diff options
author | Mauro Carvalho Chehab <mchehab@s-opensource.com> | 2016-09-21 09:51:11 -0300 |
---|---|---|
committer | Mauro Carvalho Chehab <mchehab@s-opensource.com> | 2016-10-24 08:12:35 -0200 |
commit | 9d85025b0418163fae079c9ba8f8445212de8568 (patch) | |
tree | 4629e2dedf4a9ed45a6855c129101f9b52138372 /Documentation/initrd.txt | |
parent | 186128f75392f8478ad1b32a675627d738881ca4 (diff) |
docs-rst: create an user's manual book
Place README, REPORTING-BUGS, SecurityBugs and kernel-parameters
on an user's manual book.
As we'll be numbering the user's manual, remove the manual
numbering from SecurityBugs.
Signed-off-by: Mauro Carvalho Chehab <mchehab@s-opensource.com>
Diffstat (limited to 'Documentation/initrd.txt')
-rw-r--r-- | Documentation/initrd.txt | 383 |
1 files changed, 0 insertions, 383 deletions
diff --git a/Documentation/initrd.txt b/Documentation/initrd.txt deleted file mode 100644 index a03dabaaf3a3..000000000000 --- a/Documentation/initrd.txt +++ /dev/null @@ -1,383 +0,0 @@ -Using the initial RAM disk (initrd) -=================================== - -Written 1996,2000 by Werner Almesberger <werner.almesberger@epfl.ch> and -Hans Lermen <lermen@fgan.de> - - -initrd provides the capability to load a RAM disk by the boot loader. -This RAM disk can then be mounted as the root file system and programs -can be run from it. Afterwards, a new root file system can be mounted -from a different device. The previous root (from initrd) is then moved -to a directory and can be subsequently unmounted. - -initrd is mainly designed to allow system startup to occur in two phases, -where the kernel comes up with a minimum set of compiled-in drivers, and -where additional modules are loaded from initrd. - -This document gives a brief overview of the use of initrd. A more detailed -discussion of the boot process can be found in [#f1]_. - - -Operation ---------- - -When using initrd, the system typically boots as follows: - - 1) the boot loader loads the kernel and the initial RAM disk - 2) the kernel converts initrd into a "normal" RAM disk and - frees the memory used by initrd - 3) if the root device is not ``/dev/ram0``, the old (deprecated) - change_root procedure is followed. see the "Obsolete root change - mechanism" section below. - 4) root device is mounted. if it is ``/dev/ram0``, the initrd image is - then mounted as root - 5) /sbin/init is executed (this can be any valid executable, including - shell scripts; it is run with uid 0 and can do basically everything - init can do). - 6) init mounts the "real" root file system - 7) init places the root file system at the root directory using the - pivot_root system call - 8) init execs the ``/sbin/init`` on the new root filesystem, performing - the usual boot sequence - 9) the initrd file system is removed - -Note that changing the root directory does not involve unmounting it. -It is therefore possible to leave processes running on initrd during that -procedure. Also note that file systems mounted under initrd continue to -be accessible. - - -Boot command-line options -------------------------- - -initrd adds the following new options:: - - initrd=<path> (e.g. LOADLIN) - - Loads the specified file as the initial RAM disk. When using LILO, you - have to specify the RAM disk image file in /etc/lilo.conf, using the - INITRD configuration variable. - - noinitrd - - initrd data is preserved but it is not converted to a RAM disk and - the "normal" root file system is mounted. initrd data can be read - from /dev/initrd. Note that the data in initrd can have any structure - in this case and doesn't necessarily have to be a file system image. - This option is used mainly for debugging. - - Note: /dev/initrd is read-only and it can only be used once. As soon - as the last process has closed it, all data is freed and /dev/initrd - can't be opened anymore. - - root=/dev/ram0 - - initrd is mounted as root, and the normal boot procedure is followed, - with the RAM disk mounted as root. - -Compressed cpio images ----------------------- - -Recent kernels have support for populating a ramdisk from a compressed cpio -archive. On such systems, the creation of a ramdisk image doesn't need to -involve special block devices or loopbacks; you merely create a directory on -disk with the desired initrd content, cd to that directory, and run (as an -example):: - - find . | cpio --quiet -H newc -o | gzip -9 -n > /boot/imagefile.img - -Examining the contents of an existing image file is just as simple:: - - mkdir /tmp/imagefile - cd /tmp/imagefile - gzip -cd /boot/imagefile.img | cpio -imd --quiet - -Installation ------------- - -First, a directory for the initrd file system has to be created on the -"normal" root file system, e.g.:: - - # mkdir /initrd - -The name is not relevant. More details can be found on the -:manpage:`pivot_root(2)` man page. - -If the root file system is created during the boot procedure (i.e. if -you're building an install floppy), the root file system creation -procedure should create the ``/initrd`` directory. - -If initrd will not be mounted in some cases, its content is still -accessible if the following device has been created:: - - # mknod /dev/initrd b 1 250 - # chmod 400 /dev/initrd - -Second, the kernel has to be compiled with RAM disk support and with -support for the initial RAM disk enabled. Also, at least all components -needed to execute programs from initrd (e.g. executable format and file -system) must be compiled into the kernel. - -Third, you have to create the RAM disk image. This is done by creating a -file system on a block device, copying files to it as needed, and then -copying the content of the block device to the initrd file. With recent -kernels, at least three types of devices are suitable for that: - - - a floppy disk (works everywhere but it's painfully slow) - - a RAM disk (fast, but allocates physical memory) - - a loopback device (the most elegant solution) - -We'll describe the loopback device method: - - 1) make sure loopback block devices are configured into the kernel - 2) create an empty file system of the appropriate size, e.g.:: - - # dd if=/dev/zero of=initrd bs=300k count=1 - # mke2fs -F -m0 initrd - - (if space is critical, you may want to use the Minix FS instead of Ext2) - 3) mount the file system, e.g.:: - - # mount -t ext2 -o loop initrd /mnt - - 4) create the console device:: - - # mkdir /mnt/dev - # mknod /mnt/dev/console c 5 1 - - 5) copy all the files that are needed to properly use the initrd - environment. Don't forget the most important file, ``/sbin/init`` - - .. note:: ``/sbin/init`` permissions must include "x" (execute). - - 6) correct operation the initrd environment can frequently be tested - even without rebooting with the command:: - - # chroot /mnt /sbin/init - - This is of course limited to initrds that do not interfere with the - general system state (e.g. by reconfiguring network interfaces, - overwriting mounted devices, trying to start already running demons, - etc. Note however that it is usually possible to use pivot_root in - such a chroot'ed initrd environment.) - 7) unmount the file system:: - - # umount /mnt - - 8) the initrd is now in the file "initrd". Optionally, it can now be - compressed:: - - # gzip -9 initrd - -For experimenting with initrd, you may want to take a rescue floppy and -only add a symbolic link from ``/sbin/init`` to ``/bin/sh``. Alternatively, you -can try the experimental newlib environment [#f2]_ to create a small -initrd. - -Finally, you have to boot the kernel and load initrd. Almost all Linux -boot loaders support initrd. Since the boot process is still compatible -with an older mechanism, the following boot command line parameters -have to be given:: - - root=/dev/ram0 rw - -(rw is only necessary if writing to the initrd file system.) - -With LOADLIN, you simply execute:: - - LOADLIN <kernel> initrd=<disk_image> - -e.g.:: - - LOADLIN C:\LINUX\BZIMAGE initrd=C:\LINUX\INITRD.GZ root=/dev/ram0 rw - -With LILO, you add the option ``INITRD=<path>`` to either the global section -or to the section of the respective kernel in ``/etc/lilo.conf``, and pass -the options using APPEND, e.g.:: - - image = /bzImage - initrd = /boot/initrd.gz - append = "root=/dev/ram0 rw" - -and run ``/sbin/lilo`` - -For other boot loaders, please refer to the respective documentation. - -Now you can boot and enjoy using initrd. - - -Changing the root device ------------------------- - -When finished with its duties, init typically changes the root device -and proceeds with starting the Linux system on the "real" root device. - -The procedure involves the following steps: - - mounting the new root file system - - turning it into the root file system - - removing all accesses to the old (initrd) root file system - - unmounting the initrd file system and de-allocating the RAM disk - -Mounting the new root file system is easy: it just needs to be mounted on -a directory under the current root. Example:: - - # mkdir /new-root - # mount -o ro /dev/hda1 /new-root - -The root change is accomplished with the pivot_root system call, which -is also available via the ``pivot_root`` utility (see :manpage:`pivot_root(8)` -man page; ``pivot_root`` is distributed with util-linux version 2.10h or higher -[#f3]_). ``pivot_root`` moves the current root to a directory under the new -root, and puts the new root at its place. The directory for the old root -must exist before calling ``pivot_root``. Example:: - - # cd /new-root - # mkdir initrd - # pivot_root . initrd - -Now, the init process may still access the old root via its -executable, shared libraries, standard input/output/error, and its -current root directory. All these references are dropped by the -following command:: - - # exec chroot . what-follows <dev/console >dev/console 2>&1 - -Where what-follows is a program under the new root, e.g. ``/sbin/init`` -If the new root file system will be used with udev and has no valid -``/dev`` directory, udev must be initialized before invoking chroot in order -to provide ``/dev/console``. - -Note: implementation details of pivot_root may change with time. In order -to ensure compatibility, the following points should be observed: - - - before calling pivot_root, the current directory of the invoking - process should point to the new root directory - - use . as the first argument, and the _relative_ path of the directory - for the old root as the second argument - - a chroot program must be available under the old and the new root - - chroot to the new root afterwards - - use relative paths for dev/console in the exec command - -Now, the initrd can be unmounted and the memory allocated by the RAM -disk can be freed:: - - # umount /initrd - # blockdev --flushbufs /dev/ram0 - -It is also possible to use initrd with an NFS-mounted root, see the -:manpage:`pivot_root(8)` man page for details. - - -Usage scenarios ---------------- - -The main motivation for implementing initrd was to allow for modular -kernel configuration at system installation. The procedure would work -as follows: - - 1) system boots from floppy or other media with a minimal kernel - (e.g. support for RAM disks, initrd, a.out, and the Ext2 FS) and - loads initrd - 2) ``/sbin/init`` determines what is needed to (1) mount the "real" root FS - (i.e. device type, device drivers, file system) and (2) the - distribution media (e.g. CD-ROM, network, tape, ...). This can be - done by asking the user, by auto-probing, or by using a hybrid - approach. - 3) ``/sbin/init`` loads the necessary kernel modules - 4) ``/sbin/init`` creates and populates the root file system (this doesn't - have to be a very usable system yet) - 5) ``/sbin/init`` invokes ``pivot_root`` to change the root file system and - execs - via chroot - a program that continues the installation - 6) the boot loader is installed - 7) the boot loader is configured to load an initrd with the set of - modules that was used to bring up the system (e.g. ``/initrd`` can be - modified, then unmounted, and finally, the image is written from - ``/dev/ram0`` or ``/dev/rd/0`` to a file) - 8) now the system is bootable and additional installation tasks can be - performed - -The key role of initrd here is to re-use the configuration data during -normal system operation without requiring the use of a bloated "generic" -kernel or re-compiling or re-linking the kernel. - -A second scenario is for installations where Linux runs on systems with -different hardware configurations in a single administrative domain. In -such cases, it is desirable to generate only a small set of kernels -(ideally only one) and to keep the system-specific part of configuration -information as small as possible. In this case, a common initrd could be -generated with all the necessary modules. Then, only ``/sbin/init`` or a file -read by it would have to be different. - -A third scenario is more convenient recovery disks, because information -like the location of the root FS partition doesn't have to be provided at -boot time, but the system loaded from initrd can invoke a user-friendly -dialog and it can also perform some sanity checks (or even some form of -auto-detection). - -Last not least, CD-ROM distributors may use it for better installation -from CD, e.g. by using a boot floppy and bootstrapping a bigger RAM disk -via initrd from CD; or by booting via a loader like ``LOADLIN`` or directly -from the CD-ROM, and loading the RAM disk from CD without need of -floppies. - - -Obsolete root change mechanism ------------------------------- - -The following mechanism was used before the introduction of pivot_root. -Current kernels still support it, but you should _not_ rely on its -continued availability. - -It works by mounting the "real" root device (i.e. the one set with rdev -in the kernel image or with root=... at the boot command line) as the -root file system when linuxrc exits. The initrd file system is then -unmounted, or, if it is still busy, moved to a directory ``/initrd``, if -such a directory exists on the new root file system. - -In order to use this mechanism, you do not have to specify the boot -command options root, init, or rw. (If specified, they will affect -the real root file system, not the initrd environment.) - -If /proc is mounted, the "real" root device can be changed from within -linuxrc by writing the number of the new root FS device to the special -file /proc/sys/kernel/real-root-dev, e.g.:: - - # echo 0x301 >/proc/sys/kernel/real-root-dev - -Note that the mechanism is incompatible with NFS and similar file -systems. - -This old, deprecated mechanism is commonly called ``change_root``, while -the new, supported mechanism is called ``pivot_root``. - - -Mixed change_root and pivot_root mechanism ------------------------------------------- - -In case you did not want to use ``root=/dev/ram0`` to trigger the pivot_root -mechanism, you may create both ``/linuxrc`` and ``/sbin/init`` in your initrd -image. - -``/linuxrc`` would contain only the following:: - - #! /bin/sh - mount -n -t proc proc /proc - echo 0x0100 >/proc/sys/kernel/real-root-dev - umount -n /proc - -Once linuxrc exited, the kernel would mount again your initrd as root, -this time executing ``/sbin/init``. Again, it would be the duty of this init -to build the right environment (maybe using the ``root= device`` passed on -the cmdline) before the final execution of the real ``/sbin/init``. - - -Resources ---------- - -.. [#f1] Almesberger, Werner; "Booting Linux: The History and the Future" - http://www.almesberger.net/cv/papers/ols2k-9.ps.gz -.. [#f2] newlib package (experimental), with initrd example - https://www.sourceware.org/newlib/ -.. [#f3] util-linux: Miscellaneous utilities for Linux - https://www.kernel.org/pub/linux/utils/util-linux/ |