summaryrefslogtreecommitdiff
path: root/Documentation
diff options
context:
space:
mode:
authorBjorn Helgaas <bhelgaas@google.com>2016-08-01 12:34:01 -0500
committerBjorn Helgaas <bhelgaas@google.com>2016-08-01 12:34:01 -0500
commit9454c23852ca6d7aec89fd6fd46a046c323caac3 (patch)
tree794be65345027b5adea3720a43124fee338333a5 /Documentation
parenta04bee8285a71cdbb9076c3dc38be1f0b9a6b4b3 (diff)
parent4ef33685aa0957d771e068b60a5f3ca6b47ade1c (diff)
Merge branch 'pci/msi-affinity' into next
Conflicts: drivers/nvme/host/pci.c
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/ABI/testing/configfs-usb-gadget-uvc58
-rw-r--r--Documentation/ABI/testing/sysfs-bus-iio-proximity-as39352
-rw-r--r--Documentation/PCI/MSI-HOWTO.txt469
-rw-r--r--Documentation/devicetree/bindings/hwmon/ina2xx.txt1
-rw-r--r--Documentation/devicetree/bindings/i2c/i2c-arb-gpio-challenge.txt4
-rw-r--r--Documentation/devicetree/bindings/i2c/i2c-demux-pinctrl.txt3
-rw-r--r--Documentation/devicetree/bindings/i2c/i2c-mux-gpio.txt6
-rw-r--r--Documentation/devicetree/bindings/i2c/i2c-mux-pinctrl.txt4
-rw-r--r--Documentation/devicetree/bindings/i2c/i2c-mux-reg.txt6
-rw-r--r--Documentation/devicetree/bindings/net/marvell-bt-sd8xxx.txt8
-rw-r--r--Documentation/devicetree/bindings/vendor-prefixes.txt2
-rw-r--r--Documentation/leds/leds-class.txt4
-rw-r--r--Documentation/scsi/scsi_eh.txt8
13 files changed, 136 insertions, 439 deletions
diff --git a/Documentation/ABI/testing/configfs-usb-gadget-uvc b/Documentation/ABI/testing/configfs-usb-gadget-uvc
index 2f4a0051b32d..1ba0d0fda9c0 100644
--- a/Documentation/ABI/testing/configfs-usb-gadget-uvc
+++ b/Documentation/ABI/testing/configfs-usb-gadget-uvc
@@ -1,6 +1,6 @@
What: /config/usb-gadget/gadget/functions/uvc.name
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: UVC function directory
streaming_maxburst - 0..15 (ss only)
@@ -9,37 +9,37 @@ Description: UVC function directory
What: /config/usb-gadget/gadget/functions/uvc.name/control
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: Control descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/control/class
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: Class descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/control/class/ss
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: Super speed control class descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/control/class/fs
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: Full speed control class descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/control/terminal
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: Terminal descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/control/terminal/output
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: Output terminal descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/control/terminal/output/default
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: Default output terminal descriptors
All attributes read only:
@@ -53,12 +53,12 @@ Description: Default output terminal descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/control/terminal/camera
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: Camera terminal descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/control/terminal/camera/default
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: Default camera terminal descriptors
All attributes read only:
@@ -75,12 +75,12 @@ Description: Default camera terminal descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/control/processing
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: Processing unit descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/control/processing/default
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: Default processing unit descriptors
All attributes read only:
@@ -94,49 +94,49 @@ Description: Default processing unit descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/control/header
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: Control header descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/control/header/name
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: Specific control header descriptors
dwClockFrequency
bcdUVC
What: /config/usb-gadget/gadget/functions/uvc.name/streaming
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: Streaming descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/streaming/class
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: Streaming class descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/streaming/class/ss
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: Super speed streaming class descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/streaming/class/hs
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: High speed streaming class descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/streaming/class/fs
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: Full speed streaming class descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/streaming/color_matching
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: Color matching descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/streaming/color_matching/default
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: Default color matching descriptors
All attributes read only:
@@ -150,12 +150,12 @@ Description: Default color matching descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/streaming/mjpeg
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: MJPEG format descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/streaming/mjpeg/name
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: Specific MJPEG format descriptors
All attributes read only,
@@ -174,7 +174,7 @@ Description: Specific MJPEG format descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/streaming/mjpeg/name/name
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: Specific MJPEG frame descriptors
dwFrameInterval - indicates how frame interval can be
@@ -196,12 +196,12 @@ Description: Specific MJPEG frame descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/streaming/uncompressed
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: Uncompressed format descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/streaming/uncompressed/name
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: Specific uncompressed format descriptors
bmaControls - this format's data for bmaControls in
@@ -221,7 +221,7 @@ Description: Specific uncompressed format descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/streaming/uncompressed/name/name
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: Specific uncompressed frame descriptors
dwFrameInterval - indicates how frame interval can be
@@ -243,12 +243,12 @@ Description: Specific uncompressed frame descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/streaming/header
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: Streaming header descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/streaming/header/name
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: Specific streaming header descriptors
All attributes read only:
diff --git a/Documentation/ABI/testing/sysfs-bus-iio-proximity-as3935 b/Documentation/ABI/testing/sysfs-bus-iio-proximity-as3935
index 6708c5e264aa..33e96f740639 100644
--- a/Documentation/ABI/testing/sysfs-bus-iio-proximity-as3935
+++ b/Documentation/ABI/testing/sysfs-bus-iio-proximity-as3935
@@ -1,4 +1,4 @@
-What /sys/bus/iio/devices/iio:deviceX/in_proximity_raw
+What /sys/bus/iio/devices/iio:deviceX/in_proximity_input
Date: March 2014
KernelVersion: 3.15
Contact: Matt Ranostay <mranostay@gmail.com>
diff --git a/Documentation/PCI/MSI-HOWTO.txt b/Documentation/PCI/MSI-HOWTO.txt
index 1179850f453c..c55df2911136 100644
--- a/Documentation/PCI/MSI-HOWTO.txt
+++ b/Documentation/PCI/MSI-HOWTO.txt
@@ -78,422 +78,111 @@ CONFIG_PCI_MSI option.
4.2 Using MSI
-Most of the hard work is done for the driver in the PCI layer. It simply
-has to request that the PCI layer set up the MSI capability for this
+Most of the hard work is done for the driver in the PCI layer. The driver
+simply has to request that the PCI layer set up the MSI capability for this
device.
-4.2.1 pci_enable_msi
+To automatically use MSI or MSI-X interrupt vectors, use the following
+function:
-int pci_enable_msi(struct pci_dev *dev)
+ int pci_alloc_irq_vectors(struct pci_dev *dev, unsigned int min_vecs,
+ unsigned int max_vecs, unsigned int flags);
-A successful call allocates ONE interrupt to the device, regardless
-of how many MSIs the device supports. The device is switched from
-pin-based interrupt mode to MSI mode. The dev->irq number is changed
-to a new number which represents the message signaled interrupt;
-consequently, this function should be called before the driver calls
-request_irq(), because an MSI is delivered via a vector that is
-different from the vector of a pin-based interrupt.
+which allocates up to max_vecs interrupt vectors for a PCI device. It
+returns the number of vectors allocated or a negative error. If the device
+has a requirements for a minimum number of vectors the driver can pass a
+min_vecs argument set to this limit, and the PCI core will return -ENOSPC
+if it can't meet the minimum number of vectors.
-4.2.2 pci_enable_msi_range
+The flags argument should normally be set to 0, but can be used to pass the
+PCI_IRQ_NOMSI and PCI_IRQ_NOMSIX flag in case a device claims to support
+MSI or MSI-X, but the support is broken, or to pass PCI_IRQ_NOLEGACY in
+case the device does not support legacy interrupt lines.
-int pci_enable_msi_range(struct pci_dev *dev, int minvec, int maxvec)
+By default this function will spread the interrupts around the available
+CPUs, but this feature can be disabled by passing the PCI_IRQ_NOAFFINITY
+flag.
-This function allows a device driver to request any number of MSI
-interrupts within specified range from 'minvec' to 'maxvec'.
+To get the Linux IRQ numbers passed to request_irq() and free_irq() and the
+vectors, use the following function:
-If this function returns a positive number it indicates the number of
-MSI interrupts that have been successfully allocated. In this case
-the device is switched from pin-based interrupt mode to MSI mode and
-updates dev->irq to be the lowest of the new interrupts assigned to it.
-The other interrupts assigned to the device are in the range dev->irq
-to dev->irq + returned value - 1. Device driver can use the returned
-number of successfully allocated MSI interrupts to further allocate
-and initialize device resources.
+ int pci_irq_vector(struct pci_dev *dev, unsigned int nr);
-If this function returns a negative number, it indicates an error and
-the driver should not attempt to request any more MSI interrupts for
-this device.
+Any allocated resources should be freed before removing the device using
+the following function:
-This function should be called before the driver calls request_irq(),
-because MSI interrupts are delivered via vectors that are different
-from the vector of a pin-based interrupt.
+ void pci_free_irq_vectors(struct pci_dev *dev);
-It is ideal if drivers can cope with a variable number of MSI interrupts;
-there are many reasons why the platform may not be able to provide the
-exact number that a driver asks for.
+If a device supports both MSI-X and MSI capabilities, this API will use the
+MSI-X facilities in preference to the MSI facilities. MSI-X supports any
+number of interrupts between 1 and 2048. In contrast, MSI is restricted to
+a maximum of 32 interrupts (and must be a power of two). In addition, the
+MSI interrupt vectors must be allocated consecutively, so the system might
+not be able to allocate as many vectors for MSI as it could for MSI-X. On
+some platforms, MSI interrupts must all be targeted at the same set of CPUs
+whereas MSI-X interrupts can all be targeted at different CPUs.
-There could be devices that can not operate with just any number of MSI
-interrupts within a range. See chapter 4.3.1.3 to get the idea how to
-handle such devices for MSI-X - the same logic applies to MSI.
+If a device supports neither MSI-X or MSI it will fall back to a single
+legacy IRQ vector.
-4.2.1.1 Maximum possible number of MSI interrupts
+The typical usage of MSI or MSI-X interrupts is to allocate as many vectors
+as possible, likely up to the limit supported by the device. If nvec is
+larger than the number supported by the device it will automatically be
+capped to the supported limit, so there is no need to query the number of
+vectors supported beforehand:
-The typical usage of MSI interrupts is to allocate as many vectors as
-possible, likely up to the limit returned by pci_msi_vec_count() function:
-
-static int foo_driver_enable_msi(struct pci_dev *pdev, int nvec)
-{
- return pci_enable_msi_range(pdev, 1, nvec);
-}
-
-Note the value of 'minvec' parameter is 1. As 'minvec' is inclusive,
-the value of 0 would be meaningless and could result in error.
-
-Some devices have a minimal limit on number of MSI interrupts.
-In this case the function could look like this:
-
-static int foo_driver_enable_msi(struct pci_dev *pdev, int nvec)
-{
- return pci_enable_msi_range(pdev, FOO_DRIVER_MINIMUM_NVEC, nvec);
-}
-
-4.2.1.2 Exact number of MSI interrupts
+ nvec = pci_alloc_irq_vectors(pdev, 1, nvec, 0);
+ if (nvec < 0)
+ goto out_err;
If a driver is unable or unwilling to deal with a variable number of MSI
-interrupts it could request a particular number of interrupts by passing
-that number to pci_enable_msi_range() function as both 'minvec' and 'maxvec'
-parameters:
-
-static int foo_driver_enable_msi(struct pci_dev *pdev, int nvec)
-{
- return pci_enable_msi_range(pdev, nvec, nvec);
-}
-
-Note, unlike pci_enable_msi_exact() function, which could be also used to
-enable a particular number of MSI-X interrupts, pci_enable_msi_range()
-returns either a negative errno or 'nvec' (not negative errno or 0 - as
-pci_enable_msi_exact() does).
-
-4.2.1.3 Single MSI mode
-
-The most notorious example of the request type described above is
-enabling the single MSI mode for a device. It could be done by passing
-two 1s as 'minvec' and 'maxvec':
-
-static int foo_driver_enable_single_msi(struct pci_dev *pdev)
-{
- return pci_enable_msi_range(pdev, 1, 1);
-}
-
-Note, unlike pci_enable_msi() function, which could be also used to
-enable the single MSI mode, pci_enable_msi_range() returns either a
-negative errno or 1 (not negative errno or 0 - as pci_enable_msi()
-does).
-
-4.2.3 pci_enable_msi_exact
-
-int pci_enable_msi_exact(struct pci_dev *dev, int nvec)
-
-This variation on pci_enable_msi_range() call allows a device driver to
-request exactly 'nvec' MSIs.
-
-If this function returns a negative number, it indicates an error and
-the driver should not attempt to request any more MSI interrupts for
-this device.
-
-By contrast with pci_enable_msi_range() function, pci_enable_msi_exact()
-returns zero in case of success, which indicates MSI interrupts have been
-successfully allocated.
-
-4.2.4 pci_disable_msi
-
-void pci_disable_msi(struct pci_dev *dev)
-
-This function should be used to undo the effect of pci_enable_msi_range().
-Calling it restores dev->irq to the pin-based interrupt number and frees
-the previously allocated MSIs. The interrupts may subsequently be assigned
-to another device, so drivers should not cache the value of dev->irq.
-
-Before calling this function, a device driver must always call free_irq()
-on any interrupt for which it previously called request_irq().
-Failure to do so results in a BUG_ON(), leaving the device with
-MSI enabled and thus leaking its vector.
-
-4.2.4 pci_msi_vec_count
-
-int pci_msi_vec_count(struct pci_dev *dev)
-
-This function could be used to retrieve the number of MSI vectors the
-device requested (via the Multiple Message Capable register). The MSI
-specification only allows the returned value to be a power of two,
-up to a maximum of 2^5 (32).
-
-If this function returns a negative number, it indicates the device is
-not capable of sending MSIs.
-
-If this function returns a positive number, it indicates the maximum
-number of MSI interrupt vectors that could be allocated.
-
-4.3 Using MSI-X
-
-The MSI-X capability is much more flexible than the MSI capability.
-It supports up to 2048 interrupts, each of which can be controlled
-independently. To support this flexibility, drivers must use an array of
-`struct msix_entry':
-
-struct msix_entry {
- u16 vector; /* kernel uses to write alloc vector */
- u16 entry; /* driver uses to specify entry */
-};
-
-This allows for the device to use these interrupts in a sparse fashion;
-for example, it could use interrupts 3 and 1027 and yet allocate only a
-two-element array. The driver is expected to fill in the 'entry' value
-in each element of the array to indicate for which entries the kernel
-should assign interrupts; it is invalid to fill in two entries with the
-same number.
-
-4.3.1 pci_enable_msix_range
-
-int pci_enable_msix_range(struct pci_dev *dev, struct msix_entry *entries,
- int minvec, int maxvec)
-
-Calling this function asks the PCI subsystem to allocate any number of
-MSI-X interrupts within specified range from 'minvec' to 'maxvec'.
-The 'entries' argument is a pointer to an array of msix_entry structs
-which should be at least 'maxvec' entries in size.
-
-On success, the device is switched into MSI-X mode and the function
-returns the number of MSI-X interrupts that have been successfully
-allocated. In this case the 'vector' member in entries numbered from
-0 to the returned value - 1 is populated with the interrupt number;
-the driver should then call request_irq() for each 'vector' that it
-decides to use. The device driver is responsible for keeping track of the
-interrupts assigned to the MSI-X vectors so it can free them again later.
-Device driver can use the returned number of successfully allocated MSI-X
-interrupts to further allocate and initialize device resources.
-
-If this function returns a negative number, it indicates an error and
-the driver should not attempt to allocate any more MSI-X interrupts for
-this device.
-
-This function, in contrast with pci_enable_msi_range(), does not adjust
-dev->irq. The device will not generate interrupts for this interrupt
-number once MSI-X is enabled.
-
-Device drivers should normally call this function once per device
-during the initialization phase.
-
-It is ideal if drivers can cope with a variable number of MSI-X interrupts;
-there are many reasons why the platform may not be able to provide the
-exact number that a driver asks for.
-
-There could be devices that can not operate with just any number of MSI-X
-interrupts within a range. E.g., an network adapter might need let's say
-four vectors per each queue it provides. Therefore, a number of MSI-X
-interrupts allocated should be a multiple of four. In this case interface
-pci_enable_msix_range() can not be used alone to request MSI-X interrupts
-(since it can allocate any number within the range, without any notion of
-the multiple of four) and the device driver should master a custom logic
-to request the required number of MSI-X interrupts.
-
-4.3.1.1 Maximum possible number of MSI-X interrupts
-
-The typical usage of MSI-X interrupts is to allocate as many vectors as
-possible, likely up to the limit returned by pci_msix_vec_count() function:
-
-static int foo_driver_enable_msix(struct foo_adapter *adapter, int nvec)
-{
- return pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
- 1, nvec);
-}
-
-Note the value of 'minvec' parameter is 1. As 'minvec' is inclusive,
-the value of 0 would be meaningless and could result in error.
-
-Some devices have a minimal limit on number of MSI-X interrupts.
-In this case the function could look like this:
-
-static int foo_driver_enable_msix(struct foo_adapter *adapter, int nvec)
-{
- return pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
- FOO_DRIVER_MINIMUM_NVEC, nvec);
-}
-
-4.3.1.2 Exact number of MSI-X interrupts
-
-If a driver is unable or unwilling to deal with a variable number of MSI-X
-interrupts it could request a particular number of interrupts by passing
-that number to pci_enable_msix_range() function as both 'minvec' and 'maxvec'
-parameters:
-
-static int foo_driver_enable_msix(struct foo_adapter *adapter, int nvec)
-{
- return pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
- nvec, nvec);
-}
-
-Note, unlike pci_enable_msix_exact() function, which could be also used to
-enable a particular number of MSI-X interrupts, pci_enable_msix_range()
-returns either a negative errno or 'nvec' (not negative errno or 0 - as
-pci_enable_msix_exact() does).
-
-4.3.1.3 Specific requirements to the number of MSI-X interrupts
-
-As noted above, there could be devices that can not operate with just any
-number of MSI-X interrupts within a range. E.g., let's assume a device that
-is only capable sending the number of MSI-X interrupts which is a power of
-two. A routine that enables MSI-X mode for such device might look like this:
-
-/*
- * Assume 'minvec' and 'maxvec' are non-zero
- */
-static int foo_driver_enable_msix(struct foo_adapter *adapter,
- int minvec, int maxvec)
-{
- int rc;
-
- minvec = roundup_pow_of_two(minvec);
- maxvec = rounddown_pow_of_two(maxvec);
-
- if (minvec > maxvec)
- return -ERANGE;
-
-retry:
- rc = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
- maxvec, maxvec);
- /*
- * -ENOSPC is the only error code allowed to be analyzed
- */
- if (rc == -ENOSPC) {
- if (maxvec == 1)
- return -ENOSPC;
-
- maxvec /= 2;
-
- if (minvec > maxvec)
- return -ENOSPC;
-
- goto retry;
- }
-
- return rc;
-}
-
-Note how pci_enable_msix_range() return value is analyzed for a fallback -
-any error code other than -ENOSPC indicates a fatal error and should not
-be retried.
-
-4.3.2 pci_enable_msix_exact
-
-int pci_enable_msix_exact(struct pci_dev *dev,
- struct msix_entry *entries, int nvec)
-
-This variation on pci_enable_msix_range() call allows a device driver to
-request exactly 'nvec' MSI-Xs.
-
-If this function returns a negative number, it indicates an error and
-the driver should not attempt to allocate any more MSI-X interrupts for
-this device.
-
-By contrast with pci_enable_msix_range() function, pci_enable_msix_exact()
-returns zero in case of success, which indicates MSI-X interrupts have been
-successfully allocated.
-
-Another version of a routine that enables MSI-X mode for a device with
-specific requirements described in chapter 4.3.1.3 might look like this:
-
-/*
- * Assume 'minvec' and 'maxvec' are non-zero
- */
-static int foo_driver_enable_msix(struct foo_adapter *adapter,
- int minvec, int maxvec)
-{
- int rc;
-
- minvec = roundup_pow_of_two(minvec);
- maxvec = rounddown_pow_of_two(maxvec);
-
- if (minvec > maxvec)
- return -ERANGE;
-
-retry:
- rc = pci_enable_msix_exact(adapter->pdev,
- adapter->msix_entries, maxvec);
-
- /*
- * -ENOSPC is the only error code allowed to be analyzed
- */
- if (rc == -ENOSPC) {
- if (maxvec == 1)
- return -ENOSPC;
-
- maxvec /= 2;
-
- if (minvec > maxvec)
- return -ENOSPC;
-
- goto retry;
- } else if (rc < 0) {
- return rc;
- }
-
- return maxvec;
-}
-
-4.3.3 pci_disable_msix
-
-void pci_disable_msix(struct pci_dev *dev)
-
-This function should be used to undo the effect of pci_enable_msix_range().
-It frees the previously allocated MSI-X interrupts. The interrupts may
-subsequently be assigned to another device, so drivers should not cache
-the value of the 'vector' elements over a call to pci_disable_msix().
-
-Before calling this function, a device driver must always call free_irq()
-on any interrupt for which it previously called request_irq().
-Failure to do so results in a BUG_ON(), leaving the device with
-MSI-X enabled and thus leaking its vector.
-
-4.3.3 The MSI-X Table
-
-The MSI-X capability specifies a BAR and offset within that BAR for the
-MSI-X Table. This address is mapped by the PCI subsystem, and should not
-be accessed directly by the device driver. If the driver wishes to
-mask or unmask an interrupt, it should call disable_irq() / enable_irq().
+interrupts it can request a particular number of interrupts by passing that
+number to pci_alloc_irq_vectors() function as both 'min_vecs' and
+'max_vecs' parameters:
-4.3.4 pci_msix_vec_count
+ ret = pci_alloc_irq_vectors(pdev, nvec, nvec, 0);
+ if (ret < 0)
+ goto out_err;
-int pci_msix_vec_count(struct pci_dev *dev)
+The most notorious example of the request type described above is enabling
+the single MSI mode for a device. It could be done by passing two 1s as
+'min_vecs' and 'max_vecs':
-This function could be used to retrieve number of entries in the device
-MSI-X table.
+ ret = pci_alloc_irq_vectors(pdev, 1, 1, 0);
+ if (ret < 0)
+ goto out_err;
-If this function returns a negative number, it indicates the device is
-not capable of sending MSI-Xs.
+Some devices might not support using legacy line interrupts, in which case
+the PCI_IRQ_NOLEGACY flag can be used to fail the request if the platform
+can't provide MSI or MSI-X interrupts:
-If this function returns a positive number, it indicates the maximum
-number of MSI-X interrupt vectors that could be allocated.
+ nvec = pci_alloc_irq_vectors(pdev, 1, nvec, PCI_IRQ_NOLEGACY);
+ if (nvec < 0)
+ goto out_err;
-4.4 Handling devices implementing both MSI and MSI-X capabilities
+4.3 Legacy APIs
-If a device implements both MSI and MSI-X capabilities, it can
-run in either MSI mode or MSI-X mode, but not both simultaneously.
-This is a requirement of the PCI spec, and it is enforced by the
-PCI layer. Calling pci_enable_msi_range() when MSI-X is already
-enabled or pci_enable_msix_range() when MSI is already enabled
-results in an error. If a device driver wishes to switch between MSI
-and MSI-X at runtime, it must first quiesce the device, then switch
-it back to pin-interrupt mode, before calling pci_enable_msi_range()
-or pci_enable_msix_range() and resuming operation. This is not expected
-to be a common operation but may be useful for debugging or testing
-during development.
+The following old APIs to enable and disable MSI or MSI-X interrupts should
+not be used in new code:
-4.5 Considerations when using MSIs
+ pci_enable_msi() /* deprecated */
+ pci_enable_msi_range() /* deprecated */
+ pci_enable_msi_exact() /* deprecated */
+ pci_disable_msi() /* deprecated */
+ pci_enable_msix_range() /* deprecated */
+ pci_enable_msix_exact() /* deprecated */
+ pci_disable_msix() /* deprecated */
-4.5.1 Choosing between MSI-X and MSI
+Additionally there are APIs to provide the number of supported MSI or MSI-X
+vectors: pci_msi_vec_count() and pci_msix_vec_count(). In general these
+should be avoided in favor of letting pci_alloc_irq_vectors() cap the
+number of vectors. If you have a legitimate special use case for the count
+of vectors we might have to revisit that decision and add a
+pci_nr_irq_vectors() helper that handles MSI and MSI-X transparently.
-If your device supports both MSI-X and MSI capabilities, you should use
-the MSI-X facilities in preference to the MSI facilities. As mentioned
-above, MSI-X supports any number of interrupts between 1 and 2048.
-In contrast, MSI is restricted to a maximum of 32 interrupts (and
-must be a power of two). In addition, the MSI interrupt vectors must
-be allocated consecutively, so the system might not be able to allocate
-as many vectors for MSI as it could for MSI-X. On some platforms, MSI
-interrupts must all be targeted at the same set of CPUs whereas MSI-X
-interrupts can all be targeted at different CPUs.
+4.4 Considerations when using MSIs
-4.5.2 Spinlocks
+4.4.1 Spinlocks
Most device drivers have a per-device spinlock which is taken in the
interrupt handler. With pin-based interrupts or a single MSI, it is not
@@ -505,7 +194,7 @@ acquire the spinlock. Such deadlocks can be avoided by using
spin_lock_irqsave() or spin_lock_irq() which disable local interrupts
and acquire the lock (see Documentation/DocBook/kernel-locking).
-4.6 How to tell whether MSI/MSI-X is enabled on a device
+4.5 How to tell whether MSI/MSI-X is enabled on a device
Using 'lspci -v' (as root) may show some devices with "MSI", "Message
Signalled Interrupts" or "MSI-X" capabilities. Each of these capabilities
diff --git a/Documentation/devicetree/bindings/hwmon/ina2xx.txt b/Documentation/devicetree/bindings/hwmon/ina2xx.txt
index 9bcd5e87830d..02af0d94e921 100644
--- a/Documentation/devicetree/bindings/hwmon/ina2xx.txt
+++ b/Documentation/devicetree/bindings/hwmon/ina2xx.txt
@@ -7,6 +7,7 @@ Required properties:
- "ti,ina220" for ina220
- "ti,ina226" for ina226
- "ti,ina230" for ina230
+ - "ti,ina231" for ina231
- reg: I2C address
Optional properties:
diff --git a/Documentation/devicetree/bindings/i2c/i2c-arb-gpio-challenge.txt b/Documentation/devicetree/bindings/i2c/i2c-arb-gpio-challenge.txt
index bfeabb843941..71191ff0e781 100644
--- a/Documentation/devicetree/bindings/i2c/i2c-arb-gpio-challenge.txt
+++ b/Documentation/devicetree/bindings/i2c/i2c-arb-gpio-challenge.txt
@@ -44,8 +44,8 @@ Required properties:
- our-claim-gpio: The GPIO that we use to claim the bus.
- their-claim-gpios: The GPIOs that the other sides use to claim the bus.
Note that some implementations may only support a single other master.
-- Standard I2C mux properties. See mux.txt in this directory.
-- Single I2C child bus node at reg 0. See mux.txt in this directory.
+- Standard I2C mux properties. See i2c-mux.txt in this directory.
+- Single I2C child bus node at reg 0. See i2c-mux.txt in this directory.
Optional properties:
- slew-delay-us: microseconds to wait for a GPIO to go high. Default is 10 us.
diff --git a/Documentation/devicetree/bindings/i2c/i2c-demux-pinctrl.txt b/Documentation/devicetree/bindings/i2c/i2c-demux-pinctrl.txt
index 6078aefe7ed4..7ce23ac61308 100644
--- a/Documentation/devicetree/bindings/i2c/i2c-demux-pinctrl.txt
+++ b/Documentation/devicetree/bindings/i2c/i2c-demux-pinctrl.txt
@@ -27,7 +27,8 @@ Required properties:
- i2c-bus-name: The name of this bus. Also needed as pinctrl-name for the I2C
parents.
-Furthermore, I2C mux properties and child nodes. See mux.txt in this directory.
+Furthermore, I2C mux properties and child nodes. See i2c-mux.txt in this
+directory.
Example:
diff --git a/Documentation/devicetree/bindings/i2c/i2c-mux-gpio.txt b/Documentation/devicetree/bindings/i2c/i2c-mux-gpio.txt
index 66709a825541..21da3ecbb370 100644
--- a/Documentation/devicetree/bindings/i2c/i2c-mux-gpio.txt
+++ b/Documentation/devicetree/bindings/i2c/i2c-mux-gpio.txt
@@ -22,8 +22,8 @@ Required properties:
- i2c-parent: The phandle of the I2C bus that this multiplexer's master-side
port is connected to.
- mux-gpios: list of gpios used to control the muxer
-* Standard I2C mux properties. See mux.txt in this directory.
-* I2C child bus nodes. See mux.txt in this directory.
+* Standard I2C mux properties. See i2c-mux.txt in this directory.
+* I2C child bus nodes. See i2c-mux.txt in this directory.
Optional properties:
- idle-state: value to set the muxer to when idle. When no value is
@@ -33,7 +33,7 @@ For each i2c child node, an I2C child bus will be created. They will
be numbered based on their order in the device tree.
Whenever an access is made to a device on a child bus, the value set
-in the revelant node's reg property will be output using the list of
+in the relevant node's reg property will be output using the list of
GPIOs, the first in the list holding the least-significant value.
If an idle state is defined, using the idle-state (optional) property,
diff --git a/Documentation/devicetree/bindings/i2c/i2c-mux-pinctrl.txt b/Documentation/devicetree/bindings/i2c/i2c-mux-pinctrl.txt
index ae8af1694e95..33119a98e144 100644
--- a/Documentation/devicetree/bindings/i2c/i2c-mux-pinctrl.txt
+++ b/Documentation/devicetree/bindings/i2c/i2c-mux-pinctrl.txt
@@ -28,9 +28,9 @@ Also required are:
* Standard pinctrl properties that specify the pin mux state for each child
bus. See ../pinctrl/pinctrl-bindings.txt.
-* Standard I2C mux properties. See mux.txt in this directory.
+* Standard I2C mux properties. See i2c-mux.txt in this directory.
-* I2C child bus nodes. See mux.txt in this directory.
+* I2C child bus nodes. See i2c-mux.txt in this directory.
For each named state defined in the pinctrl-names property, an I2C child bus
will be created. I2C child bus numbers are assigned based on the index into
diff --git a/Documentation/devicetree/bindings/i2c/i2c-mux-reg.txt b/Documentation/devicetree/bindings/i2c/i2c-mux-reg.txt
index 688783fbe696..de00d7fc450b 100644
--- a/Documentation/devicetree/bindings/i2c/i2c-mux-reg.txt
+++ b/Documentation/devicetree/bindings/i2c/i2c-mux-reg.txt
@@ -7,8 +7,8 @@ Required properties:
- compatible: i2c-mux-reg
- i2c-parent: The phandle of the I2C bus that this multiplexer's master-side
port is connected to.
-* Standard I2C mux properties. See mux.txt in this directory.
-* I2C child bus nodes. See mux.txt in this directory.
+* Standard I2C mux properties. See i2c-mux.txt in this directory.
+* I2C child bus nodes. See i2c-mux.txt in this directory.
Optional properties:
- reg: this pair of <offset size> specifies the register to control the mux.
@@ -24,7 +24,7 @@ Optional properties:
given, it defaults to the last value used.
Whenever an access is made to a device on a child bus, the value set
-in the revelant node's reg property will be output to the register.
+in the relevant node's reg property will be output to the register.
If an idle state is defined, using the idle-state (optional) property,
whenever an access is not being made to a device on a child bus, the
diff --git a/Documentation/devicetree/bindings/net/marvell-bt-sd8xxx.txt b/Documentation/devicetree/bindings/net/marvell-bt-sd8xxx.txt
index 14aa6cf58201..6a9a63cb0543 100644
--- a/Documentation/devicetree/bindings/net/marvell-bt-sd8xxx.txt
+++ b/Documentation/devicetree/bindings/net/marvell-bt-sd8xxx.txt
@@ -13,10 +13,10 @@ Optional properties:
initialization. This is an array of 28 values(u8).
- marvell,wakeup-pin: It represents wakeup pin number of the bluetooth chip.
- firmware will use the pin to wakeup host system.
+ firmware will use the pin to wakeup host system (u16).
- marvell,wakeup-gap-ms: wakeup gap represents wakeup latency of the host
platform. The value will be configured to firmware. This
- is needed to work chip's sleep feature as expected.
+ is needed to work chip's sleep feature as expected (u16).
- interrupt-parent: phandle of the parent interrupt controller
- interrupts : interrupt pin number to the cpu. Driver will request an irq based
on this interrupt number. During system suspend, the irq will be
@@ -50,7 +50,7 @@ calibration data is also available in below example.
0x37 0x01 0x1c 0x00 0xff 0xff 0xff 0xff 0x01 0x7f 0x04 0x02
0x00 0x00 0xba 0xce 0xc0 0xc6 0x2d 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0xf0 0x00>;
- marvell,wakeup-pin = <0x0d>;
- marvell,wakeup-gap-ms = <0x64>;
+ marvell,wakeup-pin = /bits/ 16 <0x0d>;
+ marvell,wakeup-gap-ms = /bits/ 16 <0x64>;
};
};
diff --git a/Documentation/devicetree/bindings/vendor-prefixes.txt b/Documentation/devicetree/bindings/vendor-prefixes.txt
index a7440bcd67ff..2c2500df0dce 100644
--- a/Documentation/devicetree/bindings/vendor-prefixes.txt
+++ b/Documentation/devicetree/bindings/vendor-prefixes.txt
@@ -255,6 +255,7 @@ synology Synology, Inc.
SUNW Sun Microsystems, Inc
tbs TBS Technologies
tcl Toby Churchill Ltd.
+technexion TechNexion
technologic Technologic Systems
thine THine Electronics, Inc.
ti Texas Instruments
@@ -269,6 +270,7 @@ tronsmart Tronsmart
truly Truly Semiconductors Limited
tyan Tyan Computer Corporation
upisemi uPI Semiconductor Corp.
+uniwest United Western Technologies Corp (UniWest)
urt United Radiant Technology Corporation
usi Universal Scientific Industrial Co., Ltd.
v3 V3 Semiconductor
diff --git a/Documentation/leds/leds-class.txt b/Documentation/leds/leds-class.txt
index d406d98339b2..44f5e6bccd97 100644
--- a/Documentation/leds/leds-class.txt
+++ b/Documentation/leds/leds-class.txt
@@ -74,8 +74,8 @@ blink_set() function (see <linux/leds.h>). To set an LED to blinking,
however, it is better to use the API function led_blink_set(), as it
will check and implement software fallback if necessary.
-To turn off blinking again, use the API function led_brightness_set()
-as that will not just set the LED brightness but also stop any software
+To turn off blinking, use the API function led_brightness_set()
+with brightness value LED_OFF, which should stop any software
timers that may have been required for blinking.
The blink_set() function should choose a user friendly blinking value
diff --git a/Documentation/scsi/scsi_eh.txt b/Documentation/scsi/scsi_eh.txt
index 8638f61c8c9d..37eca00796ee 100644
--- a/Documentation/scsi/scsi_eh.txt
+++ b/Documentation/scsi/scsi_eh.txt
@@ -263,19 +263,23 @@ scmd->allowed.
3. scmd recovered
ACTION: scsi_eh_finish_cmd() is invoked to EH-finish scmd
- - shost->host_failed--
- clear scmd->eh_eflags
- scsi_setup_cmd_retry()
- move from local eh_work_q to local eh_done_q
LOCKING: none
+ CONCURRENCY: at most one thread per separate eh_work_q to
+ keep queue manipulation lockless
4. EH completes
ACTION: scsi_eh_flush_done_q() retries scmds or notifies upper
- layer of failure.
+ layer of failure. May be called concurrently but must have
+ a no more than one thread per separate eh_work_q to
+ manipulate the queue locklessly
- scmd is removed from eh_done_q and scmd->eh_entry is cleared
- if retry is necessary, scmd is requeued using
scsi_queue_insert()
- otherwise, scsi_finish_command() is invoked for scmd
+ - zero shost->host_failed
LOCKING: queue or finish function performs appropriate locking