmd_t *pmd, *pmd_k;
-
- pgd += index;
- pgd_k = init_mm.pgd + index;
-
- if (!pgd_present(*pgd_k))
- return NULL;
-
- /*
- * set_pgd(pgd, *pgd_k); here would be useless on PAE
- * and redundant with the set_pmd() on non-PAE. As would
- * set_pud.
- */
-
- pud = pud_offset(pgd, address);
- pud_k = pud_offset(pgd_k, address);
- if (!pud_present(*pud_k))
- return NULL;
-
- pmd = pmd_offset(pud, address);
- pmd_k = pmd_offset(pud_k, address);
- if (!pmd_present(*pmd_k))
- return NULL;
- if (!pmd_present(*pmd)) {
- set_pmd(pmd, *pmd_k);
- arch_flush_lazy_mmu_mode();
- } else
- BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
- return pmd_k;
-}
-
-/*
- * Handle a fault on the vmalloc or module mapping area
- *
- * This assumes no large pages in there.
- */
-static inline int vmalloc_fault(unsigned long address)
-{
- unsigned long pgd_paddr;
- pmd_t *pmd_k;
- pte_t *pte_k;
- /*
- * Synchronize this task's top level page-table
- * with the 'reference' page table.
- *
- * Do _not_ use "current" here. We might be inside
- * an interrupt in the middle of a task switch..
- */
- pgd_paddr = read_cr3();
- pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
- if (!pmd_k)
- return -1;
- pte_k = pte_offset_kernel(pmd_k, address);
- if (!pte_present(*pte_k))
- return -1;
- return 0;
-}
-
-int show_unhandled_signals = 1;
-
-/*
- * This routine handles page faults. It determines the address,
- * and the problem, and then passes it off to one of the appropriate
- * routines.
- *
- * error_code:
- * bit 0 == 0 means no page found, 1 means protection fault
- * bit 1 == 0 means read, 1 means write
- * bit 2 == 0 means kernel, 1 means user-mode
- * bit 3 == 1 means use of reserved bit detected
- * bit 4 == 1 means fault was an instruction fetch
- */
-fastcall void __kprobes do_page_fault(struct pt_regs *regs,
- unsigned long error_code)
-{
- struct task_struct *tsk;
- struct mm_struct *mm;
- struct vm_area_struct * vma;
- unsigned long address;
- int write, si_code;
- int fault;
-
- /* get the address */
- address = read_cr2();
-
- tsk = current;
-
- si_code = SEGV_MAPERR;
-
- /*
- * We fault-in kernel-space virtual memory on-demand. The
- * 'reference' page table is init_mm.pgd.
- *
- * NOTE! We MUST NOT take any locks for this case. We may
- * be in an interrupt or a critical region, and should
- * only copy the information from the master page table,
- * nothing more.
- *
- * This verifies that the fault happens in kernel space
- * (error_code & 4) == 0, and that the fault was not a
- * protection error (error_code & 9) == 0.
- */
- if (unlikely(address >= TASK_SIZE)) {
- if (!(error_code & 0x0000000d) && vmalloc_fault(address) >= 0)
- return;
- if (notify_page_fault(regs, error_code) == NOTIFY_STOP)
- return;
- /*
- * Don't take the mm semaphore here. If we fixup a prefetch
- * fault we could otherwise deadlock.
- */
- goto bad_area_nosemaphore;
- }
-
- if (notify_page_fault(regs, error_code) == NOTIFY_STOP)
- return;
-
- /* It's safe to allow irq's after cr2 has been saved and the vmalloc
- fault has been handled. */
- if (regs->eflags & (X86_EFLAGS_IF|VM_MASK))
- local_irq_enable();
-
- mm = tsk->mm;
-
- /*
- * If we're in an interrupt, have no user context or are running in an
- * atomic region then we must not take the fault..
- */
- if (in_atomic() || !mm)
- goto bad_area_nosemaphore;
-
- /* When running in the kernel we expect faults to occur only to
- * addresses in user space. All other faults represent errors in the
- * kernel and should generate an OOPS. Unfortunatly, in the case of an
- * erroneous fault occurring in a code path which already holds mmap_sem
- * we will deadlock attempting to validate the fault against the
- * address space. Luckily the kernel only validly references user
- * space from well defined areas of code, which are listed in the
- * exceptions table.
- *
- * As the vast majority of faults will be valid we will only perform
- * the source reference check when there is a possibilty of a deadlock.
- * Attempt to lock the address space, if we cannot we then validate the
- * source. If this is invalid we can skip the address space check,
- * thus avoiding the deadlock.
- */
- if (!down_read_trylock(&mm->mmap_sem)) {
- if ((error_code & 4) == 0 &&
- !search_exception_tables(regs->eip))
- goto bad_area_nosemaphore;
- down_read(&mm->mmap_sem);
- }
-
- vma = find_vma(mm, address);
- if (!vma)
- goto bad_area;
- if (vma->vm_start <= address)
- goto good_area;
- if (!(vma->vm_flags & VM_GROWSDOWN))
- goto bad_area;
- if (error_code & 4) {
- /*
- * Accessing the stack below %esp is always a bug.
- * The large cushion allows instructions like enter
- * and pusha to work. ("enter $65535,$31" pushes
- * 32 pointers and then decrements %esp by 65535.)
- */
- if (address + 65536 + 32 * sizeof(unsigned long) < regs->esp)
- goto bad_area;
- }
- if (expand_stack(vma, address))
- goto bad_area;
-/*
- * Ok, we have a good vm_area for this memory access, so
- * we can handle it..
- */
-good_area:
- si_code = SEGV_ACCERR;
- write = 0;
- switch (error_code & 3) {
- default: /* 3: write, present */
- /* fall through */
- case 2: /* write, not present */
- if (!(vma->vm_flags & VM_WRITE))
- goto bad_area;
- write++;
- break;
- case 1: /* read, present */
- goto bad_area;
- case 0: /* read, not present */
- if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
- goto bad_area;
- }
-
- survive:
- /*
- * If for any reason at all we couldn't handle the fault,
- * make sure we exit gracefully rather than endlessly redo
- * the fault.
- */
- fault = handle_mm_fault(mm, vma, address, write);
- if (unlikely(fault & VM_FAULT_ERROR)) {
- if (fault & VM_FAULT_OOM)
- goto out_of_memory;
- else if (fault & VM_FAULT_SIGBUS)
- goto do_sigbus;
- BUG();
- }
- if (fault & VM_FAULT_MAJOR)
- tsk->maj_flt++;
- else
- tsk->min_flt++;
-
- /*
- * Did it hit the DOS screen memory VA from vm86 mode?
- */
- if (regs->eflags & VM_MASK) {
- unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT;
- if (bit < 32)
- tsk->thread.screen_bitmap |= 1 << bit;
- }
- up_read(&mm->mmap_sem);
- return;
-
-/*
- * Something tried to access memory that isn't in our memory map..
- * Fix it, but check if it's kernel or user first..
- */
-bad_area:
- up_read(&mm->mmap_sem);
-
-bad_area_nosemaphore:
- /* User mode accesses just cause a SIGSEGV */
- if (error_code & 4) {
- /*
- * It's possible to have interrupts off here.
- */
- local_irq_enable();
-
- /*
- * Valid to do another page fault here because this one came
- * from user space.
- */
- if (is_prefetch(regs, address, error_code))
- return;
-
- if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
- printk_ratelimit()) {
- printk("%s%s[%d]: segfault at %08lx eip %08lx "
- "esp %08lx error %lx\n",
- tsk->pid > 1 ? KERN_INFO : KERN_EMERG,
- tsk->comm, tsk->pid, address, regs->eip,
- regs->esp, error_code);
- }
- tsk->thread.cr2 = address;
- /* Kernel addresses are always protection faults */
- tsk->thread.error_code = error_code | (address >= TASK_SIZE);
- tsk->thread.trap_no = 14;
- force_sig_info_fault(SIGSEGV, si_code, address, tsk);
- return;
- }
-
-#ifdef CONFIG_X86_F00F_BUG
- /*
- * Pentium F0 0F C7 C8 bug workaround.
- */
- if (boot_cpu_data.f00f_bug) {
- unsigned long nr;
-
- nr = (address - idt_descr.address) >> 3;
-
- if (nr == 6) {
- do_invalid_op(regs, 0);
- return;
- }
- }
-#endif
-
-no_context:
- /* Are we prepared to handle this kernel fault? */
- if (fixup_exception(regs))
- return;
-
- /*
- * Valid to do another page fault here, because if this fault
- * had been triggered by is_prefetch fixup_exception would have
- * handled it.
- */
- if (is_prefetch(regs, address, error_code))
- return;
-
-/*
- * Oops. The kernel tried to access some bad page. We'll have to
- * terminate things with extreme prejudice.
- */
-
- bust_spinlocks(1);
-
- if (oops_may_print()) {
- __typeof__(pte_val(__pte(0))) page;
-
-#ifdef CONFIG_X86_PAE
- if (error_code & 16) {
- pte_t *pte = lookup_address(address);
-
- if (pte && pte_present(*pte) && !pte_exec_kernel(*pte))
- printk(KERN_CRIT "kernel tried to execute "
- "NX-protected page - exploit attempt? "
- "(uid: %d)\n", current->uid);
- }
-#endif
- if (address < PAGE_SIZE)
- printk(KERN_ALERT "BUG: unable to handle kernel NULL "
- "pointer dereference");
- else
- printk(KERN_ALERT "BUG: unable to handle kernel paging"
- " request");
- printk(" at virtual address %08lx\n",address);
- printk(KERN_ALERT " printing eip:\n");
- printk("%08lx\n", regs->eip);
-
- page = read_cr3();
- page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT];
-#ifdef CONFIG_X86_PAE
- printk(KERN_ALERT "*pdpt = %016Lx\n", page);
- if ((page >> PAGE_SHIFT) < max_low_pfn
- && page & _PAGE_PRESENT) {
- page &= PAGE_MASK;
- page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT)
- & (PTRS_PER_PMD - 1)];
- printk(KERN_ALERT "*pde = %016Lx\n", page);
- page &= ~_PAGE_NX;
- }
-#else
- printk(KERN_ALERT "*pde = %08lx\n", page);
-#endif
-
- /*
- * We must not directly access the pte in the highpte
- * case if the page table is located in highmem.
- * And let's rather not kmap-atomic the pte, just in case
- * it's allocated already.
- */
- if ((page >> PAGE_SHIFT) < max_low_pfn
- && (page & _PAGE_PRESENT)) {
- page &= PAGE_MASK;
- page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT)
- & (PTRS_PER_PTE - 1)];
- printk(KERN_ALERT "*pte = %0*Lx\n", sizeof(page)*2, (u64)page);
- }
- }
-
- tsk->thread.cr2 = address;
- tsk->thread.trap_no = 14;
- tsk->thread.error_code = error_code;
- die("Oops", regs, error_code);
- bust_spinlocks(0);
- do_exit(SIGKILL);
-
-/*
- * We ran out of memory, or some other thing happened to us that made
- * us unable to handle the page fault gracefully.
- */
-out_of_memory:
- up_read(&mm->mmap_sem);
- if (is_init(tsk)) {
- yield();
- down_read(&mm->mmap_sem);
- goto survive;
- }
- printk("VM: killing process %s\n", tsk->comm);
- if (error_code & 4)
- do_exit(SIGKILL);
- goto no_context;
-
-do_sigbus:
- up_read(&mm->mmap_sem);
-
- /* Kernel mode? Handle exceptions or die */
- if (!(error_code & 4))
- goto no_context;
-
- /* User space => ok to do another page fault */
- if (is_prefetch(regs, address, error_code))
- return;
-
- tsk->thread.cr2 = address;
- tsk->thread.error_code = error_code;
- tsk->thread.trap_no = 14;
- force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
-}
-
-void vmalloc_sync_all(void)
-{
- /*
- * Note that races in the updates of insync and start aren't
- * problematic: insync can only get set bits added, and updates to
- * start are only improving performance (without affecting correctness
- * if undone).
- */
- static DECLARE_BITMAP(insync, PTRS_PER_PGD);
- static unsigned long start = TASK_SIZE;
- unsigned long address;
-
- if (SHARED_KERNEL_PMD)
- return;
-
- BUILD_BUG_ON(TASK_SIZE & ~PGDIR_MASK);
- for (address = start; address >= TASK_SIZE; address += PGDIR_SIZE) {
- if (!test_bit(pgd_index(address), insync)) {
- unsigned long flags;
- struct page *page;
-
- spin_lock_irqsave(&pgd_lock, flags);
- for (page = pgd_list; page; page =
- (struct page *)page->index)
- if (!vmalloc_sync_one(page_address(page),
- address)) {
- BUG_ON(page != pgd_list);
- break;
- }
- spin_unlock_irqrestore(&pgd_lock, flags);
- if (!page)
- set_bit(pgd_index(address), insync);
- }
- if (address == start && test_bit(pgd_index(address), insync))
- start = address + PGDIR_SIZE;
- }
-}
diff --git a/arch/i386/mm/highmem_32.c b/arch/i386/mm/highmem_32.c
deleted file mode 100644
index 1c3bf95f7356..000000000000
--- a/arch/i386/mm/highmem_32.c
+++ /dev/null
@@ -1,113 +0,0 @@
-#include <linux/highmem.h>
-#include <linux/module.h>
-
-void *kmap(struct page *page)
-{
- might_sleep();
- if (!PageHighMem(page))
- return page_address(page);
- return kmap_high(page);
-}
-
-void kunmap(struct page *page)
-{
- if (in_interrupt())
- BUG();
- if (!PageHighMem(page))
- return;
- kunmap_high(page);
-}
-
-/*
- * kmap_atomic/kunmap_atomic is significantly faster than kmap/kunmap because
- * no global lock is needed and because the kmap code must perform a global TLB
- * invalidation when the kmap pool wraps.
- *
- * However when holding an atomic kmap is is not legal to sleep, so atomic
- * kmaps are appropriate for short, tight code paths only.
- */
-void *kmap_atomic_prot(struct page *page, enum km_type type, pgprot_t prot)
-{
- enum fixed_addresses idx;
- unsigned long vaddr;
-
- /* even !CONFIG_PREEMPT needs this, for in_atomic in do_page_fault */
- pagefault_disable();
-
- if (!PageHighMem(page))
- return page_address(page);
-
- idx = type + KM_TYPE_NR*smp_processor_id();
- vaddr = __fix_to_virt(FIX_KMAP_BEGIN + idx);
- BUG_ON(!pte_none(*(kmap_pte-idx)));
- set_pte(kmap_pte-idx, mk_pte(page, prot));
- arch_flush_lazy_mmu_mode();
-
- return (void *)vaddr;
-}
-
-void *kmap_atomic(struct page *page, enum km_type type)
-{
- return kmap_atomic_prot(page, type, kmap_prot);
-}
-
-void kunmap_atomic(void *kvaddr, enum km_type type)
-{
- unsigned long vaddr = (unsigned long) kvaddr & PAGE_MASK;
- enum fixed_addresses idx = type + KM_TYPE_NR*smp_processor_id();
-
- /*
- * Force other mappings to Oops if they'll try to access this pte
- * without first remap it. Keeping stale mappings around is a bad idea
- * also, in case the page changes cacheability attributes or becomes
- * a protected page in a hypervisor.
- */
- if (vaddr == __fix_to_virt(FIX_KMAP_BEGIN+idx))
- kpte_clear_flush(kmap_pte-idx, vaddr);
- else {
-#ifdef CONFIG_DEBUG_HIGHMEM
- BUG_ON(vaddr < PAGE_OFFSET);
- BUG_ON(vaddr >= (unsigned long)high_memory);
-#endif
- }
-
- arch_flush_lazy_mmu_mode();
- pagefault_enable();
-}
-
-/* This is the same as kmap_atomic() but can map memory that doesn't
- * have a struct page associated with it.
- */
-void *kmap_atomic_pfn(unsigned long pfn, enum km_type type)
-{
- enum fixed_addresses idx;
- unsigned long vaddr;
-
- pagefault_disable();
-
- idx = type + KM_TYPE_NR*smp_processor_id();
- vaddr = __fix_to_virt(FIX_KMAP_BEGIN + idx);
- set_pte(kmap_pte-idx, pfn_pte(pfn, kmap_prot));
- arch_flush_lazy_mmu_mode();
-
- return (void*) vaddr;
-}
-
-struct page *kmap_atomic_to_page(void *ptr)
-{
- unsigned long idx, vaddr = (unsigned long)ptr;
- pte_t *pte;
-
- if (vaddr < FIXADDR_START)
- return virt_to_page(ptr);
-
- idx = virt_to_fix(vaddr);
- pte = kmap_pte - (idx - FIX_KMAP_BEGIN);
- return pte_page(*pte);
-}
-
-EXPORT_SYMBOL(kmap);
-EXPORT_SYMBOL(kunmap);
-EXPORT_SYMBOL(kmap_atomic);
-EXPORT_SYMBOL(kunmap_atomic);
-EXPORT_SYMBOL(kmap_atomic_to_page);
diff --git a/arch/i386/mm/hugetlbpage.c b/arch/i386/mm/hugetlbpage.c
deleted file mode 100644
index 6c06d9c0488e..000000000000
--- a/arch/i386/mm/hugetlbpage.c
+++ /dev/null
@@ -1,391 +0,0 @@
-/*
- * IA-32 Huge TLB Page Support for Kernel.
- *
- * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
- */
-
-#include <linux/init.h>
-#include <linux/fs.h>
-#include <linux/mm.h>
-#include <linux/hugetlb.h>
-#include <linux/pagemap.h>
-#include <linux/slab.h>
-#include <linux/err.h>
-#include <linux/sysctl.h>
-#include <asm/mman.h>
-#include <asm/tlb.h>
-#include <asm/tlbflush.h>
-
-static unsigned long page_table_shareable(struct vm_area_struct *svma,
- struct vm_area_struct *vma,
- unsigned long addr, pgoff_t idx)
-{
- unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
- svma->vm_start;
- unsigned long sbase = saddr & PUD_MASK;
- unsigned long s_end = sbase + PUD_SIZE;
-
- /*
- * match the virtual addresses, permission and the alignment of the
- * page table page.
- */
- if (pmd_index(addr) != pmd_index(saddr) ||
- vma->vm_flags != svma->vm_flags ||
- sbase < svma->vm_start || svma->vm_end < s_end)
- return 0;
-
- return saddr;
-}
-
-static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
-{
- unsigned long base = addr & PUD_MASK;
- unsigned long end = base + PUD_SIZE;
-
- /*
- * check on proper vm_flags and page table alignment
- */
- if (vma->vm_flags & VM_MAYSHARE &&
- vma->vm_start <= base && end <= vma->vm_end)
- return 1;
- return 0;
-}
-
-/*
- * search for a shareable pmd page for hugetlb.
- */
-static void huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
-{
- struct vm_area_struct *vma = find_vma(mm, addr);
- struct address_space *mapping = vma->vm_file->f_mapping;
- pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
- vma->vm_pgoff;
- struct prio_tree_iter iter;
- struct vm_area_struct *svma;
- unsigned long saddr;
- pte_t *spte = NULL;
-
- if (!vma_shareable(vma, addr))
- return;
-
- spin_lock(&mapping->i_mmap_lock);
- vma_prio_tree_foreach(svma, &iter, &mapping->i_mmap, idx, idx) {
- if (svma == vma)
- continue;
-
- saddr = page_table_shareable(svma, vma, addr, idx);
- if (saddr) {
- spte = huge_pte_offset(svma->vm_mm, saddr);
- if (spte) {
- get_page(virt_to_page(spte));
- break;
- }
- }
- }
-
- if (!spte)
- goto out;
-
- spin_lock(&mm->page_table_lock);
- if (pud_none(*pud))
- pud_populate(mm, pud, (unsigned long) spte & PAGE_MASK);
- else
- put_page(virt_to_page(spte));
- spin_unlock(&mm->page_table_lock);
-out:
- spin_unlock(&mapping->i_mmap_lock);
-}
-
-/*
- * unmap huge page backed by shared pte.
- *
- * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
- * indicated by page_count > 1, unmap is achieved by clearing pud and
- * decrementing the ref count. If count == 1, the pte page is not shared.
- *
- * called with vma->vm_mm->page_table_lock held.
- *
- * returns: 1 successfully unmapped a shared pte page
- * 0 the underlying pte page is not shared, or it is the last user
- */
-int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
-{
- pgd_t *pgd = pgd_offset(mm, *addr);
- pud_t *pud = pud_offset(pgd, *addr);
-
- BUG_ON(page_count(virt_to_page(ptep)) == 0);
- if (page_count(virt_to_page(ptep)) == 1)
- return 0;
-
- pud_clear(pud);
- put_page(virt_to_page(ptep));
- *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
- return 1;
-}
-
-pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr)
-{
- pgd_t *pgd;
- pud_t *pud;
- pte_t *pte = NULL;
-
- pgd = pgd_offset(mm, addr);
- pud = pud_alloc(mm, pgd, addr);
- if (pud) {
- if (pud_none(*pud))
- huge_pmd_share(mm, addr, pud);
- pte = (pte_t *) pmd_alloc(mm, pud, addr);
- }
- BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
-
- return pte;
-}
-
-pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
-{
- pgd_t *pgd;
- pud_t *pud;
- pmd_t *pmd = NULL;
-
- pgd = pgd_offset(mm, addr);
- if (pgd_present(*pgd)) {
- pud = pud_offset(pgd, addr);
- if (pud_present(*pud))
- pmd = pmd_offset(pud, addr);
- }
- return (pte_t *) pmd;
-}
-
-#if 0 /* This is just for testing */
-struct page *
-follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
-{
- unsigned long start = address;
- int length = 1;
- int nr;
- struct page *page;
- struct vm_area_struct *vma;
-
- vma = find_vma(mm, addr);
- if (!vma || !is_vm_hugetlb_page(vma))
- return ERR_PTR(-EINVAL);
-
- pte = huge_pte_offset(mm, address);
-
- /* hugetlb should be locked, and hence, prefaulted */
- WARN_ON(!pte || pte_none(*pte));
-
- page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];
-
- WARN_ON(!PageCompound(page));
-
- return page;
-}
-
-int pmd_huge(pmd_t pmd)
-{
- return 0;
-}
-
-struct page *
-follow_huge_pmd(struct mm_struct *mm, unsigned long address,
- pmd_t *pmd, int write)
-{
- return NULL;
-}
-
-#else
-
-struct page *
-follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
-{
- return ERR_PTR(-EINVAL);
-}
-
-int pmd_huge(pmd_t pmd)
-{
- return !!(pmd_val(pmd) & _PAGE_PSE);
-}
-
-struct page *
-follow_huge_pmd(struct mm_struct *mm, unsigned long address,
- pmd_t *pmd, int write)
-{
- struct page *page;
-
- page = pte_page(*(pte_t *)pmd);
- if (page)
- page += ((address & ~HPAGE_MASK) >> PAGE_SHIFT);
- return page;
-}
-#endif
-
-/* x86_64 also uses this file */
-
-#ifdef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
-static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *file,
- unsigned long addr, unsigned long len,
- unsigned long pgoff, unsigned long flags)
-{
- struct mm_struct *mm = current->mm;
- struct vm_area_struct *vma;
- unsigned long start_addr;
-
- if (len > mm->cached_hole_size) {
- start_addr = mm->free_area_cache;
- } else {
- start_addr = TASK_UNMAPPED_BASE;
- mm->cached_hole_size = 0;
- }
-
-full_search:
- addr = ALIGN(start_addr, HPAGE_SIZE);
-
- for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
- /* At this point: (!vma || addr < vma->vm_end). */
- if (TASK_SIZE - len < addr) {
- /*
- * Start a new search - just in case we missed
- * some holes.
- */
- if (start_addr != TASK_UNMAPPED_BASE) {
- start_addr = TASK_UNMAPPED_BASE;
- mm->cached_hole_size = 0;
- goto full_search;
- }
- return -ENOMEM;
- }
- if (!vma || addr + len <= vma->vm_start) {
- mm->free_area_cache = addr + len;
- return addr;
- }
- if (addr + mm->cached_hole_size < vma->vm_start)
- mm->cached_hole_size = vma->vm_start - addr;
- addr = ALIGN(vma->vm_end, HPAGE_SIZE);
- }
-}
-
-static unsigned long hugetlb_get_unmapped_area_topdown(struct file *file,
- unsigned long addr0, unsigned long len,
- unsigned long pgoff, unsigned long flags)
-{
- struct mm_struct *mm = current->mm;
- struct vm_area_struct *vma, *prev_vma;
- unsigned long base = mm->mmap_base, addr = addr0;
- unsigned long largest_hole = mm->cached_hole_size;
- int first_time = 1;
-
- /* don't allow allocations above current base */
- if (mm->free_area_cache > base)
- mm->free_area_cache = base;
-
- if (len <= largest_hole) {
- largest_hole = 0;
- mm->free_area_cache = base;
- }
-try_again:
- /* make sure it can fit in the remaining address space */
- if (mm->free_area_cache < len)
- goto fail;
-
- /* either no address requested or cant fit in requested address hole */
- addr = (mm->free_area_cache - len) & HPAGE_MASK;
- do {
- /*
- * Lookup failure means no vma is above this address,
- * i.e. return with success:
- */
- if (!(vma = find_vma_prev(mm, addr, &prev_vma)))
- return addr;
-
- /*
- * new region fits between prev_vma->vm_end and
- * vma->vm_start, use it:
- */
- if (addr + len <= vma->vm_start &&
- (!prev_vma || (addr >= prev_vma->vm_end))) {
- /* remember the address as a hint for next time */
- mm->cached_hole_size = largest_hole;
- return (mm->free_area_cache = addr);
- } else {
- /* pull free_area_cache down to the first hole */
- if (mm->free_area_cache == vma->vm_end) {
- mm->free_area_cache = vma->vm_start;
- mm->cached_hole_size = largest_hole;
- }
- }
-
- /* remember the largest hole we saw so far */
- if (addr + largest_hole < vma->vm_start)
- largest_hole = vma->vm_start - addr;
-
- /* try just below the current vma->vm_start */
- addr = (vma->vm_start - len) & HPAGE_MASK;
- } while (len <= vma->vm_start);
-
-fail:
- /*
- * if hint left us with no space for the requested
- * mapping then try again:
- */
- if (first_time) {
- mm->free_area_cache = base;
- largest_hole = 0;
- first_time = 0;
- goto try_again;
- }
- /*
- * A failed mmap() very likely causes application failure,
- * so fall back to the bottom-up function here. This scenario
- * can happen with large stack limits and large mmap()
- * allocations.
- */
- mm->free_area_cache = TASK_UNMAPPED_BASE;
- mm->cached_hole_size = ~0UL;
- addr = hugetlb_get_unmapped_area_bottomup(file, addr0,
- len, pgoff, flags);
-
- /*
- * Restore the topdown base:
- */
- mm->free_area_cache = base;
- mm->cached_hole_size = ~0UL;
-
- return addr;
-}
-
-unsigned long
-hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
- unsigned long len, unsigned long pgoff, unsigned long flags)
-{
- struct mm_struct *mm = current->mm;
- struct vm_area_struct *vma;
-
- if (len & ~HPAGE_MASK)
- return -EINVAL;
- if (len > TASK_SIZE)
- return -ENOMEM;
-
- if (flags & MAP_FIXED) {
- if (prepare_hugepage_range(addr, len))
- return -EINVAL;
- return addr;
- }
-
- if (addr) {
- addr = ALIGN(addr, HPAGE_SIZE);
- vma = find_vma(mm, addr);
- if (TASK_SIZE - len >= addr &&
- (!vma || addr + len <= vma->vm_start))
- return addr;
- }
- if (mm->get_unmapped_area == arch_get_unmapped_area)
- return hugetlb_get_unmapped_area_bottomup(file, addr, len,
- pgoff, flags);
- else
- return hugetlb_get_unmapped_area_topdown(file, addr, len,
- pgoff, flags);
-}
-
-#endif /*HAVE_ARCH_HUGETLB_UNMAPPED_AREA*/
-
diff --git a/arch/i386/mm/init_32.c b/arch/i386/mm/init_32.c
deleted file mode 100644
index 730a5b177b1f..000000000000
--- a/arch/i386/mm/init_32.c
+++ /dev/null
@@ -1,858 +0,0 @@
-/*
- * linux/arch/i386/mm/init.c
- *
- * Copyright (C) 1995 Linus Torvalds
- *
- * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
- */
-
-#include <linux/module.h>
-#include <linux/signal.h>
-#include <linux/sched.h>
-#include <linux/kernel.h>
-#include <linux/errno.h>
-#include <linux/string.h>
-#include <linux/types.h>
-#include <linux/ptrace.h>
-#include <linux/mman.h>
-#include <linux/mm.h>
-#include <linux/hugetlb.h>
-#include <linux/swap.h>
-#include <linux/smp.h>
-#include <linux/init.h>
-#include <linux/highmem.h>
-#include <linux/pagemap.h>
-#include <linux/pfn.h>
-#include <linux/poison.h>
-#include <linux/bootmem.h>
-#include <linux/slab.h>
-#include <linux/proc_fs.h>
-#include <linux/efi.h>
-#include <linux/memory_hotplug.h>
-#include <linux/initrd.h>
-#include <linux/cpumask.h>
-
-#include <asm/processor.h>
-#include <asm/system.h>
-#include <asm/uaccess.h>
-#include <asm/pgtable.h>
-#include <asm/dma.h>
-#include <asm/fixmap.h>
-#include <asm/e820.h>
-#include <asm/apic.h>
-#include <asm/tlb.h>
-#include <asm/tlbflush.h>
-#include <asm/sections.h>
-#include <asm/paravirt.h>
-
-unsigned int __VMALLOC_RESERVE = 128 << 20;
-
-DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
-unsigned long highstart_pfn, highend_pfn;
-
-static int noinline do_test_wp_bit(void);
-
-/*
- * Creates a middle page table and puts a pointer to it in the
- * given global directory entry. This only returns the gd entry
- * in non-PAE compilation mode, since the middle layer is folded.
- */
-static pmd_t * __init one_md_table_init(pgd_t *pgd)
-{
- pud_t *pud;
- pmd_t *pmd_table;
-
-#ifdef CONFIG_X86_PAE
- if (!(pgd_val(*pgd) & _PAGE_PRESENT)) {
- pmd_table = (pmd_t *) alloc_bootmem_low_pages(PAGE_SIZE);
-
- paravirt_alloc_pd(__pa(pmd_table) >> PAGE_SHIFT);
- set_pgd(pgd, __pgd(__pa(pmd_table) | _PAGE_PRESENT));
- pud = pud_offset(pgd, 0);
- if (pmd_table != pmd_offset(pud, 0))
- BUG();
- }
-#endif
- pud = pud_offset(pgd, 0);
- pmd_table = pmd_offset(pud, 0);
- return pmd_table;
-}
-
-/*
- * Create a page table and place a pointer to it in a middle page
- * directory entry.
- */
-static pte_t * __init one_page_table_init(pmd_t *pmd)
-{
- if (!(pmd_val(*pmd) & _PAGE_PRESENT)) {
- pte_t *page_table = (pte_t *) alloc_bootmem_low_pages(PAGE_SIZE);
-
- paravirt_alloc_pt(&init_mm, __pa(page_table) >> PAGE_SHIFT);
- set_pmd(pmd, __pmd(__pa(page_table) | _PAGE_TABLE));
- BUG_ON(page_table != pte_offset_kernel(pmd, 0));
- }
-
- return pte_offset_kernel(pmd, 0);
-}
-
-/*
- * This function initializes a certain range of kernel virtual memory
- * with new bootmem page tables, everywhere page tables are missing in
- * the given range.
- */
-
-/*
- * NOTE: The pagetables are allocated contiguous on the physical space
- * so we can cache the place of the first one and move around without
- * checking the pgd every time.
- */
-static void __init page_table_range_init (unsigned long start, unsigned long end, pgd_t *pgd_base)
-{
- pgd_t *pgd;
- pmd_t *pmd;
- int pgd_idx, pmd_idx;
- unsigned long vaddr;
-
- vaddr = start;
- pgd_idx = pgd_index(vaddr);
- pmd_idx = pmd_index(vaddr);
- pgd = pgd_base + pgd_idx;
-
- for ( ; (pgd_idx < PTRS_PER_PGD) && (vaddr != end); pgd++, pgd_idx++) {
- pmd = one_md_table_init(pgd);
- pmd = pmd + pmd_index(vaddr);
- for (; (pmd_idx < PTRS_PER_PMD) && (vaddr != end); pmd++, pmd_idx++) {
- one_page_table_init(pmd);
-
- vaddr += PMD_SIZE;
- }
- pmd_idx = 0;
- }
-}
-
-static inline int is_kernel_text(unsigned long addr)
-{
- if (addr >= PAGE_OFFSET && addr <= (unsigned long)__init_end)
- return 1;
- return 0;
-}
-
-/*
- * This maps the physical memory to kernel virtual address space, a total
- * of max_low_pfn pages, by creating page tables starting from address
- * PAGE_OFFSET.
- */
-static void __init kernel_physical_mapping_init(pgd_t *pgd_base)
-{
- unsigned long pfn;
- pgd_t *pgd;
- pmd_t *pmd;
- pte_t *pte;
- int pgd_idx, pmd_idx, pte_ofs;
-
- pgd_idx = pgd_index(PAGE_OFFSET);
- pgd = pgd_base + pgd_idx;
- pfn = 0;
-
- for (; pgd_idx < PTRS_PER_PGD; pgd++, pgd_idx++) {
- pmd = one_md_table_init(pgd);
- if (pfn >= max_low_pfn)
- continue;
- for (pmd_idx = 0; pmd_idx < PTRS_PER_PMD && pfn < max_low_pfn; pmd++, pmd_idx++) {
- unsigned int address = pfn * PAGE_SIZE + PAGE_OFFSET;
-
- /* Map with big pages if possible, otherwise create normal page tables. */
- if (cpu_has_pse) {
- unsigned int address2 = (pfn + PTRS_PER_PTE - 1) * PAGE_SIZE + PAGE_OFFSET + PAGE_SIZE-1;
- if (is_kernel_text(address) || is_kernel_text(address2))
- set_pmd(pmd, pfn_pmd(pfn, PAGE_KERNEL_LARGE_EXEC));
- else
- set_pmd(pmd, pfn_pmd(pfn, PAGE_KERNEL_LARGE));
-
- pfn += PTRS_PER_PTE;
- } else {
- pte = one_page_table_init(pmd);
-
- for (pte_ofs = 0;
- pte_ofs < PTRS_PER_PTE && pfn < max_low_pfn;
- pte++, pfn++, pte_ofs++, address += PAGE_SIZE) {
- if (is_kernel_text(address))
- set_pte(pte, pfn_pte(pfn, PAGE_KERNEL_EXEC));
- else
- set_pte(pte, pfn_pte(pfn, PAGE_KERNEL));
- }
- }
- }
- }
-}
-
-static inline int page_kills_ppro(unsigned long pagenr)
-{
- if (pagenr >= 0x70000 && pagenr <= 0x7003F)
- return 1;
- return 0;
-}
-
-int page_is_ram(unsigned long pagenr)
-{
- int i;
- unsigned long addr, end;
-
- if (efi_enabled) {
- efi_memory_desc_t *md;
- void *p;
-
- for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
- md = p;
- if (!is_available_memory(md))
- continue;
- addr = (md->phys_addr+PAGE_SIZE-1) >> PAGE_SHIFT;
- end = (md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT)) >> PAGE_SHIFT;
-
- if ((pagenr >= addr) && (pagenr < end))
- return 1;
- }
- return 0;
- }
-
- for (i = 0; i < e820.nr_map; i++) {
-
- if (e820.map[i].type != E820_RAM) /* not usable memory */
- continue;
- /*
- * !!!FIXME!!! Some BIOSen report areas as RAM that
- * are not. Notably the 640->1Mb area. We need a sanity
- * check here.
- */
- addr = (e820.map[i].addr+PAGE_SIZE-1) >> PAGE_SHIFT;
- end = (e820.map[i].addr+e820.map[i].size) >> PAGE_SHIFT;
- if ((pagenr >= addr) && (pagenr < end))
- return 1;
- }
- return 0;
-}
-
-#ifdef CONFIG_HIGHMEM
-pte_t *kmap_pte;
-pgprot_t kmap_prot;
-
-#define kmap_get_fixmap_pte(vaddr) \
- pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k(vaddr), vaddr), (vaddr)), (vaddr))
-
-static void __init kmap_init(void)
-{
- unsigned long kmap_vstart;
-
- /* cache the first kmap pte */
- kmap_vstart = __fix_to_virt(FIX_KMAP_BEGIN);
- kmap_pte = kmap_get_fixmap_pte(kmap_vstart);
-
- kmap_prot = PAGE_KERNEL;
-}
-
-static void __init permanent_kmaps_init(pgd_t *pgd_base)
-{
- pgd_t *pgd;
- pud_t *pud;
- pmd_t *pmd;
- pte_t *pte;
- unsigned long vaddr;
-
- vaddr = PKMAP_BASE;
- page_table_range_init(vaddr, vaddr + PAGE_SIZE*LAST_PKMAP, pgd_base);
-
- pgd = swapper_pg_dir + pgd_index(vaddr);
- pud = pud_offset(pgd, vaddr);
- pmd = pmd_offset(pud, vaddr);
- pte = pte_offset_kernel(pmd, vaddr);
- pkmap_page_table = pte;
-}
-
-static void __meminit free_new_highpage(struct page *page)
-{
- init_page_count(page);
- __free_page(page);
- totalhigh_pages++;
-}
-
-void __init add_one_highpage_init(struct page *page, int pfn, int bad_ppro)
-{
- if (page_is_ram(pfn) && !(bad_ppro && page_kills_ppro(pfn))) {
- ClearPageReserved(page);
- free_new_highpage(page);
- } else
- SetPageReserved(page);
-}
-
-static int __meminit add_one_highpage_hotplug(struct page *page, unsigned long pfn)
-{
- free_new_highpage(page);
- totalram_pages++;
-#ifdef CONFIG_FLATMEM
- max_mapnr = max(pfn, max_mapnr);
-#endif
- num_physpages++;
- return 0;
-}
-
-/*
- * Not currently handling the NUMA case.
- * Assuming single node and all memory that
- * has been added dynamically that would be
- * onlined here is in HIGHMEM
- */
-void __meminit online_page(struct page *page)
-{
- ClearPageReserved(page);
- add_one_highpage_hotplug(page, page_to_pfn(page));
-}
-
-
-#ifdef CONFIG_NUMA
-extern void set_highmem_pages_init(int);
-#else
-static void __init set_highmem_pages_init(int bad_ppro)
-{
- int pfn;
- for (pfn = highstart_pfn; pfn < highend_pfn; pfn++)
- add_one_highpage_init(pfn_to_page(pfn), pfn, bad_ppro);
- totalram_pages += totalhigh_pages;
-}
-#endif /* CONFIG_FLATMEM */
-
-#else
-#define kmap_init() do { } while (0)
-#define permanent_kmaps_init(pgd_base) do { } while (0)
-#define set_highmem_pages_init(bad_ppro) do { } while (0)
-#endif /* CONFIG_HIGHMEM */
-
-unsigned long long __PAGE_KERNEL = _PAGE_KERNEL;
-EXPORT_SYMBOL(__PAGE_KERNEL);
-unsigned long long __PAGE_KERNEL_EXEC = _PAGE_KERNEL_EXEC;
-
-#ifdef CONFIG_NUMA
-extern void __init remap_numa_kva(void);
-#else
-#define remap_numa_kva() do {} while (0)
-#endif
-
-void __init native_pagetable_setup_start(pgd_t *base)
-{
-#ifdef CONFIG_X86_PAE
- int i;
-
- /*
- * Init entries of the first-level page table to the
- * zero page, if they haven't already been set up.
- *
- * In a normal native boot, we'll be running on a
- * pagetable rooted in swapper_pg_dir, but not in PAE
- * mode, so this will end up clobbering the mappings
- * for the lower 24Mbytes of the address space,
- * without affecting the kernel address space.
- */
- for (i = 0; i < USER_PTRS_PER_PGD; i++)
- set_pgd(&base[i],
- __pgd(__pa(empty_zero_page) | _PAGE_PRESENT));
-
- /* Make sure kernel address space is empty so that a pagetable
- will be allocated for it. */
- memset(&base[USER_PTRS_PER_PGD], 0,
- KERNEL_PGD_PTRS * sizeof(pgd_t));
-#else
- paravirt_alloc_pd(__pa(swapper_pg_dir) >> PAGE_SHIFT);
-#endif
-}
-
-void __init native_pagetable_setup_done(pgd_t *base)
-{
-#ifdef CONFIG_X86_PAE
- /*
- * Add low memory identity-mappings - SMP needs it when
- * starting up on an AP from real-mode. In the non-PAE
- * case we already have these mappings through head.S.
- * All user-space mappings are explicitly cleared after
- * SMP startup.
- */
- set_pgd(&base[0], base[USER_PTRS_PER_PGD]);
-#endif
-}
-
-/*
- * Build a proper pagetable for the kernel mappings. Up until this
- * point, we've been running on some set of pagetables constructed by
- * the boot process.
- *
- * If we're booting on native hardware, this will be a pagetable
- * constructed in arch/i386/kernel/head.S, and not running in PAE mode
- * (even if we'll end up running in PAE). The root of the pagetable
- * will be swapper_pg_dir.
- *
- * If we're booting paravirtualized under a hypervisor, then there are
- * more options: we may already be running PAE, and the pagetable may
- * or may not be based in swapper_pg_dir. In any case,
- * paravirt_pagetable_setup_start() will set up swapper_pg_dir
- * appropriately for the rest of the initialization to work.
- *
- * In general, pagetable_init() assumes that the pagetable may already
- * be partially populated, and so it avoids stomping on any existing
- * mappings.
- */
-static void __init pagetable_init (void)
-{
- unsigned long vaddr, end;
- pgd_t *pgd_base = swapper_pg_dir;
-
- paravirt_pagetable_setup_start(pgd_base);
-
- /* Enable PSE if available */
- if (cpu_has_pse)
- set_in_cr4(X86_CR4_PSE);
-
- /* Enable PGE if available */
- if (cpu_has_pge) {
- set_in_cr4(X86_CR4_PGE);
- __PAGE_KERNEL |= _PAGE_GLOBAL;
- __PAGE_KERNEL_EXEC |= _PAGE_GLOBAL;
- }
-
- kernel_physical_mapping_init(pgd_base);
- remap_numa_kva();
-
- /*
- * Fixed mappings, only the page table structure has to be
- * created - mappings will be set by set_fixmap():
- */
- vaddr = __fix_to_virt(__end_of_fixed_addresses - 1) & PMD_MASK;
- end = (FIXADDR_TOP + PMD_SIZE - 1) & PMD_MASK;
- page_table_range_init(vaddr, end, pgd_base);
-
- permanent_kmaps_init(pgd_base);
-
- paravirt_pagetable_setup_done(pgd_base);
-}
-
-#if defined(CONFIG_HIBERNATION) || defined(CONFIG_ACPI)
-/*
- * Swap suspend & friends need this for resume because things like the intel-agp
- * driver might have split up a kernel 4MB mapping.
- */
-char __nosavedata swsusp_pg_dir[PAGE_SIZE]
- __attribute__ ((aligned (PAGE_SIZE)));
-
-static inline void save_pg_dir(void)
-{
- memcpy(swsusp_pg_dir, swapper_pg_dir, PAGE_SIZE);
-}
-#else
-static inline void save_pg_dir(void)
-{
-}
-#endif
-
-void zap_low_mappings (void)
-{
- int i;
-
- save_pg_dir();
-
- /*
- * Zap initial low-memory mappings.
- *
- * Note that "pgd_clear()" doesn't do it for
- * us, because pgd_clear() is a no-op on i386.
- */
- for (i = 0; i < USER_PTRS_PER_PGD; i++)
-#ifdef CONFIG_X86_PAE
- set_pgd(swapper_pg_dir+i, __pgd(1 + __pa(empty_zero_page)));
-#else
- set_pgd(swapper_pg_dir+i, __pgd(0));
-#endif
- flush_tlb_all();
-}
-
-int nx_enabled = 0;
-
-#ifdef CONFIG_X86_PAE
-
-static int disable_nx __initdata = 0;
-u64 __supported_pte_mask __read_mostly = ~_PAGE_NX;
-EXPORT_SYMBOL_GPL(__supported_pte_mask);
-
-/*
- * noexec = on|off
- *
- * Control non executable mappings.
- *
- * on Enable
- * off Disable
- */
-static int __init noexec_setup(char *str)
-{
- if (!str || !strcmp(str, "on")) {
- if (cpu_has_nx) {
- __supported_pte_mask |= _PAGE_NX;
- disable_nx = 0;
- }
- } else if (!strcmp(str,"off")) {
- disable_nx = 1;
- __supported_pte_mask &= ~_PAGE_NX;
- } else
- return -EINVAL;
-
- return 0;
-}
-early_param("noexec", noexec_setup);
-
-static void __init set_nx(void)
-{
- unsigned int v[4], l, h;
-
- if (cpu_has_pae && (cpuid_eax(0x80000000) > 0x80000001)) {
- cpuid(0x80000001, &v[0], &v[1], &v[2], &v[3]);
- if ((v[3] & (1 << 20)) && !disable_nx) {
- rdmsr(MSR_EFER, l, h);
- l |= EFER_NX;
- wrmsr(MSR_EFER, l, h);
- nx_enabled = 1;
- __supported_pte_mask |= _PAGE_NX;
- }
- }
-}
-
-/*
- * Enables/disables executability of a given kernel page and
- * returns the previous setting.
- */
-int __init set_kernel_exec(unsigned long vaddr, int enable)
-{
- pte_t *pte;
- int ret = 1;
-
- if (!nx_enabled)
- goto out;
-
- pte = lookup_address(vaddr);
- BUG_ON(!pte);
-
- if (!pte_exec_kernel(*pte))
- ret = 0;
-
- if (enable)
- pte->pte_high &= ~(1 << (_PAGE_BIT_NX - 32));
- else
- pte->pte_high |= 1 << (_PAGE_BIT_NX - 32);
- pte_update_defer(&init_mm, vaddr, pte);
- __flush_tlb_all();
-out:
- return ret;
-}
-
-#endif
-
-/*
- * paging_init() sets up the page tables - note that the first 8MB are
- * already mapped by head.S.
- *
- * This routines also unmaps the page at virtual kernel address 0, so
- * that we can trap those pesky NULL-reference errors in the kernel.
- */
-void __init paging_init(void)
-{
-#ifdef CONFIG_X86_PAE
- set_nx();
- if (nx_enabled)
- printk("NX (Execute Disable) protection: active\n");
-#endif
-
- pagetable_init();
-
- load_cr3(swapper_pg_dir);
-
-#ifdef CONFIG_X86_PAE
- /*
- * We will bail out later - printk doesn't work right now so
- * the user would just see a hanging kernel.
- */
- if (cpu_has_pae)
- set_in_cr4(X86_CR4_PAE);
-#endif
- __flush_tlb_all();
-
- kmap_init();
-}
-
-/*
- * Test if the WP bit works in supervisor mode. It isn't supported on 386's
- * and also on some strange 486's (NexGen etc.). All 586+'s are OK. This
- * used to involve black magic jumps to work around some nasty CPU bugs,
- * but fortunately the switch to using exceptions got rid of all that.
- */
-
-static void __init test_wp_bit(void)
-{
- printk("Checking if this processor honours the WP bit even in supervisor mode... ");
-
- /* Any page-aligned address will do, the test is non-destructive */
- __set_fixmap(FIX_WP_TEST, __pa(&swapper_pg_dir), PAGE_READONLY);
- boot_cpu_data.wp_works_ok = do_test_wp_bit();
- clear_fixmap(FIX_WP_TEST);
-
- if (!boot_cpu_data.wp_works_ok) {
- printk("No.\n");
-#ifdef CONFIG_X86_WP_WORKS_OK
- panic("This kernel doesn't support CPU's with broken WP. Recompile it for a 386!");
-#endif
- } else {
- printk("Ok.\n");
- }
-}
-
-static struct kcore_list kcore_mem, kcore_vmalloc;
-
-void __init mem_init(void)
-{
- extern int ppro_with_ram_bug(void);
- int codesize, reservedpages, datasize, initsize;
- int tmp;
- int bad_ppro;
-
-#ifdef CONFIG_FLATMEM
- BUG_ON(!mem_map);
-#endif
-
- bad_ppro = ppro_with_ram_bug();
-
-#ifdef CONFIG_HIGHMEM
- /* check that fixmap and pkmap do not overlap */
- if (PKMAP_BASE+LAST_PKMAP*PAGE_SIZE >= FIXADDR_START) {
- printk(KERN_ERR "fixmap and kmap areas overlap - this will crash\n");
- printk(KERN_ERR "pkstart: %lxh pkend: %lxh fixstart %lxh\n",
- PKMAP_BASE, PKMAP_BASE+LAST_PKMAP*PAGE_SIZE, FIXADDR_START);
- BUG();
- }
-#endif
-
- /* this will put all low memory onto the freelists */
- totalram_pages += free_all_bootmem();
-
- reservedpages = 0;
- for (tmp = 0; tmp < max_low_pfn; tmp++)
- /*
- * Only count reserved RAM pages
- */
- if (page_is_ram(tmp) && PageReserved(pfn_to_page(tmp)))
- reservedpages++;
-
- set_highmem_pages_init(bad_ppro);
-
- codesize = (unsigned long) &_etext - (unsigned long) &_text;
- datasize = (unsigned long) &_edata - (unsigned long) &_etext;
- initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
-
- kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
- kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
- VMALLOC_END-VMALLOC_START);
-
- printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk data, %dk init, %ldk highmem)\n",
- (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
- num_physpages << (PAGE_SHIFT-10),
- codesize >> 10,
- reservedpages << (PAGE_SHIFT-10),
- datasize >> 10,
- initsize >> 10,
- (unsigned long) (totalhigh_pages << (PAGE_SHIFT-10))
- );
-
-#if 1 /* double-sanity-check paranoia */
- printk("virtual kernel memory layout:\n"
- " fixmap : 0x%08lx - 0x%08lx (%4ld kB)\n"
-#ifdef CONFIG_HIGHMEM
- " pkmap : 0x%08lx - 0x%08lx (%4ld kB)\n"
-#endif
- " vmalloc : 0x%08lx - 0x%08lx (%4ld MB)\n"
- " lowmem : 0x%08lx - 0x%08lx (%4ld MB)\n"
- " .init : 0x%08lx - 0x%08lx (%4ld kB)\n"
- " .data : 0x%08lx - 0x%08lx (%4ld kB)\n"
- " .text : 0x%08lx - 0x%08lx (%4ld kB)\n",
- FIXADDR_START, FIXADDR_TOP,
- (FIXADDR_TOP - FIXADDR_START) >> 10,
-
-#ifdef CONFIG_HIGHMEM
- PKMAP_BASE, PKMAP_BASE+LAST_PKMAP*PAGE_SIZE,
- (LAST_PKMAP*PAGE_SIZE) >> 10,
-#endif
-
- VMALLOC_START, VMALLOC_END,
- (VMALLOC_END - VMALLOC_START) >> 20,
-
- (unsigned long)__va(0), (unsigned long)high_memory,
- ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
-
- (unsigned long)&__init_begin, (unsigned long)&__init_end,
- ((unsigned long)&__init_end - (unsigned long)&__init_begin) >> 10,
-
- (unsigned long)&_etext, (unsigned long)&_edata,
- ((unsigned long)&_edata - (unsigned long)&_etext) >> 10,
-
- (unsigned long)&_text, (unsigned long)&_etext,
- ((unsigned long)&_etext - (unsigned long)&_text) >> 10);
-
-#ifdef CONFIG_HIGHMEM
- BUG_ON(PKMAP_BASE+LAST_PKMAP*PAGE_SIZE > FIXADDR_START);
- BUG_ON(VMALLOC_END > PKMAP_BASE);
-#endif
- BUG_ON(VMALLOC_START > VMALLOC_END);
- BUG_ON((unsigned long)high_memory > VMALLOC_START);
-#endif /* double-sanity-check paranoia */
-
-#ifdef CONFIG_X86_PAE
- if (!cpu_has_pae)
- panic("cannot execute a PAE-enabled kernel on a PAE-less CPU!");
-#endif
- if (boot_cpu_data.wp_works_ok < 0)
- test_wp_bit();
-
- /*
- * Subtle. SMP is doing it's boot stuff late (because it has to
- * fork idle threads) - but it also needs low mappings for the
- * protected-mode entry to work. We zap these entries only after
- * the WP-bit has been tested.
- */
-#ifndef CONFIG_SMP
- zap_low_mappings();
-#endif
-}
-
-#ifdef CONFIG_MEMORY_HOTPLUG
-int arch_add_memory(int nid, u64 start, u64 size)
-{
- struct pglist_data *pgdata = NODE_DATA(nid);
- struct zone *zone = pgdata->node_zones + ZONE_HIGHMEM;
- unsigned long start_pfn = start >> PAGE_SHIFT;
- unsigned long nr_pages = size >> PAGE_SHIFT;
-
- return __add_pages(zone, start_pfn, nr_pages);
-}
-
-int remove_memory(u64 start, u64 size)
-{
- return -EINVAL;
-}
-EXPORT_SYMBOL_GPL(remove_memory);
-#endif
-
-struct kmem_cache *pmd_cache;
-
-void __init pgtable_cache_init(void)
-{
- size_t pgd_size = PTRS_PER_PGD*sizeof(pgd_t);
-
- if (PTRS_PER_PMD > 1) {
- pmd_cache = kmem_cache_create("pmd",
- PTRS_PER_PMD*sizeof(pmd_t),
- PTRS_PER_PMD*sizeof(pmd_t),
- SLAB_PANIC,
- pmd_ctor);
- if (!SHARED_KERNEL_PMD) {
- /* If we're in PAE mode and have a non-shared
- kernel pmd, then the pgd size must be a
- page size. This is because the pgd_list
- links through the page structure, so there
- can only be one pgd per page for this to
- work. */
- pgd_size = PAGE_SIZE;
- }
- }
-}
-
-/*
- * This function cannot be __init, since exceptions don't work in that
- * section. Put this after the callers, so that it cannot be inlined.
- */
-static int noinline do_test_wp_bit(void)
-{
- char tmp_reg;
- int flag;
-
- __asm__ __volatile__(
- " movb %0,%1 \n"
- "1: movb %1,%0 \n"
- " xorl %2,%2 \n"
- "2: \n"
- ".section __ex_table,\"a\"\n"
- " .align 4 \n"
- " .long 1b,2b \n"
- ".previous \n"
- :"=m" (*(char *)fix_to_virt(FIX_WP_TEST)),
- "=q" (tmp_reg),
- "=r" (flag)
- :"2" (1)
- :"memory");
-
- return flag;
-}
-
-#ifdef CONFIG_DEBUG_RODATA
-
-void mark_rodata_ro(void)
-{
- unsigned long start = PFN_ALIGN(_text);
- unsigned long size = PFN_ALIGN(_etext) - start;
-
-#ifndef CONFIG_KPROBES
-#ifdef CONFIG_HOTPLUG_CPU
- /* It must still be possible to apply SMP alternatives. */
- if (num_possible_cpus() <= 1)
-#endif
- {
- change_page_attr(virt_to_page(start),
- size >> PAGE_SHIFT, PAGE_KERNEL_RX);
- printk("Write protecting the kernel text: %luk\n", size >> 10);
- }
-#endif
- start += size;
- size = (unsigned long)__end_rodata - start;
- change_page_attr(virt_to_page(start),
- size >> PAGE_SHIFT, PAGE_KERNEL_RO);
- printk("Write protecting the kernel read-only data: %luk\n",
- size >> 10);
-
- /*
- * change_page_attr() requires a global_flush_tlb() call after it.
- * We do this after the printk so that if something went wrong in the
- * change, the printk gets out at least to give a better debug hint
- * of who is the culprit.
- */
- global_flush_tlb();
-}
-#endif
-
-void free_init_pages(char *what, unsigned long begin, unsigned long end)
-{
- unsigned long addr;
-
- for (addr = begin; addr < end; addr += PAGE_SIZE) {
- ClearPageReserved(virt_to_page(addr));
- init_page_count(virt_to_page(addr));
- memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
- free_page(addr);
- totalram_pages++;
- }
- printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
-}
-
-void free_initmem(void)
-{
- free_init_pages("unused kernel memory",
- (unsigned long)(&__init_begin),
- (unsigned long)(&__init_end));
-}
-
-#ifdef CONFIG_BLK_DEV_INITRD
-void free_initrd_mem(unsigned long start, unsigned long end)
-{
- free_init_pages("initrd memory", start, end);
-}
-#endif
-
diff --git a/arch/i386/mm/ioremap_32.c b/arch/i386/mm/ioremap_32.c
deleted file mode 100644
index 0b278315d737..000000000000
--- a/arch/i386/mm/ioremap_32.c
+++ /dev/null
@@ -1,274 +0,0 @@
-/*
- * arch/i386/mm/ioremap.c
- *
- * Re-map IO memory to kernel address space so that we can access it.
- * This is needed for high PCI addresses that aren't mapped in the
- * 640k-1MB IO memory area on PC's
- *
- * (C) Copyright 1995 1996 Linus Torvalds
- */
-
-#include <linux/vmalloc.h>
-#include <linux/init.h>
-#include <linux/slab.h>
-#include <linux/module.h>
-#include <linux/io.h>
-#include <asm/fixmap.h>
-#include <asm/cacheflush.h>
-#include <asm/tlbflush.h>
-#include <asm/pgtable.h>
-
-#define ISA_START_ADDRESS 0xa0000
-#define ISA_END_ADDRESS 0x100000
-
-/*
- * Generic mapping function (not visible outside):
- */
-
-/*
- * Remap an arbitrary physical address space into the kernel virtual
- * address space. Needed when the kernel wants to access high addresses
- * directly.
- *
- * NOTE! We need to allow non-page-aligned mappings too: we will obviously
- * have to convert them into an offset in a page-aligned mapping, but the
- * caller shouldn't need to know that small detail.
- */
-void __iomem * __ioremap(unsigned long phys_addr, unsigned long size, unsigned long flags)
-{
- void __iomem * addr;
- struct vm_struct * area;
- unsigned long offset, last_addr;
- pgprot_t prot;
-
- /* Don't allow wraparound or zero size */
- last_addr = phys_addr + size - 1;
- if (!size || last_addr < phys_addr)
- return NULL;
-
- /*
- * Don't remap the low PCI/ISA area, it's always mapped..
- */
- if (phys_addr >= ISA_START_ADDRESS && last_addr < ISA_END_ADDRESS)
- return (void __iomem *) phys_to_virt(phys_addr);
-
- /*
- * Don't allow anybody to remap normal RAM that we're using..
- */
- if (phys_addr <= virt_to_phys(high_memory - 1)) {
- char *t_addr, *t_end;
- struct page *page;
-
- t_addr = __va(phys_addr);
- t_end = t_addr + (size - 1);
-
- for(page = virt_to_page(t_addr); page <= virt_to_page(t_end); page++)
- if(!PageReserved(page))
- return NULL;
- }
-
- prot = __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY
- | _PAGE_ACCESSED | flags);
-
- /*
- * Mappings have to be page-aligned
- */
- offset = phys_addr & ~PAGE_MASK;
- phys_addr &= PAGE_MASK;
- size = PAGE_ALIGN(last_addr+1) - phys_addr;
-
- /*
- * Ok, go for it..
- */
- area = get_vm_area(size, VM_IOREMAP | (flags << 20));
- if (!area)
- return NULL;
- area->phys_addr = phys_addr;
- addr = (void __iomem *) area->addr;
- if (ioremap_page_range((unsigned long) addr,
- (unsigned long) addr + size, phys_addr, prot)) {
- vunmap((void __force *) addr);
- return NULL;
- }
- return (void __iomem *) (offset + (char __iomem *)addr);
-}
-EXPORT_SYMBOL(__ioremap);
-
-/**
- * ioremap_nocache - map bus memory into CPU space
- * @offset: bus address of the memory
- * @size: size of the resource to map
- *
- * ioremap_nocache performs a platform specific sequence of operations to
- * make bus memory CPU accessible via the readb/readw/readl/writeb/
- * writew/writel functions and the other mmio helpers. The returned
- * address is not guaranteed to be usable directly as a virtual
- * address.
- *
- * This version of ioremap ensures that the memory is marked uncachable
- * on the CPU as well as honouring existing caching rules from things like
- * the PCI bus. Note that there are other caches and buffers on many
- * busses. In particular driver authors should read up on PCI writes
- *
- * It's useful if some control registers are in such an area and
- * write combining or read caching is not desirable:
- *
- * Must be freed with iounmap.
- */
-
-void __iomem *ioremap_nocache (unsigned long phys_addr, unsigned long size)
-{
- unsigned long last_addr;
- void __iomem *p = __ioremap(phys_addr, size, _PAGE_PCD);
- if (!p)
- return p;
-
- /* Guaranteed to be > phys_addr, as per __ioremap() */
- last_addr = phys_addr + size - 1;
-
- if (last_addr < virt_to_phys(high_memory) - 1) {
- struct page *ppage = virt_to_page(__va(phys_addr));
- unsigned long npages;
-
- phys_addr &= PAGE_MASK;
-
- /* This might overflow and become zero.. */
- last_addr = PAGE_ALIGN(last_addr);
-
- /* .. but that's ok, because modulo-2**n arithmetic will make
- * the page-aligned "last - first" come out right.
- */
- npages = (last_addr - phys_addr) >> PAGE_SHIFT;
-
- if (change_page_attr(ppage, npages, PAGE_KERNEL_NOCACHE) < 0) {
- iounmap(p);
- p = NULL;
- }
- global_flush_tlb();
- }
-
- return p;
-}
-EXPORT_SYMBOL(ioremap_nocache);
-
-/**
- * iounmap - Free a IO remapping
- * @addr: virtual address from ioremap_*
- *
- * Caller must ensure there is only one unmapping for the same pointer.
- */
-void iounmap(volatile void __iomem *addr)
-{
- struct vm_struct *p, *o;
-
- if ((void __force *)addr <= high_memory)
- return;
-
- /*
- * __ioremap special-cases the PCI/ISA range by not instantiating a
- * vm_area and by simply returning an address into the kernel mapping
- * of ISA space. So handle that here.
- */
- if (addr >= phys_to_virt(ISA_START_ADDRESS) &&
- addr < phys_to_virt(ISA_END_ADDRESS))
- return;
-
- addr = (volatile void __iomem *)(PAGE_MASK & (unsigned long __force)addr);
-
- /* Use the vm area unlocked, assuming the caller
- ensures there isn't another iounmap for the same address
- in parallel. Reuse of the virtual address is prevented by
- leaving it in the global lists until we're done with it.
- cpa takes care of the direct mappings. */
- read_lock(&vmlist_lock);
- for (p = vmlist; p; p = p->next) {
- if (p->addr == addr)
- break;
- }
- read_unlock(&vmlist_lock);
-
- if (!p) {
- printk("iounmap: bad address %p\n", addr);
- dump_stack();
- return;
- }
-
- /* Reset the direct mapping. Can block */
- if ((p->flags >> 20) && p->phys_addr < virt_to_phys(high_memory) - 1) {
- change_page_attr(virt_to_page(__va(p->phys_addr)),
- get_vm_area_size(p) >> PAGE_SHIFT,
- PAGE_KERNEL);
- global_flush_tlb();
- }
-
- /* Finally remove it */
- o = remove_vm_area((void *)addr);
- BUG_ON(p != o || o == NULL);
- kfree(p);
-}
-EXPORT_SYMBOL(iounmap);
-
-void __init *bt_ioremap(unsigned long phys_addr, unsigned long size)
-{
- unsigned long offset, last_addr;
- unsigned int nrpages;
- enum fixed_addresses idx;
-
- /* Don't allow wraparound or zero size */
- last_addr = phys_addr + size - 1;
- if (!size || last_addr < phys_addr)
- return NULL;
-
- /*
- * Don't remap the low PCI/ISA area, it's always mapped..
- */
- if (phys_addr >= ISA_START_ADDRESS && last_addr < ISA_END_ADDRESS)
- return phys_to_virt(phys_addr);
-
- /*
- * Mappings have to be page-aligned
- */
- offset = phys_addr & ~PAGE_MASK;
- phys_addr &= PAGE_MASK;
- size = PAGE_ALIGN(last_addr) - phys_addr;
-
- /*
- * Mappings have to fit in the FIX_BTMAP area.
- */
- nrpages = size >> PAGE_SHIFT;
- if (nrpages > NR_FIX_BTMAPS)
- return NULL;
-
- /*
- * Ok, go for it..
- */
- idx = FIX_BTMAP_BEGIN;
- while (nrpages > 0) {
- set_fixmap(idx, phys_addr);
- phys_addr += PAGE_SIZE;
- --idx;
- --nrpages;
- }
- return (void*) (offset + fix_to_virt(FIX_BTMAP_BEGIN));
-}
-
-void __init bt_iounmap(void *addr, unsigned long size)
-{
- unsigned long virt_addr;
- unsigned long offset;
- unsigned int nrpages;
- enum fixed_addresses idx;
-
- virt_addr = (unsigned long)addr;
- if (virt_addr < fix_to_virt(FIX_BTMAP_BEGIN))
- return;
- offset = virt_addr & ~PAGE_MASK;
- nrpages = PAGE_ALIGN(offset + size - 1) >> PAGE_SHIFT;
-
- idx = FIX_BTMAP_BEGIN;
- while (nrpages > 0) {
- clear_fixmap(idx);
- --idx;
- --nrpages;
- }
-}
diff --git a/arch/i386/mm/mmap_32.c b/arch/i386/mm/mmap_32.c
deleted file mode 100644
index 552e08473755..000000000000
--- a/arch/i386/mm/mmap_32.c
+++ /dev/null
@@ -1,77 +0,0 @@
-/*
- * linux/arch/i386/mm/mmap.c
- *
- * flexible mmap layout support
- *
- * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
- * All Rights Reserved.
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
- *
- *
- * Started by Ingo Molnar <mingo@elte.hu>
- */
-
-#include <linux/personality.h>
-#include <linux/mm.h>
-#include <linux/random.h>
-#include <linux/sched.h>
-
-/*
- * Top of mmap area (just below the process stack).
- *
- * Leave an at least ~128 MB hole.
- */
-#define MIN_GAP (128*1024*1024)
-#define MAX_GAP (TASK_SIZE/6*5)
-
-static inline unsigned long mmap_base(struct mm_struct *mm)
-{
- unsigned long gap = current->signal->rlim[RLIMIT_STACK].rlim_cur;
- unsigned long random_factor = 0;
-
- if (current->flags & PF_RANDOMIZE)
- random_factor = get_random_int() % (1024*1024);
-
- if (gap < MIN_GAP)
- gap = MIN_GAP;
- else if (gap > MAX_GAP)
- gap = MAX_GAP;
-
- return PAGE_ALIGN(TASK_SIZE - gap - random_factor);
-}
-
-/*
- * This function, called very early during the creation of a new
- * process VM image, sets up which VM layout function to use:
- */
-void arch_pick_mmap_layout(struct mm_struct *mm)
-{
- /*
- * Fall back to the standard layout if the personality
- * bit is set, or if the expected stack growth is unlimited:
- */
- if (sysctl_legacy_va_layout ||
- (current->personality & ADDR_COMPAT_LAYOUT) ||
- current->signal->rlim[RLIMIT_STACK].rlim_cur == RLIM_INFINITY) {
- mm->mmap_base = TASK_UNMAPPED_BASE;
- mm->get_unmapped_area = arch_get_unmapped_area;
- mm->unmap_area = arch_unmap_area;
- } else {
- mm->mmap_base = mmap_base(mm);
- mm->get_unmapped_area = arch_get_unmapped_area_topdown;
- mm->unmap_area = arch_unmap_area_topdown;
- }
-}
diff --git a/arch/i386/mm/pageattr_32.c b/arch/i386/mm/pageattr_32.c
deleted file mode 100644
index 4241a74d16c8..000000000000
--- a/arch/i386/mm/pageattr_32.c
+++ /dev/null
@@ -1,278 +0,0 @@
-/*
- * Copyright 2002 Andi Kleen, SuSE Labs.
- * Thanks to Ben LaHaise for precious feedback.
- */
-
-#include <linux/mm.h>
-#include <linux/sched.h>
-#include <linux/highmem.h>
-#include <linux/module.h>
-#include <linux/slab.h>
-#include <asm/uaccess.h>
-#include <asm/processor.h>
-#include <asm/tlbflush.h>
-#include <asm/pgalloc.h>
-#include <asm/sections.h>
-
-static DEFINE_SPINLOCK(cpa_lock);
-static struct list_head df_list = LIST_HEAD_INIT(df_list);
-
-
-pte_t *lookup_address(unsigned long address)
-{
- pgd_t *pgd = pgd_offset_k(address);
- pud_t *pud;
- pmd_t *pmd;
- if (pgd_none(*pgd))
- return NULL;
- pud = pud_offset(pgd, address);
- if (pud_none(*pud))
- return NULL;
- pmd = pmd_offset(pud, address);
- if (pmd_none(*pmd))
- return NULL;
- if (pmd_large(*pmd))
- return (pte_t *)pmd;
- return pte_offset_kernel(pmd, address);
-}
-
-static struct page *split_large_page(unsigned long address, pgprot_t prot,
- pgprot_t ref_prot)
-{
- int i;
- unsigned long addr;
- struct page *base;
- pte_t *pbase;
-
- spin_unlock_irq(&cpa_lock);
- base = alloc_pages(GFP_KERNEL, 0);
- spin_lock_irq(&cpa_lock);
- if (!base)
- return NULL;
-
- /*
- * page_private is used to track the number of entries in
- * the page table page that have non standard attributes.
- */
- SetPagePrivate(base);
- page_private(base) = 0;
-
- address = __pa(address);
- addr = address & LARGE_PAGE_MASK;
- pbase = (pte_t *)page_address(base);
- paravirt_alloc_pt(&init_mm, page_to_pfn(base));
- for (i = 0; i < PTRS_PER_PTE; i++, addr += PAGE_SIZE) {
- set_pte(&pbase[i], pfn_pte(addr >> PAGE_SHIFT,
- addr == address ? prot : ref_prot));
- }
- return base;
-}
-
-static void cache_flush_page(struct page *p)
-{
- unsigned long adr = (unsigned long)page_address(p);
- int i;
- for (i = 0; i < PAGE_SIZE; i += boot_cpu_data.x86_clflush_size)
- asm volatile("clflush (%0)" :: "r" (adr + i));
-}
-
-static void flush_kernel_map(void *arg)
-{
- struct list_head *lh = (struct list_head *)arg;
- struct page *p;
-
- /* High level code is not ready for clflush yet */
- if (0 && cpu_has_clflush) {
- list_for_each_entry (p, lh, lru)
- cache_flush_page(p);
- } else if (boot_cpu_data.x86_model >= 4)
- wbinvd();
-
- /* Flush all to work around Errata in early athlons regarding
- * large page flushing.
- */
- __flush_tlb_all();
-}
-
-static void set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
-{
- struct page *page;
- unsigned long flags;
-
- set_pte_atomic(kpte, pte); /* change init_mm */
- if (SHARED_KERNEL_PMD)
- return;
-
- spin_lock_irqsave(&pgd_lock, flags);
- for (page = pgd_list; page; page = (struct page *)page->index) {
- pgd_t *pgd;
- pud_t *pud;
- pmd_t *pmd;
- pgd = (pgd_t *)page_address(page) + pgd_index(address);
- pud = pud_offset(pgd, address);
- pmd = pmd_offset(pud, address);
- set_pte_atomic((pte_t *)pmd, pte);
- }
- spin_unlock_irqrestore(&pgd_lock, flags);
-}
-
-/*
- * No more special protections in this 2/4MB area - revert to a
- * large page again.
- */
-static inline void revert_page(struct page *kpte_page, unsigned long address)
-{
- pgprot_t ref_prot;
- pte_t *linear;
-
- ref_prot =
- ((address & LARGE_PAGE_MASK) < (unsigned long)&_etext)
- ? PAGE_KERNEL_LARGE_EXEC : PAGE_KERNEL_LARGE;
-
- linear = (pte_t *)
- pmd_offset(pud_offset(pgd_offset_k(address), address), address);
- set_pmd_pte(linear, address,
- pfn_pte((__pa(address) & LARGE_PAGE_MASK) >> PAGE_SHIFT,
- ref_prot));
-}
-
-static inline void save_page(struct page *kpte_page)
-{
- if (!test_and_set_bit(PG_arch_1, &kpte_page->flags))
- list_add(&kpte_page->lru, &df_list);
-}
-
-static int
-__change_page_attr(struct page *page, pgprot_t prot)
-{
- pte_t *kpte;
- unsigned long address;
- struct page *kpte_page;
-
- BUG_ON(PageHighMem(page));
- address = (unsigned long)page_address(page);
-
- kpte = lookup_address(address);
- if (!kpte)
- return -EINVAL;
- kpte_page = virt_to_page(kpte);
- BUG_ON(PageLRU(kpte_page));
- BUG_ON(PageCompound(kpte_page));
-
- if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL)) {
- if (!pte_huge(*kpte)) {
- set_pte_atomic(kpte, mk_pte(page, prot));
- } else {
- pgprot_t ref_prot;
- struct page *split;
-
- ref_prot =
- ((address & LARGE_PAGE_MASK) < (unsigned long)&_etext)
- ? PAGE_KERNEL_EXEC : PAGE_KERNEL;
- split = split_large_page(address, prot, ref_prot);
- if (!split)
- return -ENOMEM;
- set_pmd_pte(kpte,address,mk_pte(split, ref_prot));
- kpte_page = split;
- }
- page_private(kpte_page)++;
- } else if (!pte_huge(*kpte)) {
- set_pte_atomic(kpte, mk_pte(page, PAGE_KERNEL));
- BUG_ON(page_private(kpte_page) == 0);
- page_private(kpte_page)--;
- } else
- BUG();
-
- /*
- * If the pte was reserved, it means it was created at boot
- * time (not via split_large_page) and in turn we must not
- * replace it with a largepage.
- */
-
- save_page(kpte_page);
- if (!PageReserved(kpte_page)) {
- if (cpu_has_pse && (page_private(kpte_page) == 0)) {
- paravirt_release_pt(page_to_pfn(kpte_page));
- revert_page(kpte_page, address);
- }
- }
- return 0;
-}
-
-static inline void flush_map(struct list_head *l)
-{
- on_each_cpu(flush_kernel_map, l, 1, 1);
-}
-
-/*
- * Change the page attributes of an page in the linear mapping.
- *
- * This should be used when a page is mapped with a different caching policy
- * than write-back somewhere - some CPUs do not like it when mappings with
- * different caching policies exist. This changes the page attributes of the
- * in kernel linear mapping too.
- *
- * The caller needs to ensure that there are no conflicting mappings elsewhere.
- * This function only deals with the kernel linear map.
- *
- * Caller must call global_flush_tlb() after this.
- */
-int change_page_attr(struct page *page, int numpages, pgprot_t prot)
-{
- int err = 0;
- int i;
- unsigned long flags;
-
- spin_lock_irqsave(&cpa_lock, flags);
- for (i = 0; i < numpages; i++, page++) {
- err = __change_page_attr(page, prot);
- if (err)
- break;
- }
- spin_unlock_irqrestore(&cpa_lock, flags);
- return err;
-}
-
-void global_flush_tlb(void)
-{
- struct list_head l;
- struct page *pg, *next;
-
- BUG_ON(irqs_disabled());
-
- spin_lock_irq(&cpa_lock);
- list_replace_init(&df_list, &l);
- spin_unlock_irq(&cpa_lock);
- flush_map(&l);
- list_for_each_entry_safe(pg, next, &l, lru) {
- list_del(&pg->lru);
- clear_bit(PG_arch_1, &pg->flags);
- if (PageReserved(pg) || !cpu_has_pse || page_private(pg) != 0)
- continue;
- ClearPagePrivate(pg);
- __free_page(pg);
- }
-}
-
-#ifdef CONFIG_DEBUG_PAGEALLOC
-void kernel_map_pages(struct page *page, int numpages, int enable)
-{
- if (PageHighMem(page))
- return;
- if (!enable)
- debug_check_no_locks_freed(page_address(page),
- numpages * PAGE_SIZE);
-
- /* the return value is ignored - the calls cannot fail,
- * large pages are disabled at boot time.
- */
- change_page_attr(page, numpages, enable ? PAGE_KERNEL : __pgprot(0));
- /* we should perform an IPI and flush all tlbs,
- * but that can deadlock->flush only current cpu.
- */
- __flush_tlb_all();
-}
-#endif
-
-EXPORT_SYMBOL(change_page_attr);
-EXPORT_SYMBOL(global_flush_tlb);
diff --git a/arch/i386/mm/pgtable_32.c b/arch/i386/mm/pgtable_32.c
deleted file mode 100644
index 01437c46baae..000000000000
--- a/arch/i386/mm/pgtable_32.c
+++ /dev/null
@@ -1,373 +0,0 @@
-/*
- * linux/arch/i386/mm/pgtable.c
- */
-
-#include <linux/sched.h>
-#include <linux/kernel.h>
-#include <linux/errno.h>
-#include <linux/mm.h>
-#include <linux/swap.h>
-#include <linux/smp.h>
-#include <linux/highmem.h>
-#include <linux/slab.h>
-#include <linux/pagemap.h>
-#include <linux/spinlock.h>
-#include <linux/module.h>
-#include <linux/quicklist.h>
-
-#include <asm/system.h>
-#include <asm/pgtable.h>
-#include <asm/pgalloc.h>
-#include <asm/fixmap.h>
-#include <asm/e820.h>
-#include <asm/tlb.h>
-#include <asm/tlbflush.h>
-
-void show_mem(void)
-{
- int total = 0, reserved = 0;
- int shared = 0, cached = 0;
- int highmem = 0;
- struct page *page;
- pg_data_t *pgdat;
- unsigned long i;
- unsigned long flags;
-
- printk(KERN_INFO "Mem-info:\n");
- show_free_areas();
- printk(KERN_INFO "Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
- for_each_online_pgdat(pgdat) {
- pgdat_resize_lock(pgdat, &flags);
- for (i = 0; i < pgdat->node_spanned_pages; ++i) {
- page = pgdat_page_nr(pgdat, i);
- total++;
- if (PageHighMem(page))
- highmem++;
- if (PageReserved(page))
- reserved++;
- else if (PageSwapCache(page))
- cached++;
- else if (page_count(page))
- shared += page_count(page) - 1;
- }
- pgdat_resize_unlock(pgdat, &flags);
- }
- printk(KERN_INFO "%d pages of RAM\n", total);
- printk(KERN_INFO "%d pages of HIGHMEM\n", highmem);
- printk(KERN_INFO "%d reserved pages\n", reserved);
- printk(KERN_INFO "%d pages shared\n", shared);
- printk(KERN_INFO "%d pages swap cached\n", cached);
-
- printk(KERN_INFO "%lu pages dirty\n", global_page_state(NR_FILE_DIRTY));
- printk(KERN_INFO "%lu pages writeback\n",
- global_page_state(NR_WRITEBACK));
- printk(KERN_INFO "%lu pages mapped\n", global_page_state(NR_FILE_MAPPED));
- printk(KERN_INFO "%lu pages slab\n",
- global_page_state(NR_SLAB_RECLAIMABLE) +
- global_page_state(NR_SLAB_UNRECLAIMABLE));
- printk(KERN_INFO "%lu pages pagetables\n",
- global_page_state(NR_PAGETABLE));
-}
-
-/*
- * Associate a virtual page frame with a given physical page frame
- * and protection flags for that frame.
- */
-static void set_pte_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags)
-{
- pgd_t *pgd;
- pud_t *pud;
- pmd_t *pmd;
- pte_t *pte;
-
- pgd = swapper_pg_dir + pgd_index(vaddr);
- if (pgd_none(*pgd)) {
- BUG();
- return;
- }
- pud = pud_offset(pgd, vaddr);
- if (pud_none(*pud)) {
- BUG();
- return;
- }
- pmd = pmd_offset(pud, vaddr);
- if (pmd_none(*pmd)) {
- BUG();
- return;
- }
- pte = pte_offset_kernel(pmd, vaddr);
- if (pgprot_val(flags))
- /* <pfn,flags> stored as-is, to permit clearing entries */
- set_pte(pte, pfn_pte(pfn, flags));
- else
- pte_clear(&init_mm, vaddr, pte);
-
- /*
- * It's enough to flush this one mapping.
- * (PGE mappings get flushed as well)
- */
- __flush_tlb_one(vaddr);
-}
-
-/*
- * Associate a large virtual page frame with a given physical page frame
- * and protection flags for that frame. pfn is for the base of the page,
- * vaddr is what the page gets mapped to - both must be properly aligned.
- * The pmd must already be instantiated. Assumes PAE mode.
- */
-void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags)
-{
- pgd_t *pgd;
- pud_t *pud;
- pmd_t *pmd;
-
- if (vaddr & (PMD_SIZE-1)) { /* vaddr is misaligned */
- printk(KERN_WARNING "set_pmd_pfn: vaddr misaligned\n");
- return; /* BUG(); */
- }
- if (pfn & (PTRS_PER_PTE-1)) { /* pfn is misaligned */
- printk(KERN_WARNING "set_pmd_pfn: pfn misaligned\n");
- return; /* BUG(); */
- }
- pgd = swapper_pg_dir + pgd_index(vaddr);
- if (pgd_none(*pgd)) {
- printk(KERN_WARNING "set_pmd_pfn: pgd_none\n");
- return; /* BUG(); */
- }
- pud = pud_offset(pgd, vaddr);
- pmd = pmd_offset(pud, vaddr);
- set_pmd(pmd, pfn_pmd(pfn, flags));
- /*
- * It's enough to flush this one mapping.
- * (PGE mappings get flushed as well)
- */
- __flush_tlb_one(vaddr);
-}
-
-static int fixmaps;
-unsigned long __FIXADDR_TOP = 0xfffff000;
-EXPORT_SYMBOL(__FIXADDR_TOP);
-
-void __set_fixmap (enum fixed_addresses idx, unsigned long phys, pgprot_t flags)
-{
- unsigned long address = __fix_to_virt(idx);
-
- if (idx >= __end_of_fixed_addresses) {
- BUG();
- return;
- }
- set_pte_pfn(address, phys >> PAGE_SHIFT, flags);
- fixmaps++;
-}
-
-/**
- * reserve_top_address - reserves a hole in the top of kernel address space
- * @reserve - size of hole to reserve
- *
- * Can be used to relocate the fixmap area and poke a hole in the top
- * of kernel address space to make room for a hypervisor.
- */
-void reserve_top_address(unsigned long reserve)
-{
- BUG_ON(fixmaps > 0);
- printk(KERN_INFO "Reserving virtual address space above 0x%08x\n",
- (int)-reserve);
- __FIXADDR_TOP = -reserve - PAGE_SIZE;
- __VMALLOC_RESERVE += reserve;
-}
-
-pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
-{
- return (pte_t *)__get_free_page(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO);
-}
-
-struct page *pte_alloc_one(struct mm_struct *mm, unsigned long address)
-{
- struct page *pte;
-
-#ifdef CONFIG_HIGHPTE
- pte = alloc_pages(GFP_KERNEL|__GFP_HIGHMEM|__GFP_REPEAT|__GFP_ZERO, 0);
-#else
- pte = alloc_pages(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO, 0);
-#endif
- return pte;
-}
-
-void pmd_ctor(void *pmd, struct kmem_cache *cache, unsigned long flags)
-{
- memset(pmd, 0, PTRS_PER_PMD*sizeof(pmd_t));
-}
-
-/*
- * List of all pgd's needed for non-PAE so it can invalidate entries
- * in both cached and uncached pgd's; not needed for PAE since the
- * kernel pmd is shared. If PAE were not to share the pmd a similar
- * tactic would be needed. This is essentially codepath-based locking
- * against pageattr.c; it is the unique case in which a valid change
- * of kernel pagetables can't be lazily synchronized by vmalloc faults.
- * vmalloc faults work because attached pagetables are never freed.
- * -- wli
- */
-DEFINE_SPINLOCK(pgd_lock);
-struct page *pgd_list;
-
-static inline void pgd_list_add(pgd_t *pgd)
-{
- struct page *page = virt_to_page(pgd);
- page->index = (unsigned long)pgd_list;
- if (pgd_list)
- set_page_private(pgd_list, (unsigned long)&page->index);
- pgd_list = page;
- set_page_private(page, (unsigned long)&pgd_list);
-}
-
-static inline void pgd_list_del(pgd_t *pgd)
-{
- struct page *next, **pprev, *page = virt_to_page(pgd);
- next = (struct page *)page->index;
- pprev = (struct page **)page_private(page);
- *pprev = next;
- if (next)
- set_page_private(next, (unsigned long)pprev);
-}
-
-
-
-#if (PTRS_PER_PMD == 1)
-/* Non-PAE pgd constructor */
-static void pgd_ctor(void *pgd)
-{
- unsigned long flags;
-
- /* !PAE, no pagetable sharing */
- memset(pgd, 0, USER_PTRS_PER_PGD*sizeof(pgd_t));
-
- spin_lock_irqsave(&pgd_lock, flags);
-
- /* must happen under lock */
- clone_pgd_range((pgd_t *)pgd + USER_PTRS_PER_PGD,
- swapper_pg_dir + USER_PTRS_PER_PGD,
- KERNEL_PGD_PTRS);
- paravirt_alloc_pd_clone(__pa(pgd) >> PAGE_SHIFT,
- __pa(swapper_pg_dir) >> PAGE_SHIFT,
- USER_PTRS_PER_PGD,
- KERNEL_PGD_PTRS);
- pgd_list_add(pgd);
- spin_unlock_irqrestore(&pgd_lock, flags);
-}
-#else /* PTRS_PER_PMD > 1 */
-/* PAE pgd constructor */
-static void pgd_ctor(void *pgd)
-{
- /* PAE, kernel PMD may be shared */
-
- if (SHARED_KERNEL_PMD) {
- clone_pgd_range((pgd_t *)pgd + USER_PTRS_PER_PGD,
- swapper_pg_dir + USER_PTRS_PER_PGD,
- KERNEL_PGD_PTRS);
- } else {
- unsigned long flags;
-
- memset(pgd, 0, USER_PTRS_PER_PGD*sizeof(pgd_t));
- spin_lock_irqsave(&pgd_lock, flags);
- pgd_list_add(pgd);
- spin_unlock_irqrestore(&pgd_lock, flags);
- }
-}
-#endif /* PTRS_PER_PMD */
-
-static void pgd_dtor(void *pgd)
-{
- unsigned long flags; /* can be called from interrupt context */
-
- if (SHARED_KERNEL_PMD)
- return;
-
- paravirt_release_pd(__pa(pgd) >> PAGE_SHIFT);
- spin_lock_irqsave(&pgd_lock, flags);
- pgd_list_del(pgd);
- spin_unlock_irqrestore(&pgd_lock, flags);
-}
-
-#define UNSHARED_PTRS_PER_PGD \
- (SHARED_KERNEL_PMD ? USER_PTRS_PER_PGD : PTRS_PER_PGD)
-
-/* If we allocate a pmd for part of the kernel address space, then
- make sure its initialized with the appropriate kernel mappings.
- Otherwise use a cached zeroed pmd. */
-static pmd_t *pmd_cache_alloc(int idx)
-{
- pmd_t *pmd;
-
- if (idx >= USER_PTRS_PER_PGD) {
- pmd = (pmd_t *)__get_free_page(GFP_KERNEL);
-
- if (pmd)
- memcpy(pmd,
- (void *)pgd_page_vaddr(swapper_pg_dir[idx]),
- sizeof(pmd_t) * PTRS_PER_PMD);
- } else
- pmd = kmem_cache_alloc(pmd_cache, GFP_KERNEL);
-
- return pmd;
-}
-
-static void pmd_cache_free(pmd_t *pmd, int idx)
-{
- if (idx >= USER_PTRS_PER_PGD)
- free_page((unsigned long)pmd);
- else
- kmem_cache_free(pmd_cache, pmd);
-}
-
-pgd_t *pgd_alloc(struct mm_struct *mm)
-{
- int i;
- pgd_t *pgd = quicklist_alloc(0, GFP_KERNEL, pgd_ctor);
-
- if (PTRS_PER_PMD == 1 || !pgd)
- return pgd;
-
- for (i = 0; i < UNSHARED_PTRS_PER_PGD; ++i) {
- pmd_t *pmd = pmd_cache_alloc(i);
-
- if (!pmd)
- goto out_oom;
-
- paravirt_alloc_pd(__pa(pmd) >> PAGE_SHIFT);
- set_pgd(&pgd[i], __pgd(1 + __pa(pmd)));
- }
- return pgd;
-
-out_oom:
- for (i--; i >= 0; i--) {
- pgd_t pgdent = pgd[i];
- void* pmd = (void *)__va(pgd_val(pgdent)-1);
- paravirt_release_pd(__pa(pmd) >> PAGE_SHIFT);
- pmd_cache_free(pmd, i);
- }
- quicklist_free(0, pgd_dtor, pgd);
- return NULL;
-}
-
-void pgd_free(pgd_t *pgd)
-{
- int i;
-
- /* in the PAE case user pgd entries are overwritten before usage */
- if (PTRS_PER_PMD > 1)
- for (i = 0; i < UNSHARED_PTRS_PER_PGD; ++i) {
- pgd_t pgdent = pgd[i];
- void* pmd = (void *)__va(pgd_val(pgdent)-1);
- paravirt_release_pd(__pa(pmd) >> PAGE_SHIFT);
- pmd_cache_free(pmd, i);
- }
- /* in the non-PAE case, free_pgtables() clears user pgd entries */
- quicklist_free(0, pgd_dtor, pgd);
-}
-
-void check_pgt_cache(void)
-{
- quicklist_trim(0, pgd_dtor, 25, 16);
-}
-