summaryrefslogtreecommitdiff
path: root/Documentation
diff options
context:
space:
mode:
authorHuang Rui <ray.huang@amd.com>2016-04-06 15:44:14 +0800
committerGuenter Roeck <linux@roeck-us.net>2016-04-19 06:32:35 -0700
commita6e232f78698953e6fd9c2f4c95e16d5f5f9d0c3 (patch)
treef24a5866e33f801ba52cf2dcae92a88bfb0332d9 /Documentation
parent11bf0d78ccc4b2944aafd22ff05cd7e413ffea57 (diff)
hwmon: (fam15h_power) Add documentation for TDP and accumulated power algorithm
This patch adds the description to explain the TDP reporting mechanism and accumulated power algorithm. Signed-off-by: Huang Rui <ray.huang@amd.com> Cc: Borislav Petkov <bp@alien8.de> Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/hwmon/fam15h_power65
1 files changed, 64 insertions, 1 deletions
diff --git a/Documentation/hwmon/fam15h_power b/Documentation/hwmon/fam15h_power
index e2b1b69eebea..fb594c281c46 100644
--- a/Documentation/hwmon/fam15h_power
+++ b/Documentation/hwmon/fam15h_power
@@ -10,14 +10,22 @@ Supported chips:
Datasheets:
BIOS and Kernel Developer's Guide (BKDG) For AMD Family 15h Processors
BIOS and Kernel Developer's Guide (BKDG) For AMD Family 16h Processors
+ AMD64 Architecture Programmer's Manual Volume 2: System Programming
Author: Andreas Herrmann <herrmann.der.user@googlemail.com>
Description
-----------
+1) Processor TDP (Thermal design power)
+
+Given a fixed frequency and voltage, the power consumption of a
+processor varies based on the workload being executed. Derated power
+is the power consumed when running a specific application. Thermal
+design power (TDP) is an example of derated power.
+
This driver permits reading of registers providing power information
-of AMD Family 15h and 16h processors.
+of AMD Family 15h and 16h processors via TDP algorithm.
For AMD Family 15h and 16h processors the following power values can
be calculated using different processor northbridge function
@@ -37,3 +45,58 @@ This driver provides ProcessorPwrWatts and CurrPwrWatts:
On multi-node processors the calculated value is for the entire
package and not for a single node. Thus the driver creates sysfs
attributes only for internal node0 of a multi-node processor.
+
+2) Accumulated Power Mechanism
+
+This driver also introduces an algorithm that should be used to
+calculate the average power consumed by a processor during a
+measurement interval Tm. The feature of accumulated power mechanism is
+indicated by CPUID Fn8000_0007_EDX[12].
+
+* Tsample: compute unit power accumulator sample period
+* Tref: the PTSC counter period
+* PTSC: performance timestamp counter
+* N: the ratio of compute unit power accumulator sample period to the
+ PTSC period
+* Jmax: max compute unit accumulated power which is indicated by
+ MaxCpuSwPwrAcc MSR C001007b
+* Jx/Jy: compute unit accumulated power which is indicated by
+ CpuSwPwrAcc MSR C001007a
+* Tx/Ty: the value of performance timestamp counter which is indicated
+ by CU_PTSC MSR C0010280
+* PwrCPUave: CPU average power
+
+i. Determine the ratio of Tsample to Tref by executing CPUID Fn8000_0007.
+ N = value of CPUID Fn8000_0007_ECX[CpuPwrSampleTimeRatio[15:0]].
+
+ii. Read the full range of the cumulative energy value from the new
+MSR MaxCpuSwPwrAcc.
+ Jmax = value returned.
+iii. At time x, SW reads CpuSwPwrAcc MSR and samples the PTSC.
+ Jx = value read from CpuSwPwrAcc and Tx = value read from
+PTSC.
+
+iv. At time y, SW reads CpuSwPwrAcc MSR and samples the PTSC.
+ Jy = value read from CpuSwPwrAcc and Ty = value read from
+PTSC.
+
+v. Calculate the average power consumption for a compute unit over
+time period (y-x). Unit of result is uWatt.
+ if (Jy < Jx) // Rollover has occurred
+ Jdelta = (Jy + Jmax) - Jx
+ else
+ Jdelta = Jy - Jx
+ PwrCPUave = N * Jdelta * 1000 / (Ty - Tx)
+
+This driver provides PwrCPUave and interval(default is 10 millisecond
+and maximum is 1 second):
+* power1_average (PwrCPUave)
+* power1_average_interval (Interval)
+
+The power1_average_interval can be updated at /etc/sensors3.conf file
+as below:
+
+chip "fam15h_power-*"
+ set power1_average_interval 0.01
+
+Then save it with "sensors -s".