diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2019-12-01 20:36:41 -0800 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2019-12-01 20:36:41 -0800 |
commit | 596cf45cbf6e4fa7bcb0df33e373a7d062b644b5 (patch) | |
tree | 3f24095d65cbdaaae8e89ff02b87df373ada1bfb /Documentation | |
parent | c3bfc5dd73c6f519ff0636d4e709515f06edef78 (diff) | |
parent | 937790699be9c8100e5358625e7dfa8b32bd33f2 (diff) |
Merge branch 'akpm' (patches from Andrew)
Merge updates from Andrew Morton:
"Incoming:
- a small number of updates to scripts/, ocfs2 and fs/buffer.c
- most of MM
I still have quite a lot of material (mostly not MM) staged after
linux-next due to -next dependencies. I'll send those across next week
as the preprequisites get merged up"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (135 commits)
mm/page_io.c: annotate refault stalls from swap_readpage
mm/Kconfig: fix trivial help text punctuation
mm/Kconfig: fix indentation
mm/memory_hotplug.c: remove __online_page_set_limits()
mm: fix typos in comments when calling __SetPageUptodate()
mm: fix struct member name in function comments
mm/shmem.c: cast the type of unmap_start to u64
mm: shmem: use proper gfp flags for shmem_writepage()
mm/shmem.c: make array 'values' static const, makes object smaller
userfaultfd: require CAP_SYS_PTRACE for UFFD_FEATURE_EVENT_FORK
fs/userfaultfd.c: wp: clear VM_UFFD_MISSING or VM_UFFD_WP during userfaultfd_register()
userfaultfd: wrap the common dst_vma check into an inlined function
userfaultfd: remove unnecessary WARN_ON() in __mcopy_atomic_hugetlb()
userfaultfd: use vma_pagesize for all huge page size calculation
mm/madvise.c: use PAGE_ALIGN[ED] for range checking
mm/madvise.c: replace with page_size() in madvise_inject_error()
mm/mmap.c: make vma_merge() comment more easy to understand
mm/hwpoison-inject: use DEFINE_DEBUGFS_ATTRIBUTE to define debugfs fops
autonuma: reduce cache footprint when scanning page tables
autonuma: fix watermark checking in migrate_balanced_pgdat()
...
Diffstat (limited to 'Documentation')
-rw-r--r-- | Documentation/admin-guide/cgroup-v2.rst | 7 | ||||
-rw-r--r-- | Documentation/dev-tools/kasan.rst | 63 |
2 files changed, 69 insertions, 1 deletions
diff --git a/Documentation/admin-guide/cgroup-v2.rst b/Documentation/admin-guide/cgroup-v2.rst index 007ba86aef78..6d13f2de6d69 100644 --- a/Documentation/admin-guide/cgroup-v2.rst +++ b/Documentation/admin-guide/cgroup-v2.rst @@ -1288,7 +1288,12 @@ PAGE_SIZE multiple when read back. inactive_anon, active_anon, inactive_file, active_file, unevictable Amount of memory, swap-backed and filesystem-backed, on the internal memory management lists used by the - page reclaim algorithm + page reclaim algorithm. + + As these represent internal list state (eg. shmem pages are on anon + memory management lists), inactive_foo + active_foo may not be equal to + the value for the foo counter, since the foo counter is type-based, not + list-based. slab_reclaimable Part of "slab" that might be reclaimed, such as diff --git a/Documentation/dev-tools/kasan.rst b/Documentation/dev-tools/kasan.rst index 525296121d89..e4d66e7c50de 100644 --- a/Documentation/dev-tools/kasan.rst +++ b/Documentation/dev-tools/kasan.rst @@ -218,3 +218,66 @@ brk handler is used to print bug reports. A potential expansion of this mode is a hardware tag-based mode, which would use hardware memory tagging support instead of compiler instrumentation and manual shadow memory manipulation. + +What memory accesses are sanitised by KASAN? +-------------------------------------------- + +The kernel maps memory in a number of different parts of the address +space. This poses something of a problem for KASAN, which requires +that all addresses accessed by instrumented code have a valid shadow +region. + +The range of kernel virtual addresses is large: there is not enough +real memory to support a real shadow region for every address that +could be accessed by the kernel. + +By default +~~~~~~~~~~ + +By default, architectures only map real memory over the shadow region +for the linear mapping (and potentially other small areas). For all +other areas - such as vmalloc and vmemmap space - a single read-only +page is mapped over the shadow area. This read-only shadow page +declares all memory accesses as permitted. + +This presents a problem for modules: they do not live in the linear +mapping, but in a dedicated module space. By hooking in to the module +allocator, KASAN can temporarily map real shadow memory to cover +them. This allows detection of invalid accesses to module globals, for +example. + +This also creates an incompatibility with ``VMAP_STACK``: if the stack +lives in vmalloc space, it will be shadowed by the read-only page, and +the kernel will fault when trying to set up the shadow data for stack +variables. + +CONFIG_KASAN_VMALLOC +~~~~~~~~~~~~~~~~~~~~ + +With ``CONFIG_KASAN_VMALLOC``, KASAN can cover vmalloc space at the +cost of greater memory usage. Currently this is only supported on x86. + +This works by hooking into vmalloc and vmap, and dynamically +allocating real shadow memory to back the mappings. + +Most mappings in vmalloc space are small, requiring less than a full +page of shadow space. Allocating a full shadow page per mapping would +therefore be wasteful. Furthermore, to ensure that different mappings +use different shadow pages, mappings would have to be aligned to +``KASAN_SHADOW_SCALE_SIZE * PAGE_SIZE``. + +Instead, we share backing space across multiple mappings. We allocate +a backing page when a mapping in vmalloc space uses a particular page +of the shadow region. This page can be shared by other vmalloc +mappings later on. + +We hook in to the vmap infrastructure to lazily clean up unused shadow +memory. + +To avoid the difficulties around swapping mappings around, we expect +that the part of the shadow region that covers the vmalloc space will +not be covered by the early shadow page, but will be left +unmapped. This will require changes in arch-specific code. + +This allows ``VMAP_STACK`` support on x86, and can simplify support of +architectures that do not have a fixed module region. |