diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2015-02-17 08:38:30 -0800 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2015-02-17 08:38:30 -0800 |
commit | c397f8fa4379040bada53256c848e62c8b060392 (patch) | |
tree | 8101efb5c0c3b0a73e5e65f3474843c0914cc4d0 /Documentation | |
parent | 796e1c55717e9a6ff5c81b12289ffa1ffd919b6f (diff) | |
parent | aaaf5fbf56f16c81a653713cc333b18ad6e25ea9 (diff) |
Merge branch 'akpm' (patches from Andrew)
Merge fifth set of updates from Andrew Morton:
- A few things which were awaiting merges from linux-next:
- rtc
- ocfs2
- misc others
- Willy's "dax" feature: direct fs access to memory (mainly NV-DIMMs)
which isn't backed by pageframes.
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (37 commits)
rtc: add driver for DS1685 family of real time clocks
MAINTAINERS: add entry for Maxim PMICs on Samsung boards
lib/Kconfig: use bool instead of boolean
powerpc: drop _PAGE_FILE and pte_file()-related helpers
ocfs2: set append dio as a ro compat feature
ocfs2: wait for orphan recovery first once append O_DIRECT write crash
ocfs2: complete the rest request through buffer io
ocfs2: do not fallback to buffer I/O write if appending
ocfs2: allocate blocks in ocfs2_direct_IO_get_blocks
ocfs2: implement ocfs2_direct_IO_write
ocfs2: add orphan recovery types in ocfs2_recover_orphans
ocfs2: add functions to add and remove inode in orphan dir
ocfs2: prepare some interfaces used in append direct io
MAINTAINERS: fix spelling mistake & remove trailing WS
dax: does not work correctly with virtual aliasing caches
brd: rename XIP to DAX
ext4: add DAX functionality
dax: add dax_zero_page_range
ext2: get rid of most mentions of XIP in ext2
ext2: remove ext2_aops_xip
...
Diffstat (limited to 'Documentation')
-rw-r--r-- | Documentation/filesystems/00-INDEX | 5 | ||||
-rw-r--r-- | Documentation/filesystems/Locking | 3 | ||||
-rw-r--r-- | Documentation/filesystems/dax.txt | 94 | ||||
-rw-r--r-- | Documentation/filesystems/ext2.txt | 5 | ||||
-rw-r--r-- | Documentation/filesystems/ext4.txt | 4 | ||||
-rw-r--r-- | Documentation/filesystems/vfs.txt | 7 | ||||
-rw-r--r-- | Documentation/filesystems/xip.txt | 71 |
7 files changed, 104 insertions, 85 deletions
diff --git a/Documentation/filesystems/00-INDEX b/Documentation/filesystems/00-INDEX index ac28149aede4..9922939e7d99 100644 --- a/Documentation/filesystems/00-INDEX +++ b/Documentation/filesystems/00-INDEX @@ -34,6 +34,9 @@ configfs/ - directory containing configfs documentation and example code. cramfs.txt - info on the cram filesystem for small storage (ROMs etc). +dax.txt + - info on avoiding the page cache for files stored on CPU-addressable + storage devices. debugfs.txt - info on the debugfs filesystem. devpts.txt @@ -154,5 +157,3 @@ xfs-self-describing-metadata.txt - info on XFS Self Describing Metadata. xfs.txt - info and mount options for the XFS filesystem. -xip.txt - - info on execute-in-place for file mappings. diff --git a/Documentation/filesystems/Locking b/Documentation/filesystems/Locking index b30753cbf431..2ca3d17eee56 100644 --- a/Documentation/filesystems/Locking +++ b/Documentation/filesystems/Locking @@ -199,8 +199,6 @@ prototypes: int (*releasepage) (struct page *, int); void (*freepage)(struct page *); int (*direct_IO)(int, struct kiocb *, struct iov_iter *iter, loff_t offset); - int (*get_xip_mem)(struct address_space *, pgoff_t, int, void **, - unsigned long *); int (*migratepage)(struct address_space *, struct page *, struct page *); int (*launder_page)(struct page *); int (*is_partially_uptodate)(struct page *, unsigned long, unsigned long); @@ -225,7 +223,6 @@ invalidatepage: yes releasepage: yes freepage: yes direct_IO: -get_xip_mem: maybe migratepage: yes (both) launder_page: yes is_partially_uptodate: yes diff --git a/Documentation/filesystems/dax.txt b/Documentation/filesystems/dax.txt new file mode 100644 index 000000000000..baf41118660d --- /dev/null +++ b/Documentation/filesystems/dax.txt @@ -0,0 +1,94 @@ +Direct Access for files +----------------------- + +Motivation +---------- + +The page cache is usually used to buffer reads and writes to files. +It is also used to provide the pages which are mapped into userspace +by a call to mmap. + +For block devices that are memory-like, the page cache pages would be +unnecessary copies of the original storage. The DAX code removes the +extra copy by performing reads and writes directly to the storage device. +For file mappings, the storage device is mapped directly into userspace. + + +Usage +----- + +If you have a block device which supports DAX, you can make a filesystem +on it as usual. When mounting it, use the -o dax option manually +or add 'dax' to the options in /etc/fstab. + + +Implementation Tips for Block Driver Writers +-------------------------------------------- + +To support DAX in your block driver, implement the 'direct_access' +block device operation. It is used to translate the sector number +(expressed in units of 512-byte sectors) to a page frame number (pfn) +that identifies the physical page for the memory. It also returns a +kernel virtual address that can be used to access the memory. + +The direct_access method takes a 'size' parameter that indicates the +number of bytes being requested. The function should return the number +of bytes that can be contiguously accessed at that offset. It may also +return a negative errno if an error occurs. + +In order to support this method, the storage must be byte-accessible by +the CPU at all times. If your device uses paging techniques to expose +a large amount of memory through a smaller window, then you cannot +implement direct_access. Equally, if your device can occasionally +stall the CPU for an extended period, you should also not attempt to +implement direct_access. + +These block devices may be used for inspiration: +- axonram: Axon DDR2 device driver +- brd: RAM backed block device driver +- dcssblk: s390 dcss block device driver + + +Implementation Tips for Filesystem Writers +------------------------------------------ + +Filesystem support consists of +- adding support to mark inodes as being DAX by setting the S_DAX flag in + i_flags +- implementing the direct_IO address space operation, and calling + dax_do_io() instead of blockdev_direct_IO() if S_DAX is set +- implementing an mmap file operation for DAX files which sets the + VM_MIXEDMAP flag on the VMA, and setting the vm_ops to include handlers + for fault and page_mkwrite (which should probably call dax_fault() and + dax_mkwrite(), passing the appropriate get_block() callback) +- calling dax_truncate_page() instead of block_truncate_page() for DAX files +- calling dax_zero_page_range() instead of zero_user() for DAX files +- ensuring that there is sufficient locking between reads, writes, + truncates and page faults + +The get_block() callback passed to the DAX functions may return +uninitialised extents. If it does, it must ensure that simultaneous +calls to get_block() (for example by a page-fault racing with a read() +or a write()) work correctly. + +These filesystems may be used for inspiration: +- ext2: the second extended filesystem, see Documentation/filesystems/ext2.txt +- ext4: the fourth extended filesystem, see Documentation/filesystems/ext4.txt + + +Shortcomings +------------ + +Even if the kernel or its modules are stored on a filesystem that supports +DAX on a block device that supports DAX, they will still be copied into RAM. + +The DAX code does not work correctly on architectures which have virtually +mapped caches such as ARM, MIPS and SPARC. + +Calling get_user_pages() on a range of user memory that has been mmaped +from a DAX file will fail as there are no 'struct page' to describe +those pages. This problem is being worked on. That means that O_DIRECT +reads/writes to those memory ranges from a non-DAX file will fail (note +that O_DIRECT reads/writes _of a DAX file_ do work, it is the memory +that is being accessed that is key here). Other things that will not +work include RDMA, sendfile() and splice(). diff --git a/Documentation/filesystems/ext2.txt b/Documentation/filesystems/ext2.txt index 67639f905f10..b9714569e472 100644 --- a/Documentation/filesystems/ext2.txt +++ b/Documentation/filesystems/ext2.txt @@ -20,6 +20,9 @@ minixdf Makes `df' act like Minix. check=none, nocheck (*) Don't do extra checking of bitmaps on mount (check=normal and check=strict options removed) +dax Use direct access (no page cache). See + Documentation/filesystems/dax.txt. + debug Extra debugging information is sent to the kernel syslog. Useful for developers. @@ -56,8 +59,6 @@ noacl Don't support POSIX ACLs. nobh Do not attach buffer_heads to file pagecache. -xip Use execute in place (no caching) if possible - grpquota,noquota,quota,usrquota Quota options are silently ignored by ext2. diff --git a/Documentation/filesystems/ext4.txt b/Documentation/filesystems/ext4.txt index 919a3293aaa4..6c0108eb0137 100644 --- a/Documentation/filesystems/ext4.txt +++ b/Documentation/filesystems/ext4.txt @@ -386,6 +386,10 @@ max_dir_size_kb=n This limits the size of directories so that any i_version Enable 64-bit inode version support. This option is off by default. +dax Use direct access (no page cache). See + Documentation/filesystems/dax.txt. Note that + this option is incompatible with data=journal. + Data Mode ========= There are 3 different data modes: diff --git a/Documentation/filesystems/vfs.txt b/Documentation/filesystems/vfs.txt index 43ce0507ee25..966b22829f3b 100644 --- a/Documentation/filesystems/vfs.txt +++ b/Documentation/filesystems/vfs.txt @@ -591,8 +591,6 @@ struct address_space_operations { int (*releasepage) (struct page *, int); void (*freepage)(struct page *); ssize_t (*direct_IO)(int, struct kiocb *, struct iov_iter *iter, loff_t offset); - struct page* (*get_xip_page)(struct address_space *, sector_t, - int); /* migrate the contents of a page to the specified target */ int (*migratepage) (struct page *, struct page *); int (*launder_page) (struct page *); @@ -748,11 +746,6 @@ struct address_space_operations { and transfer data directly between the storage and the application's address space. - get_xip_page: called by the VM to translate a block number to a page. - The page is valid until the corresponding filesystem is unmounted. - Filesystems that want to use execute-in-place (XIP) need to implement - it. An example implementation can be found in fs/ext2/xip.c. - migrate_page: This is used to compact the physical memory usage. If the VM wants to relocate a page (maybe off a memory card that is signalling imminent failure) it will pass a new page diff --git a/Documentation/filesystems/xip.txt b/Documentation/filesystems/xip.txt deleted file mode 100644 index b77472949ede..000000000000 --- a/Documentation/filesystems/xip.txt +++ /dev/null @@ -1,71 +0,0 @@ -Execute-in-place for file mappings ----------------------------------- - -Motivation ----------- -File mappings are performed by mapping page cache pages to userspace. In -addition, read&write type file operations also transfer data from/to the page -cache. - -For memory backed storage devices that use the block device interface, the page -cache pages are in fact copies of the original storage. Various approaches -exist to work around the need for an extra copy. The ramdisk driver for example -does read the data into the page cache, keeps a reference, and discards the -original data behind later on. - -Execute-in-place solves this issue the other way around: instead of keeping -data in the page cache, the need to have a page cache copy is eliminated -completely. With execute-in-place, read&write type operations are performed -directly from/to the memory backed storage device. For file mappings, the -storage device itself is mapped directly into userspace. - -This implementation was initially written for shared memory segments between -different virtual machines on s390 hardware to allow multiple machines to -share the same binaries and libraries. - -Implementation --------------- -Execute-in-place is implemented in three steps: block device operation, -address space operation, and file operations. - -A block device operation named direct_access is used to translate the -block device sector number to a page frame number (pfn) that identifies -the physical page for the memory. It also returns a kernel virtual -address that can be used to access the memory. - -The direct_access method takes a 'size' parameter that indicates the -number of bytes being requested. The function should return the number -of bytes that can be contiguously accessed at that offset. It may also -return a negative errno if an error occurs. - -The block device operation is optional, these block devices support it as of -today: -- dcssblk: s390 dcss block device driver - -An address space operation named get_xip_mem is used to retrieve references -to a page frame number and a kernel address. To obtain these values a reference -to an address_space is provided. This function assigns values to the kmem and -pfn parameters. The third argument indicates whether the function should allocate -blocks if needed. - -This address space operation is mutually exclusive with readpage&writepage that -do page cache read/write operations. -The following filesystems support it as of today: -- ext2: the second extended filesystem, see Documentation/filesystems/ext2.txt - -A set of file operations that do utilize get_xip_page can be found in -mm/filemap_xip.c . The following file operation implementations are provided: -- aio_read/aio_write -- readv/writev -- sendfile - -The generic file operations do_sync_read/do_sync_write can be used to implement -classic synchronous IO calls. - -Shortcomings ------------- -This implementation is limited to storage devices that are cpu addressable at -all times (no highmem or such). It works well on rom/ram, but enhancements are -needed to make it work with flash in read+write mode. -Putting the Linux kernel and/or its modules on a xip filesystem does not mean -they are not copied. |