summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2020-10-12 16:20:31 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2020-10-12 16:20:31 -0700
commitced3a9eb3cd0d07462cdbaa8a0f3d46e5aaeadec (patch)
tree9689b5ffcb4b1834f5a4abcf848ab6770f8885c0
parent2646fb032f511862312ec8eb7f774aaededf310d (diff)
parentc331649e637152788b0ca1c857d0c2eaf34fcbc3 (diff)
Merge tag 'ia64_for_5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/aegl/linux
Pull ia64 updates from Tony Luck: "Cleanups by Christoph: - Switch to libata instead of legacy ide driver - Drop ia64 perfmon (it's been broken for a while)" * tag 'ia64_for_5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/aegl/linux: ia64: Use libata instead of the legacy ide driver in defconfigs ia64: Remove perfmon
-rw-r--r--arch/ia64/Kconfig9
-rw-r--r--arch/ia64/configs/bigsur_defconfig8
-rw-r--r--arch/ia64/configs/generic_defconfig10
-rw-r--r--arch/ia64/configs/gensparse_defconfig10
-rw-r--r--arch/ia64/configs/tiger_defconfig10
-rw-r--r--arch/ia64/configs/zx1_defconfig8
-rw-r--r--arch/ia64/include/asm/processor.h10
-rw-r--r--arch/ia64/include/asm/switch_to.h10
-rw-r--r--arch/ia64/kernel/Makefile3
-rw-r--r--arch/ia64/kernel/irq_ia64.c7
-rw-r--r--arch/ia64/kernel/perfmon.c6703
-rw-r--r--arch/ia64/kernel/process.c53
-rw-r--r--arch/ia64/kernel/ptrace.c24
-rw-r--r--arch/ia64/kernel/smpboot.c8
-rw-r--r--arch/ia64/kernel/syscalls/syscall.tbl2
-rw-r--r--arch/ia64/lib/Makefile1
-rw-r--r--arch/ia64/lib/carta_random.S55
-rw-r--r--arch/ia64/oprofile/Makefile1
-rw-r--r--arch/ia64/oprofile/init.c12
-rw-r--r--arch/ia64/oprofile/perfmon.c99
20 files changed, 22 insertions, 7021 deletions
diff --git a/arch/ia64/Kconfig b/arch/ia64/Kconfig
index 9d0f1e13c918..996c410f2152 100644
--- a/arch/ia64/Kconfig
+++ b/arch/ia64/Kconfig
@@ -363,15 +363,6 @@ config ARCH_PROC_KCORE_TEXT
config IA64_MCA_RECOVERY
tristate "MCA recovery from errors other than TLB."
-config PERFMON
- bool "Performance monitor support"
- depends on BROKEN
- help
- Selects whether support for the IA-64 performance monitor hardware
- is included in the kernel. This makes some kernel data-structures a
- little bigger and slows down execution a bit, but it is generally
- a good idea to turn this on. If you're unsure, say Y.
-
config IA64_PALINFO
tristate "/proc/pal support"
help
diff --git a/arch/ia64/configs/bigsur_defconfig b/arch/ia64/configs/bigsur_defconfig
index f3ba813a5b80..cfed5ed89301 100644
--- a/arch/ia64/configs/bigsur_defconfig
+++ b/arch/ia64/configs/bigsur_defconfig
@@ -11,7 +11,6 @@ CONFIG_SMP=y
CONFIG_NR_CPUS=2
CONFIG_PREEMPT=y
# CONFIG_VIRTUAL_MEM_MAP is not set
-CONFIG_PERFMON=y
CONFIG_IA64_PALINFO=y
CONFIG_EFI_VARS=y
CONFIG_BINFMT_MISC=m
@@ -27,10 +26,9 @@ CONFIG_BLK_DEV_LOOP=m
CONFIG_BLK_DEV_CRYPTOLOOP=m
CONFIG_BLK_DEV_NBD=m
CONFIG_BLK_DEV_RAM=m
-CONFIG_IDE=m
-CONFIG_BLK_DEV_IDECD=m
-CONFIG_BLK_DEV_GENERIC=m
-CONFIG_BLK_DEV_PIIX=m
+CONFIG_ATA=m
+CONFIG_ATA_GENERIC=m
+CONFIG_ATA_PIIX=m
CONFIG_SCSI=y
CONFIG_BLK_DEV_SD=y
CONFIG_SCSI_CONSTANTS=y
diff --git a/arch/ia64/configs/generic_defconfig b/arch/ia64/configs/generic_defconfig
index cb267a07c57f..ca0d596c800d 100644
--- a/arch/ia64/configs/generic_defconfig
+++ b/arch/ia64/configs/generic_defconfig
@@ -18,7 +18,6 @@ CONFIG_IA64_CYCLONE=y
CONFIG_SMP=y
CONFIG_HOTPLUG_CPU=y
CONFIG_IA64_MCA_RECOVERY=y
-CONFIG_PERFMON=y
CONFIG_IA64_PALINFO=y
CONFIG_KEXEC=y
CONFIG_CRASH_DUMP=y
@@ -45,11 +44,10 @@ CONFIG_BLK_DEV_CRYPTOLOOP=m
CONFIG_BLK_DEV_NBD=m
CONFIG_BLK_DEV_RAM=y
CONFIG_SGI_XP=m
-CONFIG_IDE=y
-CONFIG_BLK_DEV_IDECD=y
-CONFIG_BLK_DEV_GENERIC=y
-CONFIG_BLK_DEV_CMD64X=y
-CONFIG_BLK_DEV_PIIX=y
+CONFIG_ATA=y
+CONFIG_ATA_GENERIC=y
+CONFIG_PATA_CMD64X=y
+CONFIG_ATA_PIIX=y
CONFIG_BLK_DEV_SD=y
CONFIG_CHR_DEV_ST=m
CONFIG_BLK_DEV_SR=m
diff --git a/arch/ia64/configs/gensparse_defconfig b/arch/ia64/configs/gensparse_defconfig
index 7e25f2f031b6..281eb9c544f9 100644
--- a/arch/ia64/configs/gensparse_defconfig
+++ b/arch/ia64/configs/gensparse_defconfig
@@ -17,7 +17,6 @@ CONFIG_NR_CPUS=512
CONFIG_HOTPLUG_CPU=y
CONFIG_SPARSEMEM_MANUAL=y
CONFIG_IA64_MCA_RECOVERY=y
-CONFIG_PERFMON=y
CONFIG_IA64_PALINFO=y
CONFIG_EFI_VARS=y
CONFIG_BINFMT_MISC=m
@@ -36,12 +35,11 @@ CONFIG_BLK_DEV_LOOP=m
CONFIG_BLK_DEV_CRYPTOLOOP=m
CONFIG_BLK_DEV_NBD=m
CONFIG_BLK_DEV_RAM=y
-CONFIG_IDE=y
+CONFIG_ATA=y
CONFIG_BLK_DEV_IDECD=y
-CONFIG_IDE_GENERIC=y
-CONFIG_BLK_DEV_GENERIC=y
-CONFIG_BLK_DEV_CMD64X=y
-CONFIG_BLK_DEV_PIIX=y
+CONFIG_ATA_GENERIC=y
+CONFIG_PATA_CMD64X=y
+CONFIG_ATA_PIIX=y
CONFIG_SCSI=y
CONFIG_BLK_DEV_SD=y
CONFIG_CHR_DEV_ST=m
diff --git a/arch/ia64/configs/tiger_defconfig b/arch/ia64/configs/tiger_defconfig
index 3f486d5bdc2d..b4f9819a1a45 100644
--- a/arch/ia64/configs/tiger_defconfig
+++ b/arch/ia64/configs/tiger_defconfig
@@ -21,7 +21,6 @@ CONFIG_HOTPLUG_CPU=y
CONFIG_PERMIT_BSP_REMOVE=y
CONFIG_FORCE_CPEI_RETARGET=y
CONFIG_IA64_MCA_RECOVERY=y
-CONFIG_PERFMON=y
CONFIG_IA64_PALINFO=y
CONFIG_KEXEC=y
CONFIG_EFI_VARS=y
@@ -41,11 +40,10 @@ CONFIG_BLK_DEV_LOOP=m
CONFIG_BLK_DEV_CRYPTOLOOP=m
CONFIG_BLK_DEV_NBD=m
CONFIG_BLK_DEV_RAM=y
-CONFIG_IDE=y
-CONFIG_BLK_DEV_IDECD=y
-CONFIG_BLK_DEV_GENERIC=y
-CONFIG_BLK_DEV_CMD64X=y
-CONFIG_BLK_DEV_PIIX=y
+CONFIG_ATA=y
+CONFIG_ATA_GENERIC=y
+CONFIG_PATA_CMD64X=y
+CONFIG_ATA_PIIX=y
CONFIG_SCSI=y
CONFIG_BLK_DEV_SD=y
CONFIG_CHR_DEV_ST=m
diff --git a/arch/ia64/configs/zx1_defconfig b/arch/ia64/configs/zx1_defconfig
index 261e98e1f5fe..629cb9cdf723 100644
--- a/arch/ia64/configs/zx1_defconfig
+++ b/arch/ia64/configs/zx1_defconfig
@@ -10,7 +10,6 @@ CONFIG_NR_CPUS=16
CONFIG_HOTPLUG_CPU=y
CONFIG_FLATMEM_MANUAL=y
CONFIG_IA64_MCA_RECOVERY=y
-CONFIG_PERFMON=y
CONFIG_IA64_PALINFO=y
CONFIG_CRASH_DUMP=y
CONFIG_EFI_VARS=y
@@ -26,10 +25,9 @@ CONFIG_IP_MULTICAST=y
CONFIG_NETFILTER=y
CONFIG_BLK_DEV_LOOP=y
CONFIG_BLK_DEV_RAM=y
-CONFIG_IDE=y
-CONFIG_BLK_DEV_IDECD=y
-CONFIG_BLK_DEV_GENERIC=y
-CONFIG_BLK_DEV_CMD64X=y
+CONFIG_ATA=y
+CONFIG_ATA_GENERIC=y
+CONFIG_PATA_CMD64X=y
CONFIG_SCSI=y
CONFIG_BLK_DEV_SD=y
CONFIG_CHR_DEV_ST=y
diff --git a/arch/ia64/include/asm/processor.h b/arch/ia64/include/asm/processor.h
index 95a2ec37400f..2d8bcdc27d7f 100644
--- a/arch/ia64/include/asm/processor.h
+++ b/arch/ia64/include/asm/processor.h
@@ -280,15 +280,6 @@ struct thread_struct {
__u64 map_base; /* base address for get_unmapped_area() */
__u64 rbs_bot; /* the base address for the RBS */
int last_fph_cpu; /* CPU that may hold the contents of f32-f127 */
-
-#ifdef CONFIG_PERFMON
- void *pfm_context; /* pointer to detailed PMU context */
- unsigned long pfm_needs_checking; /* when >0, pending perfmon work on kernel exit */
-# define INIT_THREAD_PM .pfm_context = NULL, \
- .pfm_needs_checking = 0UL,
-#else
-# define INIT_THREAD_PM
-#endif
unsigned long dbr[IA64_NUM_DBG_REGS];
unsigned long ibr[IA64_NUM_DBG_REGS];
struct ia64_fpreg fph[96]; /* saved/loaded on demand */
@@ -301,7 +292,6 @@ struct thread_struct {
.map_base = DEFAULT_MAP_BASE, \
.rbs_bot = STACK_TOP - DEFAULT_USER_STACK_SIZE, \
.last_fph_cpu = -1, \
- INIT_THREAD_PM \
.dbr = {0, }, \
.ibr = {0, }, \
.fph = {{{{0}}}, } \
diff --git a/arch/ia64/include/asm/switch_to.h b/arch/ia64/include/asm/switch_to.h
index 9011e90a6b97..a5a4e09468fa 100644
--- a/arch/ia64/include/asm/switch_to.h
+++ b/arch/ia64/include/asm/switch_to.h
@@ -31,16 +31,8 @@ extern struct task_struct *ia64_switch_to (void *next_task);
extern void ia64_save_extra (struct task_struct *task);
extern void ia64_load_extra (struct task_struct *task);
-#ifdef CONFIG_PERFMON
- DECLARE_PER_CPU(unsigned long, pfm_syst_info);
-# define PERFMON_IS_SYSWIDE() (__this_cpu_read(pfm_syst_info) & 0x1)
-#else
-# define PERFMON_IS_SYSWIDE() (0)
-#endif
-
#define IA64_HAS_EXTRA_STATE(t) \
- ((t)->thread.flags & (IA64_THREAD_DBG_VALID|IA64_THREAD_PM_VALID) \
- || PERFMON_IS_SYSWIDE())
+ ((t)->thread.flags & (IA64_THREAD_DBG_VALID|IA64_THREAD_PM_VALID))
#define __switch_to(prev,next,last) do { \
if (IA64_HAS_EXTRA_STATE(prev)) \
diff --git a/arch/ia64/kernel/Makefile b/arch/ia64/kernel/Makefile
index 1a8df6669eee..81901c5e5426 100644
--- a/arch/ia64/kernel/Makefile
+++ b/arch/ia64/kernel/Makefile
@@ -10,7 +10,7 @@ endif
extra-y := head.o vmlinux.lds
obj-y := entry.o efi.o efi_stub.o gate-data.o fsys.o ia64_ksyms.o irq.o irq_ia64.o \
- irq_lsapic.o ivt.o pal.o patch.o process.o perfmon.o ptrace.o sal.o \
+ irq_lsapic.o ivt.o pal.o patch.o process.o ptrace.o sal.o \
salinfo.o setup.o signal.o sys_ia64.o time.o traps.o unaligned.o \
unwind.o mca.o mca_asm.o topology.o dma-mapping.o iosapic.o acpi.o \
acpi-ext.o
@@ -21,7 +21,6 @@ obj-$(CONFIG_IA64_PALINFO) += palinfo.o
obj-$(CONFIG_MODULES) += module.o
obj-$(CONFIG_SMP) += smp.o smpboot.o
obj-$(CONFIG_NUMA) += numa.o
-obj-$(CONFIG_PERFMON) += perfmon_default_smpl.o
obj-$(CONFIG_IA64_CYCLONE) += cyclone.o
obj-$(CONFIG_IA64_MCA_RECOVERY) += mca_recovery.o
obj-$(CONFIG_KPROBES) += kprobes.o
diff --git a/arch/ia64/kernel/irq_ia64.c b/arch/ia64/kernel/irq_ia64.c
index 6fff934150eb..46e33c5cb53d 100644
--- a/arch/ia64/kernel/irq_ia64.c
+++ b/arch/ia64/kernel/irq_ia64.c
@@ -40,10 +40,6 @@
#include <asm/hw_irq.h>
#include <asm/tlbflush.h>
-#ifdef CONFIG_PERFMON
-# include <asm/perfmon.h>
-#endif
-
#define IRQ_DEBUG 0
#define IRQ_VECTOR_UNASSIGNED (0)
@@ -627,9 +623,6 @@ init_IRQ (void)
"irq_move");
}
#endif
-#ifdef CONFIG_PERFMON
- pfm_init_percpu();
-#endif
}
void
diff --git a/arch/ia64/kernel/perfmon.c b/arch/ia64/kernel/perfmon.c
deleted file mode 100644
index 0dc3611e7971..000000000000
--- a/arch/ia64/kernel/perfmon.c
+++ /dev/null
@@ -1,6703 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0-only
-/*
- * This file implements the perfmon-2 subsystem which is used
- * to program the IA-64 Performance Monitoring Unit (PMU).
- *
- * The initial version of perfmon.c was written by
- * Ganesh Venkitachalam, IBM Corp.
- *
- * Then it was modified for perfmon-1.x by Stephane Eranian and
- * David Mosberger, Hewlett Packard Co.
- *
- * Version Perfmon-2.x is a rewrite of perfmon-1.x
- * by Stephane Eranian, Hewlett Packard Co.
- *
- * Copyright (C) 1999-2005 Hewlett Packard Co
- * Stephane Eranian <eranian@hpl.hp.com>
- * David Mosberger-Tang <davidm@hpl.hp.com>
- *
- * More information about perfmon available at:
- * http://www.hpl.hp.com/research/linux/perfmon
- */
-
-#include <linux/module.h>
-#include <linux/kernel.h>
-#include <linux/sched.h>
-#include <linux/sched/task.h>
-#include <linux/sched/task_stack.h>
-#include <linux/interrupt.h>
-#include <linux/proc_fs.h>
-#include <linux/seq_file.h>
-#include <linux/init.h>
-#include <linux/vmalloc.h>
-#include <linux/mm.h>
-#include <linux/sysctl.h>
-#include <linux/list.h>
-#include <linux/file.h>
-#include <linux/poll.h>
-#include <linux/vfs.h>
-#include <linux/smp.h>
-#include <linux/pagemap.h>
-#include <linux/mount.h>
-#include <linux/pseudo_fs.h>
-#include <linux/bitops.h>
-#include <linux/capability.h>
-#include <linux/rcupdate.h>
-#include <linux/completion.h>
-#include <linux/tracehook.h>
-#include <linux/slab.h>
-#include <linux/cpu.h>
-
-#include <asm/errno.h>
-#include <asm/intrinsics.h>
-#include <asm/page.h>
-#include <asm/perfmon.h>
-#include <asm/processor.h>
-#include <asm/signal.h>
-#include <linux/uaccess.h>
-#include <asm/delay.h>
-
-#include "irq.h"
-
-#ifdef CONFIG_PERFMON
-/*
- * perfmon context state
- */
-#define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
-#define PFM_CTX_LOADED 2 /* context is loaded onto a task */
-#define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
-#define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
-
-#define PFM_INVALID_ACTIVATION (~0UL)
-
-#define PFM_NUM_PMC_REGS 64 /* PMC save area for ctxsw */
-#define PFM_NUM_PMD_REGS 64 /* PMD save area for ctxsw */
-
-/*
- * depth of message queue
- */
-#define PFM_MAX_MSGS 32
-#define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
-
-/*
- * type of a PMU register (bitmask).
- * bitmask structure:
- * bit0 : register implemented
- * bit1 : end marker
- * bit2-3 : reserved
- * bit4 : pmc has pmc.pm
- * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
- * bit6-7 : register type
- * bit8-31: reserved
- */
-#define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
-#define PFM_REG_IMPL 0x1 /* register implemented */
-#define PFM_REG_END 0x2 /* end marker */
-#define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
-#define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
-#define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
-#define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
-#define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
-
-#define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
-#define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
-
-#define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
-
-/* i assumed unsigned */
-#define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
-#define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
-
-/* XXX: these assume that register i is implemented */
-#define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
-#define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
-#define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
-#define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
-
-#define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
-#define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
-#define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
-#define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
-
-#define PFM_NUM_IBRS IA64_NUM_DBG_REGS
-#define PFM_NUM_DBRS IA64_NUM_DBG_REGS
-
-#define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
-#define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
-#define PFM_CTX_TASK(h) (h)->ctx_task
-
-#define PMU_PMC_OI 5 /* position of pmc.oi bit */
-
-/* XXX: does not support more than 64 PMDs */
-#define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
-#define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
-
-#define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
-
-#define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
-#define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
-#define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
-#define PFM_CODE_RR 0 /* requesting code range restriction */
-#define PFM_DATA_RR 1 /* requestion data range restriction */
-
-#define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
-#define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
-#define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
-
-#define RDEP(x) (1UL<<(x))
-
-/*
- * context protection macros
- * in SMP:
- * - we need to protect against CPU concurrency (spin_lock)
- * - we need to protect against PMU overflow interrupts (local_irq_disable)
- * in UP:
- * - we need to protect against PMU overflow interrupts (local_irq_disable)
- *
- * spin_lock_irqsave()/spin_unlock_irqrestore():
- * in SMP: local_irq_disable + spin_lock
- * in UP : local_irq_disable
- *
- * spin_lock()/spin_lock():
- * in UP : removed automatically
- * in SMP: protect against context accesses from other CPU. interrupts
- * are not masked. This is useful for the PMU interrupt handler
- * because we know we will not get PMU concurrency in that code.
- */
-#define PROTECT_CTX(c, f) \
- do { \
- DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \
- spin_lock_irqsave(&(c)->ctx_lock, f); \
- DPRINT(("spinlocked ctx %p by [%d]\n", c, task_pid_nr(current))); \
- } while(0)
-
-#define UNPROTECT_CTX(c, f) \
- do { \
- DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \
- spin_unlock_irqrestore(&(c)->ctx_lock, f); \
- } while(0)
-
-#define PROTECT_CTX_NOPRINT(c, f) \
- do { \
- spin_lock_irqsave(&(c)->ctx_lock, f); \
- } while(0)
-
-
-#define UNPROTECT_CTX_NOPRINT(c, f) \
- do { \
- spin_unlock_irqrestore(&(c)->ctx_lock, f); \
- } while(0)
-
-
-#define PROTECT_CTX_NOIRQ(c) \
- do { \
- spin_lock(&(c)->ctx_lock); \
- } while(0)
-
-#define UNPROTECT_CTX_NOIRQ(c) \
- do { \
- spin_unlock(&(c)->ctx_lock); \
- } while(0)
-
-
-#ifdef CONFIG_SMP
-
-#define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
-#define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
-#define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
-
-#else /* !CONFIG_SMP */
-#define SET_ACTIVATION(t) do {} while(0)
-#define GET_ACTIVATION(t) do {} while(0)
-#define INC_ACTIVATION(t) do {} while(0)
-#endif /* CONFIG_SMP */
-
-#define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
-#define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
-#define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
-
-#define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
-#define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
-
-#define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
-
-/*
- * cmp0 must be the value of pmc0
- */
-#define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
-
-#define PFMFS_MAGIC 0xa0b4d889
-
-/*
- * debugging
- */
-#define PFM_DEBUGGING 1
-#ifdef PFM_DEBUGGING
-#define DPRINT(a) \
- do { \
- if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
- } while (0)
-
-#define DPRINT_ovfl(a) \
- do { \
- if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
- } while (0)
-#endif
-
-/*
- * 64-bit software counter structure
- *
- * the next_reset_type is applied to the next call to pfm_reset_regs()
- */
-typedef struct {
- unsigned long val; /* virtual 64bit counter value */
- unsigned long lval; /* last reset value */
- unsigned long long_reset; /* reset value on sampling overflow */
- unsigned long short_reset; /* reset value on overflow */
- unsigned long reset_pmds[4]; /* which other pmds to reset when this counter overflows */
- unsigned long smpl_pmds[4]; /* which pmds are accessed when counter overflow */
- unsigned long seed; /* seed for random-number generator */
- unsigned long mask; /* mask for random-number generator */
- unsigned int flags; /* notify/do not notify */
- unsigned long eventid; /* overflow event identifier */
-} pfm_counter_t;
-
-/*
- * context flags
- */
-typedef struct {
- unsigned int block:1; /* when 1, task will blocked on user notifications */
- unsigned int system:1; /* do system wide monitoring */
- unsigned int using_dbreg:1; /* using range restrictions (debug registers) */
- unsigned int is_sampling:1; /* true if using a custom format */
- unsigned int excl_idle:1; /* exclude idle task in system wide session */
- unsigned int going_zombie:1; /* context is zombie (MASKED+blocking) */
- unsigned int trap_reason:2; /* reason for going into pfm_handle_work() */
- unsigned int no_msg:1; /* no message sent on overflow */
- unsigned int can_restart:1; /* allowed to issue a PFM_RESTART */
- unsigned int reserved:22;
-} pfm_context_flags_t;
-
-#define PFM_TRAP_REASON_NONE 0x0 /* default value */
-#define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
-#define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
-
-
-/*
- * perfmon context: encapsulates all the state of a monitoring session
- */
-
-typedef struct pfm_context {
- spinlock_t ctx_lock; /* context protection */
-
- pfm_context_flags_t ctx_flags; /* bitmask of flags (block reason incl.) */
- unsigned int ctx_state; /* state: active/inactive (no bitfield) */
-
- struct task_struct *ctx_task; /* task to which context is attached */
-
- unsigned long ctx_ovfl_regs[4]; /* which registers overflowed (notification) */
-
- struct completion ctx_restart_done; /* use for blocking notification mode */
-
- unsigned long ctx_used_pmds[4]; /* bitmask of PMD used */
- unsigned long ctx_all_pmds[4]; /* bitmask of all accessible PMDs */
- unsigned long ctx_reload_pmds[4]; /* bitmask of force reload PMD on ctxsw in */
-
- unsigned long ctx_all_pmcs[4]; /* bitmask of all accessible PMCs */
- unsigned long ctx_reload_pmcs[4]; /* bitmask of force reload PMC on ctxsw in */
- unsigned long ctx_used_monitors[4]; /* bitmask of monitor PMC being used */
-
- unsigned long ctx_pmcs[PFM_NUM_PMC_REGS]; /* saved copies of PMC values */
-
- unsigned int ctx_used_ibrs[1]; /* bitmask of used IBR (speedup ctxsw in) */
- unsigned int ctx_used_dbrs[1]; /* bitmask of used DBR (speedup ctxsw in) */
- unsigned long ctx_dbrs[IA64_NUM_DBG_REGS]; /* DBR values (cache) when not loaded */
- unsigned long ctx_ibrs[IA64_NUM_DBG_REGS]; /* IBR values (cache) when not loaded */
-
- pfm_counter_t ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */
-
- unsigned long th_pmcs[PFM_NUM_PMC_REGS]; /* PMC thread save state */
- unsigned long th_pmds[PFM_NUM_PMD_REGS]; /* PMD thread save state */
-
- unsigned long ctx_saved_psr_up; /* only contains psr.up value */
-
- unsigned long ctx_last_activation; /* context last activation number for last_cpu */
- unsigned int ctx_last_cpu; /* CPU id of current or last CPU used (SMP only) */
- unsigned int ctx_cpu; /* cpu to which perfmon is applied (system wide) */
-
- int ctx_fd; /* file descriptor used my this context */
- pfm_ovfl_arg_t ctx_ovfl_arg; /* argument to custom buffer format handler */
-
- pfm_buffer_fmt_t *ctx_buf_fmt; /* buffer format callbacks */
- void *ctx_smpl_hdr; /* points to sampling buffer header kernel vaddr */
- unsigned long ctx_smpl_size; /* size of sampling buffer */
- void *ctx_smpl_vaddr; /* user level virtual address of smpl buffer */
-
- wait_queue_head_t ctx_msgq_wait;
- pfm_msg_t ctx_msgq[PFM_MAX_MSGS];
- int ctx_msgq_head;
- int ctx_msgq_tail;
- struct fasync_struct *ctx_async_queue;
-
- wait_queue_head_t ctx_zombieq; /* termination cleanup wait queue */
-} pfm_context_t;
-
-/*
- * magic number used to verify that structure is really
- * a perfmon context
- */
-#define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
-
-#define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
-
-#ifdef CONFIG_SMP
-#define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
-#define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
-#else
-#define SET_LAST_CPU(ctx, v) do {} while(0)
-#define GET_LAST_CPU(ctx) do {} while(0)
-#endif
-
-
-#define ctx_fl_block ctx_flags.block
-#define ctx_fl_system ctx_flags.system
-#define ctx_fl_using_dbreg ctx_flags.using_dbreg
-#define ctx_fl_is_sampling ctx_flags.is_sampling
-#define ctx_fl_excl_idle ctx_flags.excl_idle
-#define ctx_fl_going_zombie ctx_flags.going_zombie
-#define ctx_fl_trap_reason ctx_flags.trap_reason
-#define ctx_fl_no_msg ctx_flags.no_msg
-#define ctx_fl_can_restart ctx_flags.can_restart
-
-#define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
-#define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
-
-/*
- * global information about all sessions
- * mostly used to synchronize between system wide and per-process
- */
-typedef struct {
- spinlock_t pfs_lock; /* lock the structure */
-
- unsigned int pfs_task_sessions; /* number of per task sessions */
- unsigned int pfs_sys_sessions; /* number of per system wide sessions */
- unsigned int pfs_sys_use_dbregs; /* incremented when a system wide session uses debug regs */
- unsigned int pfs_ptrace_use_dbregs; /* incremented when a process uses debug regs */
- struct task_struct *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
-} pfm_session_t;
-
-/*
- * information about a PMC or PMD.
- * dep_pmd[]: a bitmask of dependent PMD registers
- * dep_pmc[]: a bitmask of dependent PMC registers
- */
-typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
-typedef struct {
- unsigned int type;
- int pm_pos;
- unsigned long default_value; /* power-on default value */
- unsigned long reserved_mask; /* bitmask of reserved bits */
- pfm_reg_check_t read_check;
- pfm_reg_check_t write_check;
- unsigned long dep_pmd[4];
- unsigned long dep_pmc[4];
-} pfm_reg_desc_t;
-
-/* assume cnum is a valid monitor */
-#define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
-
-/*
- * This structure is initialized at boot time and contains
- * a description of the PMU main characteristics.
- *
- * If the probe function is defined, detection is based
- * on its return value:
- * - 0 means recognized PMU
- * - anything else means not supported
- * When the probe function is not defined, then the pmu_family field
- * is used and it must match the host CPU family such that:
- * - cpu->family & config->pmu_family != 0
- */
-typedef struct {
- unsigned long ovfl_val; /* overflow value for counters */
-
- pfm_reg_desc_t *pmc_desc; /* detailed PMC register dependencies descriptions */
- pfm_reg_desc_t *pmd_desc; /* detailed PMD register dependencies descriptions */
-
- unsigned int num_pmcs; /* number of PMCS: computed at init time */
- unsigned int num_pmds; /* number of PMDS: computed at init time */
- unsigned long impl_pmcs[4]; /* bitmask of implemented PMCS */
- unsigned long impl_pmds[4]; /* bitmask of implemented PMDS */
-
- char *pmu_name; /* PMU family name */
- unsigned int pmu_family; /* cpuid family pattern used to identify pmu */
- unsigned int flags; /* pmu specific flags */
- unsigned int num_ibrs; /* number of IBRS: computed at init time */
- unsigned int num_dbrs; /* number of DBRS: computed at init time */
- unsigned int num_counters; /* PMC/PMD counting pairs : computed at init time */
- int (*probe)(void); /* customized probe routine */
- unsigned int use_rr_dbregs:1; /* set if debug registers used for range restriction */
-} pmu_config_t;
-/*
- * PMU specific flags
- */
-#define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
-
-/*
- * debug register related type definitions
- */
-typedef struct {
- unsigned long ibr_mask:56;
- unsigned long ibr_plm:4;
- unsigned long ibr_ig:3;
- unsigned long ibr_x:1;
-} ibr_mask_reg_t;
-
-typedef struct {
- unsigned long dbr_mask:56;
- unsigned long dbr_plm:4;
- unsigned long dbr_ig:2;
- unsigned long dbr_w:1;
- unsigned long dbr_r:1;
-} dbr_mask_reg_t;
-
-typedef union {
- unsigned long val;
- ibr_mask_reg_t ibr;
- dbr_mask_reg_t dbr;
-} dbreg_t;
-
-
-/*
- * perfmon command descriptions
- */
-typedef struct {
- int (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
- char *cmd_name;
- int cmd_flags;
- unsigned int cmd_narg;
- size_t cmd_argsize;
- int (*cmd_getsize)(void *arg, size_t *sz);
-} pfm_cmd_desc_t;
-
-#define PFM_CMD_FD 0x01 /* command requires a file descriptor */
-#define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
-#define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
-#define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
-
-
-#define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
-#define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
-#define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
-#define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
-#define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
-
-#define PFM_CMD_ARG_MANY -1 /* cannot be zero */
-
-typedef struct {
- unsigned long pfm_spurious_ovfl_intr_count; /* keep track of spurious ovfl interrupts */
- unsigned long pfm_replay_ovfl_intr_count; /* keep track of replayed ovfl interrupts */
- unsigned long pfm_ovfl_intr_count; /* keep track of ovfl interrupts */
- unsigned long pfm_ovfl_intr_cycles; /* cycles spent processing ovfl interrupts */
- unsigned long pfm_ovfl_intr_cycles_min; /* min cycles spent processing ovfl interrupts */
- unsigned long pfm_ovfl_intr_cycles_max; /* max cycles spent processing ovfl interrupts */
- unsigned long pfm_smpl_handler_calls;
- unsigned long pfm_smpl_handler_cycles;
- char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
-} pfm_stats_t;
-
-/*
- * perfmon internal variables
- */
-static pfm_stats_t pfm_stats[NR_CPUS];
-static pfm_session_t pfm_sessions; /* global sessions information */
-
-static DEFINE_SPINLOCK(pfm_alt_install_check);
-static pfm_intr_handler_desc_t *pfm_alt_intr_handler;
-
-static struct proc_dir_entry *perfmon_dir;
-static pfm_uuid_t pfm_null_uuid = {0,};
-
-static spinlock_t pfm_buffer_fmt_lock;
-static LIST_HEAD(pfm_buffer_fmt_list);
-
-static pmu_config_t *pmu_conf;
-
-/* sysctl() controls */
-pfm_sysctl_t pfm_sysctl;
-EXPORT_SYMBOL(pfm_sysctl);
-
-static struct ctl_table pfm_ctl_table[] = {
- {
- .procname = "debug",
- .data = &pfm_sysctl.debug,
- .maxlen = sizeof(int),
- .mode = 0666,
- .proc_handler = proc_dointvec,
- },
- {
- .procname = "debug_ovfl",
- .data = &pfm_sysctl.debug_ovfl,
- .maxlen = sizeof(int),
- .mode = 0666,
- .proc_handler = proc_dointvec,
- },
- {
- .procname = "fastctxsw",
- .data = &pfm_sysctl.fastctxsw,
- .maxlen = sizeof(int),
- .mode = 0600,
- .proc_handler = proc_dointvec,
- },
- {
- .procname = "expert_mode",
- .data = &pfm_sysctl.expert_mode,
- .maxlen = sizeof(int),
- .mode = 0600,
- .proc_handler = proc_dointvec,
- },
- {}
-};
-static struct ctl_table pfm_sysctl_dir[] = {
- {
- .procname = "perfmon",
- .mode = 0555,
- .child = pfm_ctl_table,
- },
- {}
-};
-static struct ctl_table pfm_sysctl_root[] = {
- {
- .procname = "kernel",
- .mode = 0555,
- .child = pfm_sysctl_dir,
- },
- {}
-};
-static struct ctl_table_header *pfm_sysctl_header;
-
-static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
-
-#define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
-#define pfm_get_cpu_data(a,b) per_cpu(a, b)
-
-static inline void
-pfm_put_task(struct task_struct *task)
-{
- if (task != current) put_task_struct(task);
-}
-
-static inline unsigned long
-pfm_protect_ctx_ctxsw(pfm_context_t *x)
-{
- spin_lock(&(x)->ctx_lock);
- return 0UL;
-}
-
-static inline void
-pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
-{
- spin_unlock(&(x)->ctx_lock);
-}
-
-/* forward declaration */
-static const struct dentry_operations pfmfs_dentry_operations;
-
-static int pfmfs_init_fs_context(struct fs_context *fc)
-{
- struct pseudo_fs_context *ctx = init_pseudo(fc, PFMFS_MAGIC);
- if (!ctx)
- return -ENOMEM;
- ctx->dops = &pfmfs_dentry_operations;
- return 0;
-}
-
-static struct file_system_type pfm_fs_type = {
- .name = "pfmfs",
- .init_fs_context = pfmfs_init_fs_context,
- .kill_sb = kill_anon_super,
-};
-MODULE_ALIAS_FS("pfmfs");
-
-DEFINE_PER_CPU(unsigned long, pfm_syst_info);
-DEFINE_PER_CPU(struct task_struct *, pmu_owner);
-DEFINE_PER_CPU(pfm_context_t *, pmu_ctx);
-DEFINE_PER_CPU(unsigned long, pmu_activation_number);
-EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
-
-
-/* forward declaration */
-static const struct file_operations pfm_file_ops;
-
-/*
- * forward declarations
- */
-#ifndef CONFIG_SMP
-static void pfm_lazy_save_regs (struct task_struct *ta);
-#endif
-
-void dump_pmu_state(const char *);
-static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
-
-#include "perfmon_itanium.h"
-#include "perfmon_mckinley.h"
-#include "perfmon_montecito.h"
-#include "perfmon_generic.h"
-
-static pmu_config_t *pmu_confs[]={
- &pmu_conf_mont,
- &pmu_conf_mck,
- &pmu_conf_ita,
- &pmu_conf_gen, /* must be last */
- NULL
-};
-
-
-static int pfm_end_notify_user(pfm_context_t *ctx);
-
-static inline void
-pfm_clear_psr_pp(void)
-{
- ia64_rsm(IA64_PSR_PP);
- ia64_srlz_i();
-}
-
-static inline void
-pfm_set_psr_pp(void)
-{
- ia64_ssm(IA64_PSR_PP);
- ia64_srlz_i();
-}
-
-static inline void
-pfm_clear_psr_up(void)
-{
- ia64_rsm(IA64_PSR_UP);
- ia64_srlz_i();
-}
-
-static inline void
-pfm_set_psr_up(void)
-{
- ia64_ssm(IA64_PSR_UP);
- ia64_srlz_i();
-}
-
-static inline unsigned long
-pfm_get_psr(void)
-{
- unsigned long tmp;
- tmp = ia64_getreg(_IA64_REG_PSR);
- ia64_srlz_i();
- return tmp;
-}
-
-static inline void
-pfm_set_psr_l(unsigned long val)
-{
- ia64_setreg(_IA64_REG_PSR_L, val);
- ia64_srlz_i();
-}
-
-static inline void
-pfm_freeze_pmu(void)
-{
- ia64_set_pmc(0,1UL);
- ia64_srlz_d();
-}
-
-static inline void
-pfm_unfreeze_pmu(void)
-{
- ia64_set_pmc(0,0UL);
- ia64_srlz_d();
-}
-
-static inline void
-pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
-{
- int i;
-
- for (i=0; i < nibrs; i++) {
- ia64_set_ibr(i, ibrs[i]);
- ia64_dv_serialize_instruction();
- }
- ia64_srlz_i();
-}
-
-static inline void
-pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
-{
- int i;
-
- for (i=0; i < ndbrs; i++) {
- ia64_set_dbr(i, dbrs[i]);
- ia64_dv_serialize_data();
- }
- ia64_srlz_d();
-}
-
-/*
- * PMD[i] must be a counter. no check is made
- */
-static inline unsigned long
-pfm_read_soft_counter(pfm_context_t *ctx, int i)
-{
- return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
-}
-
-/*
- * PMD[i] must be a counter. no check is made
- */
-static inline void
-pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
-{
- unsigned long ovfl_val = pmu_conf->ovfl_val;
-
- ctx->ctx_pmds[i].val = val & ~ovfl_val;
- /*
- * writing to unimplemented part is ignore, so we do not need to
- * mask off top part
- */
- ia64_set_pmd(i, val & ovfl_val);
-}
-
-static pfm_msg_t *
-pfm_get_new_msg(pfm_context_t *ctx)
-{
- int idx, next;
-
- next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
-
- DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
- if (next == ctx->ctx_msgq_head) return NULL;
-
- idx = ctx->ctx_msgq_tail;
- ctx->ctx_msgq_tail = next;
-
- DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
-
- return ctx->ctx_msgq+idx;
-}
-
-static pfm_msg_t *
-pfm_get_next_msg(pfm_context_t *ctx)
-{
- pfm_msg_t *msg;
-
- DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
-
- if (PFM_CTXQ_EMPTY(ctx)) return NULL;
-
- /*
- * get oldest message
- */
- msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
-
- /*
- * and move forward
- */
- ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
-
- DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
-
- return msg;
-}
-
-static void
-pfm_reset_msgq(pfm_context_t *ctx)
-{
- ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
- DPRINT(("ctx=%p msgq reset\n", ctx));
-}
-
-static pfm_context_t *
-pfm_context_alloc(int ctx_flags)
-{
- pfm_context_t *ctx;
-
- /*
- * allocate context descriptor
- * must be able to free with interrupts disabled
- */
- ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL);
- if (ctx) {
- DPRINT(("alloc ctx @%p\n", ctx));
-
- /*
- * init context protection lock
- */
- spin_lock_init(&ctx->ctx_lock);
-
- /*
- * context is unloaded
- */
- ctx->ctx_state = PFM_CTX_UNLOADED;
-
- /*
- * initialization of context's flags
- */
- ctx->ctx_fl_block = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
- ctx->ctx_fl_system = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
- ctx->ctx_fl_no_msg = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
- /*
- * will move to set properties
- * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
- */
-
- /*
- * init restart semaphore to locked
- */
- init_completion(&ctx->ctx_restart_done);
-
- /*
- * activation is used in SMP only
- */
- ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
- SET_LAST_CPU(ctx, -1);
-
- /*
- * initialize notification message queue
- */
- ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
- init_waitqueue_head(&ctx->ctx_msgq_wait);
- init_waitqueue_head(&ctx->ctx_zombieq);
-
- }
- return ctx;
-}
-
-static void
-pfm_context_free(pfm_context_t *ctx)
-{
- if (ctx) {
- DPRINT(("free ctx @%p\n", ctx));
- kfree(ctx);
- }
-}
-
-static void
-pfm_mask_monitoring(struct task_struct *task)
-{
- pfm_context_t *ctx = PFM_GET_CTX(task);
- unsigned long mask, val, ovfl_mask;
- int i;
-
- DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task)));
-
- ovfl_mask = pmu_conf->ovfl_val;
- /*
- * monitoring can only be masked as a result of a valid
- * counter overflow. In UP, it means that the PMU still
- * has an owner. Note that the owner can be different
- * from the current task. However the PMU state belongs
- * to the owner.
- * In SMP, a valid overflow only happens when task is
- * current. Therefore if we come here, we know that
- * the PMU state belongs to the current task, therefore
- * we can access the live registers.
- *
- * So in both cases, the live register contains the owner's
- * state. We can ONLY touch the PMU registers and NOT the PSR.
- *
- * As a consequence to this call, the ctx->th_pmds[] array
- * contains stale information which must be ignored
- * when context is reloaded AND monitoring is active (see
- * pfm_restart).
- */
- mask = ctx->ctx_used_pmds[0];
- for (i = 0; mask; i++, mask>>=1) {
- /* skip non used pmds */
- if ((mask & 0x1) == 0) continue;
- val = ia64_get_pmd(i);
-
- if (PMD_IS_COUNTING(i)) {
- /*
- * we rebuild the full 64 bit value of the counter
- */
- ctx->ctx_pmds[i].val += (val & ovfl_mask);
- } else {
- ctx->ctx_pmds[i].val = val;
- }
- DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
- i,
- ctx->ctx_pmds[i].val,
- val & ovfl_mask));
- }
- /*
- * mask monitoring by setting the privilege level to 0
- * we cannot use psr.pp/psr.up for this, it is controlled by
- * the user
- *
- * if task is current, modify actual registers, otherwise modify
- * thread save state, i.e., what will be restored in pfm_load_regs()
- */
- mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
- for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
- if ((mask & 0x1) == 0UL) continue;
- ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL);
- ctx->th_pmcs[i] &= ~0xfUL;
- DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
- }
- /*
- * make all of this visible
- */
- ia64_srlz_d();
-}
-
-/*
- * must always be done with task == current
- *
- * context must be in MASKED state when calling
- */
-static void
-pfm_restore_monitoring(struct task_struct *task)
-{
- pfm_context_t *ctx = PFM_GET_CTX(task);
- unsigned long mask, ovfl_mask;
- unsigned long psr, val;
- int i, is_system;
-
- is_system = ctx->ctx_fl_system;
- ovfl_mask = pmu_conf->ovfl_val;
-
- if (task != current) {
- printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task_pid_nr(task), task_pid_nr(current));
- return;
- }
- if (ctx->ctx_state != PFM_CTX_MASKED) {
- printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
- task_pid_nr(task), task_pid_nr(current), ctx->ctx_state);
- return;
- }
- psr = pfm_get_psr();
- /*
- * monitoring is masked via the PMC.
- * As we restore their value, we do not want each counter to
- * restart right away. We stop monitoring using the PSR,
- * restore the PMC (and PMD) and then re-establish the psr
- * as it was. Note that there can be no pending overflow at
- * this point, because monitoring was MASKED.
- *
- * system-wide session are pinned and self-monitoring
- */
- if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
- /* disable dcr pp */
- ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
- pfm_clear_psr_pp();
- } else {
- pfm_clear_psr_up();
- }
- /*
- * first, we restore the PMD
- */
- mask = ctx->ctx_used_pmds[0];
- for (i = 0; mask; i++, mask>>=1) {
- /* skip non used pmds */
- if ((mask & 0x1) == 0) continue;
-
- if (PMD_IS_COUNTING(i)) {
- /*
- * we split the 64bit value according to
- * counter width
- */
- val = ctx->ctx_pmds[i].val & ovfl_mask;
- ctx->ctx_pmds[i].val &= ~ovfl_mask;
- } else {
- val = ctx->ctx_pmds[i].val;
- }
- ia64_set_pmd(i, val);
-
- DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
- i,
- ctx->ctx_pmds[i].val,
- val));
- }
- /*
- * restore the PMCs
- */
- mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
- for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
- if ((mask & 0x1) == 0UL) continue;
- ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
- ia64_set_pmc(i, ctx->th_pmcs[i]);
- DPRINT(("[%d] pmc[%d]=0x%lx\n",
- task_pid_nr(task), i, ctx->th_pmcs[i]));
- }
- ia64_srlz_d();
-
- /*
- * must restore DBR/IBR because could be modified while masked
- * XXX: need to optimize
- */
- if (ctx->ctx_fl_using_dbreg) {
- pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
- pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
- }
-
- /*
- * now restore PSR
- */
- if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
- /* enable dcr pp */
- ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
- ia64_srlz_i();
- }
- pfm_set_psr_l(psr);
-}
-
-static inline void
-pfm_save_pmds(unsigned long *pmds, unsigned long mask)
-{
- int i;
-
- ia64_srlz_d();
-
- for (i=0; mask; i++, mask>>=1) {
- if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
- }
-}
-
-/*
- * reload from thread state (used for ctxw only)
- */
-static inline void
-pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
-{
- int i;
- unsigned long val, ovfl_val = pmu_conf->ovfl_val;
-
- for (i=0; mask; i++, mask>>=1) {
- if ((mask & 0x1) == 0) continue;
- val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
- ia64_set_pmd(i, val);
- }
- ia64_srlz_d();
-}
-
-/*
- * propagate PMD from context to thread-state
- */
-static inline void
-pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
-{
- unsigned long ovfl_val = pmu_conf->ovfl_val;
- unsigned long mask = ctx->ctx_all_pmds[0];
- unsigned long val;
- int i;
-
- DPRINT(("mask=0x%lx\n", mask));
-
- for (i=0; mask; i++, mask>>=1) {
-
- val = ctx->ctx_pmds[i].val;
-
- /*
- * We break up the 64 bit value into 2 pieces
- * the lower bits go to the machine state in the
- * thread (will be reloaded on ctxsw in).
- * The upper part stays in the soft-counter.
- */
- if (PMD_IS_COUNTING(i)) {
- ctx->ctx_pmds[i].val = val & ~ovfl_val;
- val &= ovfl_val;
- }
- ctx->th_pmds[i] = val;
-
- DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
- i,
- ctx->th_pmds[i],
- ctx->ctx_pmds[i].val));
- }
-}
-
-/*
- * propagate PMC from context to thread-state
- */
-static inline void
-pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
-{
- unsigned long mask = ctx->ctx_all_pmcs[0];
- int i;
-
- DPRINT(("mask=0x%lx\n", mask));
-
- for (i=0; mask; i++, mask>>=1) {
- /* masking 0 with ovfl_val yields 0 */
- ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
- DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
- }
-}
-
-
-
-static inline void
-pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
-{
- int i;
-
- for (i=0; mask; i++, mask>>=1) {
- if ((mask & 0x1) == 0) continue;
- ia64_set_pmc(i, pmcs[i]);
- }
- ia64_srlz_d();
-}
-
-static inline int
-pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
-{
- return memcmp(a, b, sizeof(pfm_uuid_t));
-}
-
-static inline int
-pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
-{
- int ret = 0;
- if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
- return ret;
-}
-
-static inline int
-pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
-{
- int ret = 0;
- if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
- return ret;
-}
-
-
-static inline int
-pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
- int cpu, void *arg)
-{
- int ret = 0;
- if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
- return ret;
-}
-
-static inline int
-pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
- int cpu, void *arg)
-{
- int ret = 0;
- if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
- return ret;
-}
-
-static inline int
-pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
-{
- int ret = 0;
- if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
- return ret;
-}
-
-static inline int
-pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
-{
- int ret = 0;
- if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
- return ret;
-}
-
-static pfm_buffer_fmt_t *
-__pfm_find_buffer_fmt(pfm_uuid_t uuid)
-{
- struct list_head * pos;
- pfm_buffer_fmt_t * entry;
-
- list_for_each(pos, &pfm_buffer_fmt_list) {
- entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
- if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
- return entry;
- }
- return NULL;
-}
-
-/*
- * find a buffer format based on its uuid
- */
-static pfm_buffer_fmt_t *
-pfm_find_buffer_fmt(pfm_uuid_t uuid)
-{
- pfm_buffer_fmt_t * fmt;
- spin_lock(&pfm_buffer_fmt_lock);
- fmt = __pfm_find_buffer_fmt(uuid);
- spin_unlock(&pfm_buffer_fmt_lock);
- return fmt;
-}
-
-int
-pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
-{
- int ret = 0;
-
- /* some sanity checks */
- if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
-
- /* we need at least a handler */
- if (fmt->fmt_handler == NULL) return -EINVAL;
-
- /*
- * XXX: need check validity of fmt_arg_size
- */
-
- spin_lock(&pfm_buffer_fmt_lock);
-
- if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
- printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
- ret = -EBUSY;
- goto out;
- }
- list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
- printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
-
-out:
- spin_unlock(&pfm_buffer_fmt_lock);
- return ret;
-}
-EXPORT_SYMBOL(pfm_register_buffer_fmt);
-
-int
-pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
-{
- pfm_buffer_fmt_t *fmt;
- int ret = 0;
-
- spin_lock(&pfm_buffer_fmt_lock);
-
- fmt = __pfm_find_buffer_fmt(uuid);
- if (!fmt) {
- printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
- ret = -EINVAL;
- goto out;
- }
- list_del_init(&fmt->fmt_list);
- printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
-
-out:
- spin_unlock(&pfm_buffer_fmt_lock);
- return ret;
-
-}
-EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
-
-static int
-pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
-{
- unsigned long flags;
- /*
- * validity checks on cpu_mask have been done upstream
- */
- LOCK_PFS(flags);
-
- DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
- pfm_sessions.pfs_sys_sessions,
- pfm_sessions.pfs_task_sessions,
- pfm_sessions.pfs_sys_use_dbregs,
- is_syswide,
- cpu));
-
- if (is_syswide) {
- /*
- * cannot mix system wide and per-task sessions
- */
- if (pfm_sessions.pfs_task_sessions > 0UL) {
- DPRINT(("system wide not possible, %u conflicting task_sessions\n",
- pfm_sessions.pfs_task_sessions));
- goto abort;
- }
-
- if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
-
- DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
-
- pfm_sessions.pfs_sys_session[cpu] = task;
-
- pfm_sessions.pfs_sys_sessions++ ;
-
- } else {
- if (pfm_sessions.pfs_sys_sessions) goto abort;
- pfm_sessions.pfs_task_sessions++;
- }
-
- DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
- pfm_sessions.pfs_sys_sessions,
- pfm_sessions.pfs_task_sessions,
- pfm_sessions.pfs_sys_use_dbregs,
- is_syswide,
- cpu));
-
- /*
- * Force idle() into poll mode
- */
- cpu_idle_poll_ctrl(true);
-
- UNLOCK_PFS(flags);
-
- return 0;
-
-error_conflict:
- DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
- task_pid_nr(pfm_sessions.pfs_sys_session[cpu]),
- cpu));
-abort:
- UNLOCK_PFS(flags);
-
- return -EBUSY;
-
-}
-
-static int
-pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
-{
- unsigned long flags;
- /*
- * validity checks on cpu_mask have been done upstream
- */
- LOCK_PFS(flags);
-
- DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
- pfm_sessions.pfs_sys_sessions,
- pfm_sessions.pfs_task_sessions,
- pfm_sessions.pfs_sys_use_dbregs,
- is_syswide,
- cpu));
-
-
- if (is_syswide) {
- pfm_sessions.pfs_sys_session[cpu] = NULL;
- /*
- * would not work with perfmon+more than one bit in cpu_mask
- */
- if (ctx && ctx->ctx_fl_using_dbreg) {
- if (pfm_sessions.pfs_sys_use_dbregs == 0) {
- printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
- } else {
- pfm_sessions.pfs_sys_use_dbregs--;
- }
- }
- pfm_sessions.pfs_sys_sessions--;
- } else {
- pfm_sessions.pfs_task_sessions--;
- }
- DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
- pfm_sessions.pfs_sys_sessions,
- pfm_sessions.pfs_task_sessions,
- pfm_sessions.pfs_sys_use_dbregs,
- is_syswide,
- cpu));
-
- /* Undo forced polling. Last session reenables pal_halt */
- cpu_idle_poll_ctrl(false);
-
- UNLOCK_PFS(flags);
-
- return 0;
-}
-
-/*
- * removes virtual mapping of the sampling buffer.
- * IMPORTANT: cannot be called with interrupts disable, e.g. inside
- * a PROTECT_CTX() section.
- */
-static int
-pfm_remove_smpl_mapping(void *vaddr, unsigned long size)
-{
- struct task_struct *task = current;
- int r;
-
- /* sanity checks */
- if (task->mm == NULL || size == 0UL || vaddr == NULL) {
- printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task), task->mm);
- return -EINVAL;
- }
-
- DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
-
- /*
- * does the actual unmapping
- */
- r = vm_munmap((unsigned long)vaddr, size);
-
- if (r !=0) {
- printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task), vaddr, size);
- }
-
- DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
-
- return 0;
-}
-
-/*
- * free actual physical storage used by sampling buffer
- */
-#if 0
-static int
-pfm_free_smpl_buffer(pfm_context_t *ctx)
-{
- pfm_buffer_fmt_t *fmt;
-
- if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
-
- /*
- * we won't use the buffer format anymore
- */
- fmt = ctx->ctx_buf_fmt;
-
- DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
- ctx->ctx_smpl_hdr,
- ctx->ctx_smpl_size,
- ctx->ctx_smpl_vaddr));
-
- pfm_buf_fmt_exit(fmt, current, NULL, NULL);
-
- /*
- * free the buffer
- */
- vfree(ctx->ctx_smpl_hdr);
-
- ctx->ctx_smpl_hdr = NULL;
- ctx->ctx_smpl_size = 0UL;
-
- return 0;
-
-invalid_free:
- printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current));
- return -EINVAL;
-}
-#endif
-
-static inline void
-pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
-{
- if (fmt == NULL) return;
-
- pfm_buf_fmt_exit(fmt, current, NULL, NULL);
-
-}
-
-/*
- * pfmfs should _never_ be mounted by userland - too much of security hassle,
- * no real gain from having the whole whorehouse mounted. So we don't need
- * any operations on the root directory. However, we need a non-trivial
- * d_name - pfm: will go nicely and kill the special-casing in procfs.
- */
-static struct vfsmount *pfmfs_mnt __read_mostly;
-
-static int __init
-init_pfm_fs(void)
-{
- int err = register_filesystem(&pfm_fs_type);
- if (!err) {
- pfmfs_mnt = kern_mount(&pfm_fs_type);
- err = PTR_ERR(pfmfs_mnt);
- if (IS_ERR(pfmfs_mnt))
- unregister_filesystem(&pfm_fs_type);
- else
- err = 0;
- }
- return err;
-}
-
-static ssize_t
-pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
-{
- pfm_context_t *ctx;
- pfm_msg_t *msg;
- ssize_t ret;
- unsigned long flags;
- DECLARE_WAITQUEUE(wait, current);
- if (PFM_IS_FILE(filp) == 0) {
- printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
- return -EINVAL;
- }
-
- ctx = filp->private_data;
- if (ctx == NULL) {
- printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current));
- return -EINVAL;
- }
-
- /*
- * check even when there is no message
- */
- if (size < sizeof(pfm_msg_t)) {
- DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
- return -EINVAL;
- }
-
- PROTECT_CTX(ctx, flags);
-
- /*
- * put ourselves on the wait queue
- */
- add_wait_queue(&ctx->ctx_msgq_wait, &wait);
-
-
- for(;;) {
- /*
- * check wait queue
- */
-
- set_current_state(TASK_INTERRUPTIBLE);
-
- DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
-
- ret = 0;
- if(PFM_CTXQ_EMPTY(ctx) == 0) break;
-
- UNPROTECT_CTX(ctx, flags);
-
- /*
- * check non-blocking read
- */
- ret = -EAGAIN;
- if(filp->f_flags & O_NONBLOCK) break;
-
- /*
- * check pending signals
- */
- if(signal_pending(current)) {
- ret = -EINTR;
- break;
- }
- /*
- * no message, so wait
- */
- schedule();
-
- PROTECT_CTX(ctx, flags);
- }
- DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current), ret));
- set_current_state(TASK_RUNNING);
- remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
-
- if (ret < 0) goto abort;
-
- ret = -EINVAL;
- msg = pfm_get_next_msg(ctx);
- if (msg == NULL) {
- printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, task_pid_nr(current));
- goto abort_locked;
- }
-
- DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
-
- ret = -EFAULT;
- if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
-
-abort_locked:
- UNPROTECT_CTX(ctx, flags);
-abort:
- return ret;
-}
-
-static ssize_t
-pfm_write(struct file *file, const char __user *ubuf,
- size_t size, loff_t *ppos)
-{
- DPRINT(("pfm_write called\n"));
- return -EINVAL;
-}
-
-static __poll_t
-pfm_poll(struct file *filp, poll_table * wait)
-{
- pfm_context_t *ctx;
- unsigned long flags;
- __poll_t mask = 0;
-
- if (PFM_IS_FILE(filp) == 0) {
- printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
- return 0;
- }
-
- ctx = filp->private_data;
- if (ctx == NULL) {
- printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current));
- return 0;
- }
-
-
- DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
-
- poll_wait(filp, &ctx->ctx_msgq_wait, wait);
-
- PROTECT_CTX(ctx, flags);
-
- if (PFM_CTXQ_EMPTY(ctx) == 0)
- mask = EPOLLIN | EPOLLRDNORM;
-
- UNPROTECT_CTX(ctx, flags);
-
- DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
-
- return mask;
-}
-
-static long
-pfm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
-{
- DPRINT(("pfm_ioctl called\n"));
- return -EINVAL;
-}
-
-/*
- * interrupt cannot be masked when coming here
- */
-static inline int
-pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
-{
- int ret;
-
- ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
-
- DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
- task_pid_nr(current),
- fd,
- on,
- ctx->ctx_async_queue, ret));
-
- return ret;
-}
-
-static int
-pfm_fasync(int fd, struct file *filp, int on)
-{
- pfm_context_t *ctx;
- int ret;
-
- if (PFM_IS_FILE(filp) == 0) {
- printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current));
- return -EBADF;
- }
-
- ctx = filp->private_data;
- if (ctx == NULL) {
- printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current));
- return -EBADF;
- }
- /*
- * we cannot mask interrupts during this call because this may
- * may go to sleep if memory is not readily avalaible.
- *
- * We are protected from the conetxt disappearing by the get_fd()/put_fd()
- * done in caller. Serialization of this function is ensured by caller.
- */
- ret = pfm_do_fasync(fd, filp, ctx, on);
-
-
- DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
- fd,
- on,
- ctx->ctx_async_queue, ret));
-
- return ret;
-}
-
-#ifdef CONFIG_SMP
-/*
- * this function is exclusively called from pfm_close().
- * The context is not protected at that time, nor are interrupts
- * on the remote CPU. That's necessary to avoid deadlocks.
- */
-static void
-pfm_syswide_force_stop(void *info)
-{
- pfm_context_t *ctx = (pfm_context_t *)info;
- struct pt_regs *regs = task_pt_regs(current);
- struct task_struct *owner;
- unsigned long flags;
- int ret;
-
- if (ctx->ctx_cpu != smp_processor_id()) {
- printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
- ctx->ctx_cpu,
- smp_processor_id());
- return;
- }
- owner = GET_PMU_OWNER();
- if (owner != ctx->ctx_task) {
- printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
- smp_processor_id(),
- task_pid_nr(owner), task_pid_nr(ctx->ctx_task));
- return;
- }
- if (GET_PMU_CTX() != ctx) {
- printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
- smp_processor_id(),
- GET_PMU_CTX(), ctx);
- return;
- }
-
- DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx->ctx_task)));
- /*
- * the context is already protected in pfm_close(), we simply
- * need to mask interrupts to avoid a PMU interrupt race on
- * this CPU
- */
- local_irq_save(flags);
-
- ret = pfm_context_unload(ctx, NULL, 0, regs);
- if (ret) {
- DPRINT(("context_unload returned %d\n", ret));
- }
-
- /*
- * unmask interrupts, PMU interrupts are now spurious here
- */
- local_irq_restore(flags);
-}
-
-static void
-pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
-{
- int ret;
-
- DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
- ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 1);
- DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
-}
-#endif /* CONFIG_SMP */
-
-/*
- * called for each close(). Partially free resources.
- * When caller is self-monitoring, the context is unloaded.
- */
-static int
-pfm_flush(struct file *filp, fl_owner_t id)
-{
- pfm_context_t *ctx;
- struct task_struct *task;
- struct pt_regs *regs;
- unsigned long flags;
- unsigned long smpl_buf_size = 0UL;
- void *smpl_buf_vaddr = NULL;
- int state, is_system;
-
- if (PFM_IS_FILE(filp) == 0) {
- DPRINT(("bad magic for\n"));
- return -EBADF;
- }
-
- ctx = filp->private_data;
- if (ctx == NULL) {
- printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current));
- return -EBADF;
- }
-
- /*
- * remove our file from the async queue, if we use this mode.
- * This can be done without the context being protected. We come
- * here when the context has become unreachable by other tasks.
- *
- * We may still have active monitoring at this point and we may
- * end up in pfm_overflow_handler(). However, fasync_helper()
- * operates with interrupts disabled and it cleans up the
- * queue. If the PMU handler is called prior to entering
- * fasync_helper() then it will send a signal. If it is
- * invoked after, it will find an empty queue and no
- * signal will be sent. In both case, we are safe
- */
- PROTECT_CTX(ctx, flags);
-
- state = ctx->ctx_state;
- is_system = ctx->ctx_fl_system;
-
- task = PFM_CTX_TASK(ctx);
- regs = task_pt_regs(task);
-
- DPRINT(("ctx_state=%d is_current=%d\n",
- state,
- task == current ? 1 : 0));
-
- /*
- * if state == UNLOADED, then task is NULL
- */
-
- /*
- * we must stop and unload because we are losing access to the context.
- */
- if (task == current) {
-#ifdef CONFIG_SMP
- /*
- * the task IS the owner but it migrated to another CPU: that's bad
- * but we must handle this cleanly. Unfortunately, the kernel does
- * not provide a mechanism to block migration (while the context is loaded).
- *
- * We need to release the resource on the ORIGINAL cpu.
- */
- if (is_system && ctx->ctx_cpu != smp_processor_id()) {
-
- DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
- /*
- * keep context protected but unmask interrupt for IPI
- */
- local_irq_restore(flags);
-
- pfm_syswide_cleanup_other_cpu(ctx);
-
- /*
- * restore interrupt masking
- */
- local_irq_save(flags);
-
- /*
- * context is unloaded at this point
- */
- } else
-#endif /* CONFIG_SMP */
- {
-
- DPRINT(("forcing unload\n"));
- /*
- * stop and unload, returning with state UNLOADED
- * and session unreserved.
- */
- pfm_context_unload(ctx, NULL, 0, regs);
-
- DPRINT(("ctx_state=%d\n", ctx->ctx_state));
- }
- }
-
- /*
- * remove virtual mapping, if any, for the calling task.
- * cannot reset ctx field until last user is calling close().
- *
- * ctx_smpl_vaddr must never be cleared because it is needed
- * by every task with access to the context
- *
- * When called from do_exit(), the mm context is gone already, therefore
- * mm is NULL, i.e., the VMA is already gone and we do not have to
- * do anything here
- */
- if (ctx->ctx_smpl_vaddr && current->mm) {
- smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
- smpl_buf_size = ctx->ctx_smpl_size;
- }
-
- UNPROTECT_CTX(ctx, flags);
-
- /*
- * if there was a mapping, then we systematically remove it
- * at this point. Cannot be done inside critical section
- * because some VM function reenables interrupts.
- *
- */
- if (smpl_buf_vaddr) pfm_remove_smpl_mapping(smpl_buf_vaddr, smpl_buf_size);
-
- return 0;
-}
-/*
- * called either on explicit close() or from exit_files().
- * Only the LAST user of the file gets to this point, i.e., it is
- * called only ONCE.
- *
- * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
- * (fput()),i.e, last task to access the file. Nobody else can access the
- * file at this point.
- *
- * When called from exit_files(), the VMA has been freed because exit_mm()
- * is executed before exit_files().
- *
- * When called from exit_files(), the current task is not yet ZOMBIE but we
- * flush the PMU state to the context.
- */
-static int
-pfm_close(struct inode *inode, struct file *filp)
-{
- pfm_context_t *ctx;
- struct task_struct *task;
- struct pt_regs *regs;
- DECLARE_WAITQUEUE(wait, current);
- unsigned long flags;
- unsigned long smpl_buf_size = 0UL;
- void *smpl_buf_addr = NULL;
- int free_possible = 1;
- int state, is_system;
-
- DPRINT(("pfm_close called private=%p\n", filp->private_data));
-
- if (PFM_IS_FILE(filp) == 0) {
- DPRINT(("bad magic\n"));
- return -EBADF;
- }
-
- ctx = filp->private_data;
- if (ctx == NULL) {
- printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current));
- return -EBADF;
- }
-
- PROTECT_CTX(ctx, flags);
-
- state = ctx->ctx_state;
- is_system = ctx->ctx_fl_system;
-
- task = PFM_CTX_TASK(ctx);
- regs = task_pt_regs(task);
-
- DPRINT(("ctx_state=%d is_current=%d\n",
- state,
- task == current ? 1 : 0));
-
- /*
- * if task == current, then pfm_flush() unloaded the context
- */
- if (state == PFM_CTX_UNLOADED) goto doit;
-
- /*
- * context is loaded/masked and task != current, we need to
- * either force an unload or go zombie
- */
-
- /*
- * The task is currently blocked or will block after an overflow.
- * we must force it to wakeup to get out of the
- * MASKED state and transition to the unloaded state by itself.
- *
- * This situation is only possible for per-task mode
- */
- if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
-
- /*
- * set a "partial" zombie state to be checked
- * upon return from down() in pfm_handle_work().
- *
- * We cannot use the ZOMBIE state, because it is checked
- * by pfm_load_regs() which is called upon wakeup from down().
- * In such case, it would free the context and then we would
- * return to pfm_handle_work() which would access the
- * stale context. Instead, we set a flag invisible to pfm_load_regs()
- * but visible to pfm_handle_work().
- *
- * For some window of time, we have a zombie context with
- * ctx_state = MASKED and not ZOMBIE
- */
- ctx->ctx_fl_going_zombie = 1;
-
- /*
- * force task to wake up from MASKED state
- */
- complete(&ctx->ctx_restart_done);
-
- DPRINT(("waking up ctx_state=%d\n", state));
-
- /*
- * put ourself to sleep waiting for the other
- * task to report completion
- *
- * the context is protected by mutex, therefore there
- * is no risk of being notified of completion before
- * begin actually on the waitq.
- */
- set_current_state(TASK_INTERRUPTIBLE);
- add_wait_queue(&ctx->ctx_zombieq, &wait);
-
- UNPROTECT_CTX(ctx, flags);
-
- /*
- * XXX: check for signals :
- * - ok for explicit close
- * - not ok when coming from exit_files()
- */
- schedule();
-
-
- PROTECT_CTX(ctx, flags);
-
-
- remove_wait_queue(&ctx->ctx_zombieq, &wait);
- set_current_state(TASK_RUNNING);
-
- /*
- * context is unloaded at this point
- */
- DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
- }
- else if (task != current) {
-#ifdef CONFIG_SMP
- /*
- * switch context to zombie state
- */
- ctx->ctx_state = PFM_CTX_ZOMBIE;
-
- DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task)));
- /*
- * cannot free the context on the spot. deferred until
- * the task notices the ZOMBIE state
- */
- free_possible = 0;
-#else
- pfm_context_unload(ctx, NULL, 0, regs);
-#endif
- }
-
-doit:
- /* reload state, may have changed during opening of critical section */
- state = ctx->ctx_state;
-
- /*
- * the context is still attached to a task (possibly current)
- * we cannot destroy it right now
- */
-
- /*
- * we must free the sampling buffer right here because
- * we cannot rely on it being cleaned up later by the
- * monitored task. It is not possible to free vmalloc'ed
- * memory in pfm_load_regs(). Instead, we remove the buffer
- * now. should there be subsequent PMU overflow originally
- * meant for sampling, the will be converted to spurious
- * and that's fine because the monitoring tools is gone anyway.
- */
- if (ctx->ctx_smpl_hdr) {
- smpl_buf_addr = ctx->ctx_smpl_hdr;
- smpl_buf_size = ctx->ctx_smpl_size;
- /* no more sampling */
- ctx->ctx_smpl_hdr = NULL;
- ctx->ctx_fl_is_sampling = 0;
- }
-
- DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
- state,
- free_possible,
- smpl_buf_addr,
- smpl_buf_size));
-
- if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
-
- /*
- * UNLOADED that the session has already been unreserved.
- */
- if (state == PFM_CTX_ZOMBIE) {
- pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
- }
-
- /*
- * disconnect file descriptor from context must be done
- * before we unlock.
- */
- filp->private_data = NULL;
-
- /*
- * if we free on the spot, the context is now completely unreachable
- * from the callers side. The monitored task side is also cut, so we
- * can freely cut.
- *
- * If we have a deferred free, only the caller side is disconnected.
- */
- UNPROTECT_CTX(ctx, flags);
-
- /*
- * All memory free operations (especially for vmalloc'ed memory)
- * MUST be done with interrupts ENABLED.
- */
- vfree(smpl_buf_addr);
-
- /*
- * return the memory used by the context
- */
- if (free_possible) pfm_context_free(ctx);
-
- return 0;
-}
-
-static const struct file_operations pfm_file_ops = {
- .llseek = no_llseek,
- .read = pfm_read,
- .write = pfm_write,
- .poll = pfm_poll,
- .unlocked_ioctl = pfm_ioctl,
- .fasync = pfm_fasync,
- .release = pfm_close,
- .flush = pfm_flush
-};
-
-static char *pfmfs_dname(struct dentry *dentry, char *buffer, int buflen)
-{
- return dynamic_dname(dentry, buffer, buflen, "pfm:[%lu]",
- d_inode(dentry)->i_ino);
-}
-
-static const struct dentry_operations pfmfs_dentry_operations = {
- .d_delete = always_delete_dentry,
- .d_dname = pfmfs_dname,
-};
-
-
-static struct file *
-pfm_alloc_file(pfm_context_t *ctx)
-{
- struct file *file;
- struct inode *inode;
- struct path path;
- struct qstr this = { .name = "" };
-
- /*
- * allocate a new inode
- */
- inode = new_inode(pfmfs_mnt->mnt_sb);
- if (!inode)
- return ERR_PTR(-ENOMEM);
-
- DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
-
- inode->i_mode = S_IFCHR|S_IRUGO;
- inode->i_uid = current_fsuid();
- inode->i_gid = current_fsgid();
-
- /*
- * allocate a new dcache entry
- */
- path.dentry = d_alloc(pfmfs_mnt->mnt_root, &this);
- if (!path.dentry) {
- iput(inode);
- return ERR_PTR(-ENOMEM);
- }
- path.mnt = mntget(pfmfs_mnt);
-
- d_add(path.dentry, inode);
-
- file = alloc_file(&path, FMODE_READ, &pfm_file_ops);
- if (IS_ERR(file)) {
- path_put(&path);
- return file;
- }
-
- file->f_flags = O_RDONLY;
- file->private_data = ctx;
-
- return file;
-}
-
-static int
-pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
-{
- DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
-
- while (size > 0) {
- unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
-
-
- if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
- return -ENOMEM;
-
- addr += PAGE_SIZE;
- buf += PAGE_SIZE;
- size -= PAGE_SIZE;
- }
- return 0;
-}
-
-/*
- * allocate a sampling buffer and remaps it into the user address space of the task
- */
-static int
-pfm_smpl_buffer_alloc(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
-{
- struct mm_struct *mm = task->mm;
- struct vm_area_struct *vma = NULL;
- unsigned long size;
- void *smpl_buf;
-
-
- /*
- * the fixed header + requested size and align to page boundary
- */
- size = PAGE_ALIGN(rsize);
-
- DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
-
- /*
- * check requested size to avoid Denial-of-service attacks
- * XXX: may have to refine this test
- * Check against address space limit.
- *
- * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
- * return -ENOMEM;
- */
- if (size > task_rlimit(task, RLIMIT_MEMLOCK))
- return -ENOMEM;
-
- /*
- * We do the easy to undo allocations first.
- */
- smpl_buf = vzalloc(size);
- if (smpl_buf == NULL) {
- DPRINT(("Can't allocate sampling buffer\n"));
- return -ENOMEM;
- }
-
- DPRINT(("smpl_buf @%p\n", smpl_buf));
-
- /* allocate vma */
- vma = vm_area_alloc(mm);
- if (!vma) {
- DPRINT(("Cannot allocate vma\n"));
- goto error_kmem;
- }
-
- /*
- * partially initialize the vma for the sampling buffer
- */
- vma->vm_file = get_file(filp);
- vma->vm_flags = VM_READ|VM_MAYREAD|VM_DONTEXPAND|VM_DONTDUMP;
- vma->vm_page_prot = PAGE_READONLY; /* XXX may need to change */
-
- /*
- * Now we have everything we need and we can initialize
- * and connect all the data structures
- */
-
- ctx->ctx_smpl_hdr = smpl_buf;
- ctx->ctx_smpl_size = size; /* aligned size */
-
- /*
- * Let's do the difficult operations next.
- *
- * now we atomically find some area in the address space and
- * remap the buffer in it.
- */
- mmap_write_lock(task->mm);
-
- /* find some free area in address space, must have mmap sem held */
- vma->vm_start = get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS);
- if (IS_ERR_VALUE(vma->vm_start)) {
- DPRINT(("Cannot find unmapped area for size %ld\n", size));
- mmap_write_unlock(task->mm);
- goto error;
- }
- vma->vm_end = vma->vm_start + size;
- vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
-
- DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
-
- /* can only be applied to current task, need to have the mm semaphore held when called */
- if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
- DPRINT(("Can't remap buffer\n"));
- mmap_write_unlock(task->mm);
- goto error;
- }
-
- /*
- * now insert the vma in the vm list for the process, must be
- * done with mmap lock held
- */
- insert_vm_struct(mm, vma);
-
- vm_stat_account(vma->vm_mm, vma->vm_flags, vma_pages(vma));
- mmap_write_unlock(task->mm);
-
- /*
- * keep track of user level virtual address
- */
- ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
- *(unsigned long *)user_vaddr = vma->vm_start;
-
- return 0;
-
-error:
- vm_area_free(vma);
-error_kmem:
- vfree(smpl_buf);
-
- return -ENOMEM;
-}
-
-/*
- * XXX: do something better here
- */
-static int
-pfm_bad_permissions(struct task_struct *task)
-{
- const struct cred *tcred;
- kuid_t uid = current_uid();
- kgid_t gid = current_gid();
- int ret;
-
- rcu_read_lock();
- tcred = __task_cred(task);
-
- /* inspired by ptrace_attach() */
- DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
- from_kuid(&init_user_ns, uid),
- from_kgid(&init_user_ns, gid),
- from_kuid(&init_user_ns, tcred->euid),
- from_kuid(&init_user_ns, tcred->suid),
- from_kuid(&init_user_ns, tcred->uid),
- from_kgid(&init_user_ns, tcred->egid),
- from_kgid(&init_user_ns, tcred->sgid)));
-
- ret = ((!uid_eq(uid, tcred->euid))
- || (!uid_eq(uid, tcred->suid))
- || (!uid_eq(uid, tcred->uid))
- || (!gid_eq(gid, tcred->egid))
- || (!gid_eq(gid, tcred->sgid))
- || (!gid_eq(gid, tcred->gid))) && !capable(CAP_SYS_PTRACE);
-
- rcu_read_unlock();
- return ret;
-}
-
-static int
-pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
-{
- int ctx_flags;
-
- /* valid signal */
-
- ctx_flags = pfx->ctx_flags;
-
- if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
-
- /*
- * cannot block in this mode
- */
- if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
- DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
- return -EINVAL;
- }
- } else {
- }
- /* probably more to add here */
-
- return 0;
-}
-
-static int
-pfm_setup_buffer_fmt(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned int ctx_flags,
- unsigned int cpu, pfarg_context_t *arg)
-{
- pfm_buffer_fmt_t *fmt = NULL;
- unsigned long size = 0UL;
- void *uaddr = NULL;
- void *fmt_arg = NULL;
- int ret = 0;
-#define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
-
- /* invoke and lock buffer format, if found */
- fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
- if (fmt == NULL) {
- DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task)));
- return -EINVAL;
- }
-
- /*
- * buffer argument MUST be contiguous to pfarg_context_t
- */
- if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
-
- ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
-
- DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task), ctx_flags, cpu, fmt_arg, ret));
-
- if (ret) goto error;
-
- /* link buffer format and context */
- ctx->ctx_buf_fmt = fmt;
- ctx->ctx_fl_is_sampling = 1; /* assume record() is defined */
-
- /*
- * check if buffer format wants to use perfmon buffer allocation/mapping service
- */
- ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
- if (ret) goto error;
-
- if (size) {
- /*
- * buffer is always remapped into the caller's address space
- */
- ret = pfm_smpl_buffer_alloc(current, filp, ctx, size, &uaddr);
- if (ret) goto error;
-
- /* keep track of user address of buffer */
- arg->ctx_smpl_vaddr = uaddr;
- }
- ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
-
-error:
- return ret;
-}
-
-static void
-pfm_reset_pmu_state(pfm_context_t *ctx)
-{
- int i;
-
- /*
- * install reset values for PMC.
- */
- for (i=1; PMC_IS_LAST(i) == 0; i++) {
- if (PMC_IS_IMPL(i) == 0) continue;
- ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
- DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
- }
- /*
- * PMD registers are set to 0UL when the context in memset()
- */
-
- /*
- * On context switched restore, we must restore ALL pmc and ALL pmd even
- * when they are not actively used by the task. In UP, the incoming process
- * may otherwise pick up left over PMC, PMD state from the previous process.
- * As opposed to PMD, stale PMC can cause harm to the incoming
- * process because they may change what is being measured.
- * Therefore, we must systematically reinstall the entire
- * PMC state. In SMP, the same thing is possible on the
- * same CPU but also on between 2 CPUs.
- *
- * The problem with PMD is information leaking especially
- * to user level when psr.sp=0
- *
- * There is unfortunately no easy way to avoid this problem
- * on either UP or SMP. This definitively slows down the
- * pfm_load_regs() function.
- */
-
- /*
- * bitmask of all PMCs accessible to this context
- *
- * PMC0 is treated differently.
- */
- ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
-
- /*
- * bitmask of all PMDs that are accessible to this context
- */
- ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
-
- DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
-
- /*
- * useful in case of re-enable after disable
- */
- ctx->ctx_used_ibrs[0] = 0UL;
- ctx->ctx_used_dbrs[0] = 0UL;
-}
-
-static int
-pfm_ctx_getsize(void *arg, size_t *sz)
-{
- pfarg_context_t *req = (pfarg_context_t *)arg;
- pfm_buffer_fmt_t *fmt;
-
- *sz = 0;
-
- if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
-
- fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
- if (fmt == NULL) {
- DPRINT(("cannot find buffer format\n"));
- return -EINVAL;
- }
- /* get just enough to copy in user parameters */
- *sz = fmt->fmt_arg_size;
- DPRINT(("arg_size=%lu\n", *sz));
-
- return 0;
-}
-
-
-
-/*
- * cannot attach if :
- * - kernel task
- * - task not owned by caller
- * - task incompatible with context mode
- */
-static int
-pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
-{
- /*
- * no kernel task or task not owner by caller
- */
- if (task->mm == NULL) {
- DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task)));
- return -EPERM;
- }
- if (pfm_bad_permissions(task)) {
- DPRINT(("no permission to attach to [%d]\n", task_pid_nr(task)));
- return -EPERM;
- }
- /*
- * cannot block in self-monitoring mode
- */
- if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
- DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task)));
- return -EINVAL;
- }
-
- if (task->exit_state == EXIT_ZOMBIE) {
- DPRINT(("cannot attach to zombie task [%d]\n", task_pid_nr(task)));
- return -EBUSY;
- }
-
- /*
- * always ok for self
- */
- if (task == current) return 0;
-
- if (!task_is_stopped_or_traced(task)) {
- DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task), task->state));
- return -EBUSY;
- }
- /*
- * make sure the task is off any CPU
- */
- wait_task_inactive(task, 0);
-
- /* more to come... */
-
- return 0;
-}
-
-static int
-pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
-{
- struct task_struct *p = current;
- int ret;
-
- /* XXX: need to add more checks here */
- if (pid < 2) return -EPERM;
-
- if (pid != task_pid_vnr(current)) {
- /* make sure task cannot go away while we operate on it */
- p = find_get_task_by_vpid(pid);
- if (!p)
- return -ESRCH;
- }
-
- ret = pfm_task_incompatible(ctx, p);
- if (ret == 0) {
- *task = p;
- } else if (p != current) {
- pfm_put_task(p);
- }
- return ret;
-}
-
-
-
-static int
-pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
-{
- pfarg_context_t *req = (pfarg_context_t *)arg;
- struct file *filp;
- struct path path;
- int ctx_flags;
- int fd;
- int ret;
-
- /* let's check the arguments first */
- ret = pfarg_is_sane(current, req);
- if (ret < 0)
- return ret;
-
- ctx_flags = req->ctx_flags;
-
- ret = -ENOMEM;
-
- fd = get_unused_fd_flags(0);
- if (fd < 0)
- return fd;
-
- ctx = pfm_context_alloc(ctx_flags);
- if (!ctx)
- goto error;
-
- filp = pfm_alloc_file(ctx);
- if (IS_ERR(filp)) {
- ret = PTR_ERR(filp);
- goto error_file;
- }
-
- req->ctx_fd = ctx->ctx_fd = fd;
-
- /*
- * does the user want to sample?
- */
- if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
- ret = pfm_setup_buffer_fmt(current, filp, ctx, ctx_flags, 0, req);
- if (ret)
- goto buffer_error;
- }
-
- DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d\n",
- ctx,
- ctx_flags,
- ctx->ctx_fl_system,
- ctx->ctx_fl_block,
- ctx->ctx_fl_excl_idle,
- ctx->ctx_fl_no_msg,
- ctx->ctx_fd));
-
- /*
- * initialize soft PMU state
- */
- pfm_reset_pmu_state(ctx);
-
- fd_install(fd, filp);
-
- return 0;
-
-buffer_error:
- path = filp->f_path;
- put_filp(filp);
- path_put(&path);
-
- if (ctx->ctx_buf_fmt) {
- pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
- }
-error_file:
- pfm_context_free(ctx);
-
-error:
- put_unused_fd(fd);
- return ret;
-}
-
-static inline unsigned long
-pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
-{
- unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
- unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
- extern unsigned long carta_random32 (unsigned long seed);
-
- if (reg->flags & PFM_REGFL_RANDOM) {
- new_seed = carta_random32(old_seed);
- val -= (old_seed & mask); /* counter values are negative numbers! */
- if ((mask >> 32) != 0)
- /* construct a full 64-bit random value: */
- new_seed |= carta_random32(old_seed >> 32) << 32;
- reg->seed = new_seed;
- }
- reg->lval = val;
- return val;
-}
-
-static void
-pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
-{
- unsigned long mask = ovfl_regs[0];
- unsigned long reset_others = 0UL;
- unsigned long val;
- int i;
-
- /*
- * now restore reset value on sampling overflowed counters
- */
- mask >>= PMU_FIRST_COUNTER;
- for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
-
- if ((mask & 0x1UL) == 0UL) continue;
-
- ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
- reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
-
- DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
- }
-
- /*
- * Now take care of resetting the other registers
- */
- for(i = 0; reset_others; i++, reset_others >>= 1) {
-
- if ((reset_others & 0x1) == 0) continue;
-
- ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
-
- DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
- is_long_reset ? "long" : "short", i, val));
- }
-}
-
-static void
-pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
-{
- unsigned long mask = ovfl_regs[0];
- unsigned long reset_others = 0UL;
- unsigned long val;
- int i;
-
- DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
-
- if (ctx->ctx_state == PFM_CTX_MASKED) {
- pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
- return;
- }
-
- /*
- * now restore reset value on sampling overflowed counters
- */
- mask >>= PMU_FIRST_COUNTER;
- for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
-
- if ((mask & 0x1UL) == 0UL) continue;
-
- val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
- reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
-
- DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
-
- pfm_write_soft_counter(ctx, i, val);
- }
-
- /*
- * Now take care of resetting the other registers
- */
- for(i = 0; reset_others; i++, reset_others >>= 1) {
-
- if ((reset_others & 0x1) == 0) continue;
-
- val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
-
- if (PMD_IS_COUNTING(i)) {
- pfm_write_soft_counter(ctx, i, val);
- } else {
- ia64_set_pmd(i, val);
- }
- DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
- is_long_reset ? "long" : "short", i, val));
- }
- ia64_srlz_d();
-}
-
-static int
-pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
-{
- struct task_struct *task;
- pfarg_reg_t *req = (pfarg_reg_t *)arg;
- unsigned long value, pmc_pm;
- unsigned long smpl_pmds, reset_pmds, impl_pmds;
- unsigned int cnum, reg_flags, flags, pmc_type;
- int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
- int is_monitor, is_counting, state;
- int ret = -EINVAL;
- pfm_reg_check_t wr_func;
-#define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
-
- state = ctx->ctx_state;
- is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
- is_system = ctx->ctx_fl_system;
- task = ctx->ctx_task;
- impl_pmds = pmu_conf->impl_pmds[0];
-
- if (state == PFM_CTX_ZOMBIE) return -EINVAL;
-
- if (is_loaded) {
- /*
- * In system wide and when the context is loaded, access can only happen
- * when the caller is running on the CPU being monitored by the session.
- * It does not have to be the owner (ctx_task) of the context per se.
- */
- if (is_system && ctx->ctx_cpu != smp_processor_id()) {
- DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
- return -EBUSY;
- }
- can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
- }
- expert_mode = pfm_sysctl.expert_mode;
-
- for (i = 0; i < count; i++, req++) {
-
- cnum = req->reg_num;
- reg_flags = req->reg_flags;
- value = req->reg_value;
- smpl_pmds = req->reg_smpl_pmds[0];
- reset_pmds = req->reg_reset_pmds[0];
- flags = 0;
-
-
- if (cnum >= PMU_MAX_PMCS) {
- DPRINT(("pmc%u is invalid\n", cnum));
- goto error;
- }
-
- pmc_type = pmu_conf->pmc_desc[cnum].type;
- pmc_pm = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
- is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
- is_monitor = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
-
- /*
- * we reject all non implemented PMC as well
- * as attempts to modify PMC[0-3] which are used
- * as status registers by the PMU
- */
- if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
- DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
- goto error;
- }
- wr_func = pmu_conf->pmc_desc[cnum].write_check;
- /*
- * If the PMC is a monitor, then if the value is not the default:
- * - system-wide session: PMCx.pm=1 (privileged monitor)
- * - per-task : PMCx.pm=0 (user monitor)
- */
- if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
- DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
- cnum,
- pmc_pm,
- is_system));
- goto error;
- }
-
- if (is_counting) {
- /*
- * enforce generation of overflow interrupt. Necessary on all
- * CPUs.
- */
- value |= 1 << PMU_PMC_OI;
-
- if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
- flags |= PFM_REGFL_OVFL_NOTIFY;
- }
-
- if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
-
- /* verify validity of smpl_pmds */
- if ((smpl_pmds & impl_pmds) != smpl_pmds) {
- DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
- goto error;
- }
-
- /* verify validity of reset_pmds */
- if ((reset_pmds & impl_pmds) != reset_pmds) {
- DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
- goto error;
- }
- } else {
- if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
- DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
- goto error;
- }
- /* eventid on non-counting monitors are ignored */
- }
-
- /*
- * execute write checker, if any
- */
- if (likely(expert_mode == 0 && wr_func)) {
- ret = (*wr_func)(task, ctx, cnum, &value, regs);
- if (ret) goto error;
- ret = -EINVAL;
- }
-
- /*
- * no error on this register
- */
- PFM_REG_RETFLAG_SET(req->reg_flags, 0);
-
- /*
- * Now we commit the changes to the software state
- */
-
- /*
- * update overflow information
- */
- if (is_counting) {
- /*
- * full flag update each time a register is programmed
- */
- ctx->ctx_pmds[cnum].flags = flags;
-
- ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
- ctx->ctx_pmds[cnum].smpl_pmds[0] = smpl_pmds;
- ctx->ctx_pmds[cnum].eventid = req->reg_smpl_eventid;
-
- /*
- * Mark all PMDS to be accessed as used.
- *
- * We do not keep track of PMC because we have to
- * systematically restore ALL of them.
- *
- * We do not update the used_monitors mask, because
- * if we have not programmed them, then will be in
- * a quiescent state, therefore we will not need to
- * mask/restore then when context is MASKED.
- */
- CTX_USED_PMD(ctx, reset_pmds);
- CTX_USED_PMD(ctx, smpl_pmds);
- /*
- * make sure we do not try to reset on
- * restart because we have established new values
- */
- if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
- }
- /*
- * Needed in case the user does not initialize the equivalent
- * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
- * possible leak here.
- */
- CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
-
- /*
- * keep track of the monitor PMC that we are using.
- * we save the value of the pmc in ctx_pmcs[] and if
- * the monitoring is not stopped for the context we also
- * place it in the saved state area so that it will be
- * picked up later by the context switch code.
- *
- * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
- *
- * The value in th_pmcs[] may be modified on overflow, i.e., when
- * monitoring needs to be stopped.
- */
- if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
-
- /*
- * update context state
- */
- ctx->ctx_pmcs[cnum] = value;
-
- if (is_loaded) {
- /*
- * write thread state
- */
- if (is_system == 0) ctx->th_pmcs[cnum] = value;
-
- /*
- * write hardware register if we can
- */
- if (can_access_pmu) {
- ia64_set_pmc(cnum, value);
- }
-#ifdef CONFIG_SMP
- else {
- /*
- * per-task SMP only here
- *
- * we are guaranteed that the task is not running on the other CPU,
- * we indicate that this PMD will need to be reloaded if the task
- * is rescheduled on the CPU it ran last on.
- */
- ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
- }
-#endif
- }
-
- DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
- cnum,
- value,
- is_loaded,
- can_access_pmu,
- flags,
- ctx->ctx_all_pmcs[0],
- ctx->ctx_used_pmds[0],
- ctx->ctx_pmds[cnum].eventid,
- smpl_pmds,
- reset_pmds,
- ctx->ctx_reload_pmcs[0],
- ctx->ctx_used_monitors[0],
- ctx->ctx_ovfl_regs[0]));
- }
-
- /*
- * make sure the changes are visible
- */
- if (can_access_pmu) ia64_srlz_d();
-
- return 0;
-error:
- PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
- return ret;
-}
-
-static int
-pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
-{
- struct task_struct *task;
- pfarg_reg_t *req = (pfarg_reg_t *)arg;
- unsigned long value, hw_value, ovfl_mask;
- unsigned int cnum;
- int i, can_access_pmu = 0, state;
- int is_counting, is_loaded, is_system, expert_mode;
- int ret = -EINVAL;
- pfm_reg_check_t wr_func;
-
-
- state = ctx->ctx_state;
- is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
- is_system = ctx->ctx_fl_system;
- ovfl_mask = pmu_conf->ovfl_val;
- task = ctx->ctx_task;
-
- if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
-
- /*
- * on both UP and SMP, we can only write to the PMC when the task is
- * the owner of the local PMU.
- */
- if (likely(is_loaded)) {
- /*
- * In system wide and when the context is loaded, access can only happen
- * when the caller is running on the CPU being monitored by the session.
- * It does not have to be the owner (ctx_task) of the context per se.
- */
- if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
- DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
- return -EBUSY;
- }
- can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
- }
- expert_mode = pfm_sysctl.expert_mode;
-
- for (i = 0; i < count; i++, req++) {
-
- cnum = req->reg_num;
- value = req->reg_value;
-
- if (!PMD_IS_IMPL(cnum)) {
- DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
- goto abort_mission;
- }
- is_counting = PMD_IS_COUNTING(cnum);
- wr_func = pmu_conf->pmd_desc[cnum].write_check;
-
- /*
- * execute write checker, if any
- */
- if (unlikely(expert_mode == 0 && wr_func)) {
- unsigned long v = value;
-
- ret = (*wr_func)(task, ctx, cnum, &v, regs);
- if (ret) goto abort_mission;
-
- value = v;
- ret = -EINVAL;
- }
-
- /*
- * no error on this register
- */
- PFM_REG_RETFLAG_SET(req->reg_flags, 0);
-
- /*
- * now commit changes to software state
- */
- hw_value = value;
-
- /*
- * update virtualized (64bits) counter
- */
- if (is_counting) {
- /*
- * write context state
- */
- ctx->ctx_pmds[cnum].lval = value;
-
- /*
- * when context is load we use the split value
- */
- if (is_loaded) {
- hw_value = value & ovfl_mask;
- value = value & ~ovfl_mask;
- }
- }
- /*
- * update reset values (not just for counters)
- */
- ctx->ctx_pmds[cnum].long_reset = req->reg_long_reset;
- ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
-
- /*
- * update randomization parameters (not just for counters)
- */
- ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
- ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
-
- /*
- * update context value
- */
- ctx->ctx_pmds[cnum].val = value;
-
- /*
- * Keep track of what we use
- *
- * We do not keep track of PMC because we have to
- * systematically restore ALL of them.
- */
- CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
-
- /*
- * mark this PMD register used as well
- */
- CTX_USED_PMD(ctx, RDEP(cnum));
-
- /*
- * make sure we do not try to reset on
- * restart because we have established new values
- */
- if (is_counting && state == PFM_CTX_MASKED) {
- ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
- }
-
- if (is_loaded) {
- /*
- * write thread state
- */
- if (is_system == 0) ctx->th_pmds[cnum] = hw_value;
-
- /*
- * write hardware register if we can
- */
- if (can_access_pmu) {
- ia64_set_pmd(cnum, hw_value);
- } else {
-#ifdef CONFIG_SMP
- /*
- * we are guaranteed that the task is not running on the other CPU,
- * we indicate that this PMD will need to be reloaded if the task
- * is rescheduled on the CPU it ran last on.
- */
- ctx->ctx_reload_pmds[0] |= 1UL << cnum;
-#endif
- }
- }
-
- DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
- "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
- cnum,
- value,
- is_loaded,
- can_access_pmu,
- hw_value,
- ctx->ctx_pmds[cnum].val,
- ctx->ctx_pmds[cnum].short_reset,
- ctx->ctx_pmds[cnum].long_reset,
- PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
- ctx->ctx_pmds[cnum].seed,
- ctx->ctx_pmds[cnum].mask,
- ctx->ctx_used_pmds[0],
- ctx->ctx_pmds[cnum].reset_pmds[0],
- ctx->ctx_reload_pmds[0],
- ctx->ctx_all_pmds[0],
- ctx->ctx_ovfl_regs[0]));
- }
-
- /*
- * make changes visible
- */
- if (can_access_pmu) ia64_srlz_d();
-
- return 0;
-
-abort_mission:
- /*
- * for now, we have only one possibility for error
- */
- PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
- return ret;
-}
-
-/*
- * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
- * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
- * interrupt is delivered during the call, it will be kept pending until we leave, making
- * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
- * guaranteed to return consistent data to the user, it may simply be old. It is not
- * trivial to treat the overflow while inside the call because you may end up in
- * some module sampling buffer code causing deadlocks.
- */
-static int
-pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
-{
- struct task_struct *task;
- unsigned long val = 0UL, lval, ovfl_mask, sval;
- pfarg_reg_t *req = (pfarg_reg_t *)arg;
- unsigned int cnum, reg_flags = 0;
- int i, can_access_pmu = 0, state;
- int is_loaded, is_system, is_counting, expert_mode;
- int ret = -EINVAL;
- pfm_reg_check_t rd_func;
-
- /*
- * access is possible when loaded only for
- * self-monitoring tasks or in UP mode
- */
-
- state = ctx->ctx_state;
- is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
- is_system = ctx->ctx_fl_system;
- ovfl_mask = pmu_conf->ovfl_val;
- task = ctx->ctx_task;
-
- if (state == PFM_CTX_ZOMBIE) return -EINVAL;
-
- if (likely(is_loaded)) {
- /*
- * In system wide and when the context is loaded, access can only happen
- * when the caller is running on the CPU being monitored by the session.
- * It does not have to be the owner (ctx_task) of the context per se.
- */
- if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
- DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
- return -EBUSY;
- }
- /*
- * this can be true when not self-monitoring only in UP
- */
- can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
-
- if (can_access_pmu) ia64_srlz_d();
- }
- expert_mode = pfm_sysctl.expert_mode;
-
- DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
- is_loaded,
- can_access_pmu,
- state));
-
- /*
- * on both UP and SMP, we can only read the PMD from the hardware register when
- * the task is the owner of the local PMU.
- */
-
- for (i = 0; i < count; i++, req++) {
-
- cnum = req->reg_num;
- reg_flags = req->reg_flags;
-
- if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
- /*
- * we can only read the register that we use. That includes
- * the one we explicitly initialize AND the one we want included
- * in the sampling buffer (smpl_regs).
- *
- * Having this restriction allows optimization in the ctxsw routine
- * without compromising security (leaks)
- */
- if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
-
- sval = ctx->ctx_pmds[cnum].val;
- lval = ctx->ctx_pmds[cnum].lval;
- is_counting = PMD_IS_COUNTING(cnum);
-
- /*
- * If the task is not the current one, then we check if the
- * PMU state is still in the local live register due to lazy ctxsw.
- * If true, then we read directly from the registers.
- */
- if (can_access_pmu){
- val = ia64_get_pmd(cnum);
- } else {
- /*
- * context has been saved
- * if context is zombie, then task does not exist anymore.
- * In this case, we use the full value saved in the context (pfm_flush_regs()).
- */
- val = is_loaded ? ctx->th_pmds[cnum] : 0UL;
- }
- rd_func = pmu_conf->pmd_desc[cnum].read_check;
-
- if (is_counting) {
- /*
- * XXX: need to check for overflow when loaded
- */
- val &= ovfl_mask;
- val += sval;
- }
-
- /*
- * execute read checker, if any
- */
- if (unlikely(expert_mode == 0 && rd_func)) {
- unsigned long v = val;
- ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
- if (ret) goto error;
- val = v;
- ret = -EINVAL;
- }
-
- PFM_REG_RETFLAG_SET(reg_flags, 0);
-
- DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
-
- /*
- * update register return value, abort all if problem during copy.
- * we only modify the reg_flags field. no check mode is fine because
- * access has been verified upfront in sys_perfmonctl().
- */
- req->reg_value = val;
- req->reg_flags = reg_flags;
- req->reg_last_reset_val = lval;
- }
-
- return 0;
-
-error:
- PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
- return ret;
-}
-
-int
-pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
-{
- pfm_context_t *ctx;
-
- if (req == NULL) return -EINVAL;
-
- ctx = GET_PMU_CTX();
-
- if (ctx == NULL) return -EINVAL;
-
- /*
- * for now limit to current task, which is enough when calling
- * from overflow handler
- */
- if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
-
- return pfm_write_pmcs(ctx, req, nreq, regs);
-}
-EXPORT_SYMBOL(pfm_mod_write_pmcs);
-
-int
-pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
-{
- pfm_context_t *ctx;
-
- if (req == NULL) return -EINVAL;
-
- ctx = GET_PMU_CTX();
-
- if (ctx == NULL) return -EINVAL;
-
- /*
- * for now limit to current task, which is enough when calling
- * from overflow handler
- */
- if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
-
- return pfm_read_pmds(ctx, req, nreq, regs);
-}
-EXPORT_SYMBOL(pfm_mod_read_pmds);
-
-/*
- * Only call this function when a process it trying to
- * write the debug registers (reading is always allowed)
- */
-int
-pfm_use_debug_registers(struct task_struct *task)
-{
- pfm_context_t *ctx = task->thread.pfm_context;
- unsigned long flags;
- int ret = 0;
-
- if (pmu_conf->use_rr_dbregs == 0) return 0;
-
- DPRINT(("called for [%d]\n", task_pid_nr(task)));
-
- /*
- * do it only once
- */
- if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
-
- /*
- * Even on SMP, we do not need to use an atomic here because
- * the only way in is via ptrace() and this is possible only when the
- * process is stopped. Even in the case where the ctxsw out is not totally
- * completed by the time we come here, there is no way the 'stopped' process
- * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
- * So this is always safe.
- */
- if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
-
- LOCK_PFS(flags);
-
- /*
- * We cannot allow setting breakpoints when system wide monitoring
- * sessions are using the debug registers.
- */
- if (pfm_sessions.pfs_sys_use_dbregs> 0)
- ret = -1;
- else
- pfm_sessions.pfs_ptrace_use_dbregs++;
-
- DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
- pfm_sessions.pfs_ptrace_use_dbregs,
- pfm_sessions.pfs_sys_use_dbregs,
- task_pid_nr(task), ret));
-
- UNLOCK_PFS(flags);
-
- return ret;
-}
-
-/*
- * This function is called for every task that exits with the
- * IA64_THREAD_DBG_VALID set. This indicates a task which was
- * able to use the debug registers for debugging purposes via
- * ptrace(). Therefore we know it was not using them for
- * performance monitoring, so we only decrement the number
- * of "ptraced" debug register users to keep the count up to date
- */
-int
-pfm_release_debug_registers(struct task_struct *task)
-{
- unsigned long flags;
- int ret;
-
- if (pmu_conf->use_rr_dbregs == 0) return 0;
-
- LOCK_PFS(flags);
- if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
- printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task));
- ret = -1;
- } else {
- pfm_sessions.pfs_ptrace_use_dbregs--;
- ret = 0;
- }
- UNLOCK_PFS(flags);
-
- return ret;
-}
-
-static int
-pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
-{
- struct task_struct *task;
- pfm_buffer_fmt_t *fmt;
- pfm_ovfl_ctrl_t rst_ctrl;
- int state, is_system;
- int ret = 0;
-
- state = ctx->ctx_state;
- fmt = ctx->ctx_buf_fmt;
- is_system = ctx->ctx_fl_system;
- task = PFM_CTX_TASK(ctx);
-
- switch(state) {
- case PFM_CTX_MASKED:
- break;
- case PFM_CTX_LOADED:
- if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
- fallthrough;
- case PFM_CTX_UNLOADED:
- case PFM_CTX_ZOMBIE:
- DPRINT(("invalid state=%d\n", state));
- return -EBUSY;
- default:
- DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
- return -EINVAL;
- }
-
- /*
- * In system wide and when the context is loaded, access can only happen
- * when the caller is running on the CPU being monitored by the session.
- * It does not have to be the owner (ctx_task) of the context per se.
- */
- if (is_system && ctx->ctx_cpu != smp_processor_id()) {
- DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
- return -EBUSY;
- }
-
- /* sanity check */
- if (unlikely(task == NULL)) {
- printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", task_pid_nr(current));
- return -EINVAL;
- }
-
- if (task == current || is_system) {
-
- fmt = ctx->ctx_buf_fmt;
-
- DPRINT(("restarting self %d ovfl=0x%lx\n",
- task_pid_nr(task),
- ctx->ctx_ovfl_regs[0]));
-
- if (CTX_HAS_SMPL(ctx)) {
-
- prefetch(ctx->ctx_smpl_hdr);
-
- rst_ctrl.bits.mask_monitoring = 0;
- rst_ctrl.bits.reset_ovfl_pmds = 0;
-
- if (state == PFM_CTX_LOADED)
- ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
- else
- ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
- } else {
- rst_ctrl.bits.mask_monitoring = 0;
- rst_ctrl.bits.reset_ovfl_pmds = 1;
- }
-
- if (ret == 0) {
- if (rst_ctrl.bits.reset_ovfl_pmds)
- pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
-
- if (rst_ctrl.bits.mask_monitoring == 0) {
- DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task)));
-
- if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
- } else {
- DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task)));
-
- // cannot use pfm_stop_monitoring(task, regs);
- }
- }
- /*
- * clear overflowed PMD mask to remove any stale information
- */
- ctx->ctx_ovfl_regs[0] = 0UL;
-
- /*
- * back to LOADED state
- */
- ctx->ctx_state = PFM_CTX_LOADED;
-
- /*
- * XXX: not really useful for self monitoring
- */
- ctx->ctx_fl_can_restart = 0;
-
- return 0;
- }
-
- /*
- * restart another task
- */
-
- /*
- * When PFM_CTX_MASKED, we cannot issue a restart before the previous
- * one is seen by the task.
- */
- if (state == PFM_CTX_MASKED) {
- if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
- /*
- * will prevent subsequent restart before this one is
- * seen by other task
- */
- ctx->ctx_fl_can_restart = 0;
- }
-
- /*
- * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
- * the task is blocked or on its way to block. That's the normal
- * restart path. If the monitoring is not masked, then the task
- * can be actively monitoring and we cannot directly intervene.
- * Therefore we use the trap mechanism to catch the task and
- * force it to reset the buffer/reset PMDs.
- *
- * if non-blocking, then we ensure that the task will go into
- * pfm_handle_work() before returning to user mode.
- *
- * We cannot explicitly reset another task, it MUST always
- * be done by the task itself. This works for system wide because
- * the tool that is controlling the session is logically doing
- * "self-monitoring".
- */
- if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
- DPRINT(("unblocking [%d]\n", task_pid_nr(task)));
- complete(&ctx->ctx_restart_done);
- } else {
- DPRINT(("[%d] armed exit trap\n", task_pid_nr(task)));
-
- ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
-
- PFM_SET_WORK_PENDING(task, 1);
-
- set_notify_resume(task);
-
- /*
- * XXX: send reschedule if task runs on another CPU
- */
- }
- return 0;
-}
-
-static int
-pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
-{
- unsigned int m = *(unsigned int *)arg;
-
- pfm_sysctl.debug = m == 0 ? 0 : 1;
-
- printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
-
- if (m == 0) {
- memset(pfm_stats, 0, sizeof(pfm_stats));
- for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
- }
- return 0;
-}
-
-/*
- * arg can be NULL and count can be zero for this function
- */
-static int
-pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
-{
- struct thread_struct *thread = NULL;
- struct task_struct *task;
- pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
- unsigned long flags;
- dbreg_t dbreg;
- unsigned int rnum;
- int first_time;
- int ret = 0, state;
- int i, can_access_pmu = 0;
- int is_system, is_loaded;
-
- if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
-
- state = ctx->ctx_state;
- is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
- is_system = ctx->ctx_fl_system;
- task = ctx->ctx_task;
-
- if (state == PFM_CTX_ZOMBIE) return -EINVAL;
-
- /*
- * on both UP and SMP, we can only write to the PMC when the task is
- * the owner of the local PMU.
- */
- if (is_loaded) {
- thread = &task->thread;
- /*
- * In system wide and when the context is loaded, access can only happen
- * when the caller is running on the CPU being monitored by the session.
- * It does not have to be the owner (ctx_task) of the context per se.
- */
- if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
- DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
- return -EBUSY;
- }
- can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
- }
-
- /*
- * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
- * ensuring that no real breakpoint can be installed via this call.
- *
- * IMPORTANT: regs can be NULL in this function
- */
-
- first_time = ctx->ctx_fl_using_dbreg == 0;
-
- /*
- * don't bother if we are loaded and task is being debugged
- */
- if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
- DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task)));
- return -EBUSY;
- }
-
- /*
- * check for debug registers in system wide mode
- *
- * If though a check is done in pfm_context_load(),
- * we must repeat it here, in case the registers are
- * written after the context is loaded
- */
- if (is_loaded) {
- LOCK_PFS(flags);
-
- if (first_time && is_system) {
- if (pfm_sessions.pfs_ptrace_use_dbregs)
- ret = -EBUSY;
- else
- pfm_sessions.pfs_sys_use_dbregs++;
- }
- UNLOCK_PFS(flags);
- }
-
- if (ret != 0) return ret;
-
- /*
- * mark ourself as user of the debug registers for
- * perfmon purposes.
- */
- ctx->ctx_fl_using_dbreg = 1;
-
- /*
- * clear hardware registers to make sure we don't
- * pick up stale state.
- *
- * for a system wide session, we do not use
- * thread.dbr, thread.ibr because this process
- * never leaves the current CPU and the state
- * is shared by all processes running on it
- */
- if (first_time && can_access_pmu) {
- DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task)));
- for (i=0; i < pmu_conf->num_ibrs; i++) {
- ia64_set_ibr(i, 0UL);
- ia64_dv_serialize_instruction();
- }
- ia64_srlz_i();
- for (i=0; i < pmu_conf->num_dbrs; i++) {
- ia64_set_dbr(i, 0UL);
- ia64_dv_serialize_data();
- }
- ia64_srlz_d();
- }
-
- /*
- * Now install the values into the registers
- */
- for (i = 0; i < count; i++, req++) {
-
- rnum = req->dbreg_num;
- dbreg.val = req->dbreg_value;
-
- ret = -EINVAL;
-
- if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
- DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
- rnum, dbreg.val, mode, i, count));
-
- goto abort_mission;
- }
-
- /*
- * make sure we do not install enabled breakpoint
- */
- if (rnum & 0x1) {
- if (mode == PFM_CODE_RR)
- dbreg.ibr.ibr_x = 0;
- else
- dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
- }
-
- PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
-
- /*
- * Debug registers, just like PMC, can only be modified
- * by a kernel call. Moreover, perfmon() access to those
- * registers are centralized in this routine. The hardware
- * does not modify the value of these registers, therefore,
- * if we save them as they are written, we can avoid having
- * to save them on context switch out. This is made possible
- * by the fact that when perfmon uses debug registers, ptrace()
- * won't be able to modify them concurrently.
- */
- if (mode == PFM_CODE_RR) {
- CTX_USED_IBR(ctx, rnum);
-
- if (can_access_pmu) {
- ia64_set_ibr(rnum, dbreg.val);
- ia64_dv_serialize_instruction();
- }
-
- ctx->ctx_ibrs[rnum] = dbreg.val;
-
- DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
- rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
- } else {
- CTX_USED_DBR(ctx, rnum);
-
- if (can_access_pmu) {
- ia64_set_dbr(rnum, dbreg.val);
- ia64_dv_serialize_data();
- }
- ctx->ctx_dbrs[rnum] = dbreg.val;
-
- DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
- rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
- }
- }
-
- return 0;
-
-abort_mission:
- /*
- * in case it was our first attempt, we undo the global modifications
- */
- if (first_time) {
- LOCK_PFS(flags);
- if (ctx->ctx_fl_system) {
- pfm_sessions.pfs_sys_use_dbregs--;
- }
- UNLOCK_PFS(flags);
- ctx->ctx_fl_using_dbreg = 0;
- }
- /*
- * install error return flag
- */
- PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
-
- return ret;
-}
-
-static int
-pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
-{
- return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
-}
-
-static int
-pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
-{
- return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
-}
-
-int
-pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
-{
- pfm_context_t *ctx;
-
- if (req == NULL) return -EINVAL;
-
- ctx = GET_PMU_CTX();
-
- if (ctx == NULL) return -EINVAL;
-
- /*
- * for now limit to current task, which is enough when calling
- * from overflow handler
- */
- if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
-
- return pfm_write_ibrs(ctx, req, nreq, regs);
-}
-EXPORT_SYMBOL(pfm_mod_write_ibrs);
-
-int
-pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
-{
- pfm_context_t *ctx;
-
- if (req == NULL) return -EINVAL;
-
- ctx = GET_PMU_CTX();
-
- if (ctx == NULL) return -EINVAL;
-
- /*
- * for now limit to current task, which is enough when calling
- * from overflow handler
- */
- if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
-
- return pfm_write_dbrs(ctx, req, nreq, regs);
-}
-EXPORT_SYMBOL(pfm_mod_write_dbrs);
-
-
-static int
-pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
-{
- pfarg_features_t *req = (pfarg_features_t *)arg;
-
- req->ft_version = PFM_VERSION;
- return 0;
-}
-
-static int
-pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
-{
- struct pt_regs *tregs;
- struct task_struct *task = PFM_CTX_TASK(ctx);
- int state, is_system;
-
- state = ctx->ctx_state;
- is_system = ctx->ctx_fl_system;
-
- /*
- * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
- */
- if (state == PFM_CTX_UNLOADED) return -EINVAL;
-
- /*
- * In system wide and when the context is loaded, access can only happen
- * when the caller is running on the CPU being monitored by the session.
- * It does not have to be the owner (ctx_task) of the context per se.
- */
- if (is_system && ctx->ctx_cpu != smp_processor_id()) {
- DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
- return -EBUSY;
- }
- DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
- task_pid_nr(PFM_CTX_TASK(ctx)),
- state,
- is_system));
- /*
- * in system mode, we need to update the PMU directly
- * and the user level state of the caller, which may not
- * necessarily be the creator of the context.
- */
- if (is_system) {
- /*
- * Update local PMU first
- *
- * disable dcr pp
- */
- ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
- ia64_srlz_i();
-
- /*
- * update local cpuinfo
- */
- PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
-
- /*
- * stop monitoring, does srlz.i
- */
- pfm_clear_psr_pp();
-
- /*
- * stop monitoring in the caller
- */
- ia64_psr(regs)->pp = 0;
-
- return 0;
- }
- /*
- * per-task mode
- */
-
- if (task == current) {
- /* stop monitoring at kernel level */
- pfm_clear_psr_up();
-
- /*
- * stop monitoring at the user level
- */
- ia64_psr(regs)->up = 0;
- } else {
- tregs = task_pt_regs(task);
-
- /*
- * stop monitoring at the user level
- */
- ia64_psr(tregs)->up = 0;
-
- /*
- * monitoring disabled in kernel at next reschedule
- */
- ctx->ctx_saved_psr_up = 0;
- DPRINT(("task=[%d]\n", task_pid_nr(task)));
- }
- return 0;
-}
-
-
-static int
-pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
-{
- struct pt_regs *tregs;
- int state, is_system;
-
- state = ctx->ctx_state;
- is_system = ctx->ctx_fl_system;
-
- if (state != PFM_CTX_LOADED) return -EINVAL;
-
- /*
- * In system wide and when the context is loaded, access can only happen
- * when the caller is running on the CPU being monitored by the session.
- * It does not have to be the owner (ctx_task) of the context per se.
- */
- if (is_system && ctx->ctx_cpu != smp_processor_id()) {
- DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
- return -EBUSY;
- }
-
- /*
- * in system mode, we need to update the PMU directly
- * and the user level state of the caller, which may not
- * necessarily be the creator of the context.
- */
- if (is_system) {
-
- /*
- * set user level psr.pp for the caller
- */
- ia64_psr(regs)->pp = 1;
-
- /*
- * now update the local PMU and cpuinfo
- */
- PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
-
- /*
- * start monitoring at kernel level
- */
- pfm_set_psr_pp();
-
- /* enable dcr pp */
- ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
- ia64_srlz_i();
-
- return 0;
- }
-
- /*
- * per-process mode
- */
-
- if (ctx->ctx_task == current) {
-
- /* start monitoring at kernel level */
- pfm_set_psr_up();
-
- /*
- * activate monitoring at user level
- */
- ia64_psr(regs)->up = 1;
-
- } else {
- tregs = task_pt_regs(ctx->ctx_task);
-
- /*
- * start monitoring at the kernel level the next
- * time the task is scheduled
- */
- ctx->ctx_saved_psr_up = IA64_PSR_UP;
-
- /*
- * activate monitoring at user level
- */
- ia64_psr(tregs)->up = 1;
- }
- return 0;
-}
-
-static int
-pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
-{
- pfarg_reg_t *req = (pfarg_reg_t *)arg;
- unsigned int cnum;
- int i;
- int ret = -EINVAL;
-
- for (i = 0; i < count; i++, req++) {
-
- cnum = req->reg_num;
-
- if (!PMC_IS_IMPL(cnum)) goto abort_mission;
-
- req->reg_value = PMC_DFL_VAL(cnum);
-
- PFM_REG_RETFLAG_SET(req->reg_flags, 0);
-
- DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
- }
- return 0;
-
-abort_mission:
- PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
- return ret;
-}
-
-static int
-pfm_check_task_exist(pfm_context_t *ctx)
-{
- struct task_struct *g, *t;
- int ret = -ESRCH;
-
- read_lock(&tasklist_lock);
-
- do_each_thread (g, t) {
- if (t->thread.pfm_context == ctx) {
- ret = 0;
- goto out;
- }
- } while_each_thread (g, t);
-out:
- read_unlock(&tasklist_lock);
-
- DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
-
- return ret;
-}
-
-static int
-pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
-{
- struct task_struct *task;
- struct thread_struct *thread;
- struct pfm_context_t *old;
- unsigned long flags;
-#ifndef CONFIG_SMP
- struct task_struct *owner_task = NULL;
-#endif
- pfarg_load_t *req = (pfarg_load_t *)arg;
- unsigned long *pmcs_source, *pmds_source;
- int the_cpu;
- int ret = 0;
- int state, is_system, set_dbregs = 0;
-
- state = ctx->ctx_state;
- is_system = ctx->ctx_fl_system;
- /*
- * can only load from unloaded or terminated state
- */
- if (state != PFM_CTX_UNLOADED) {
- DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
- req->load_pid,
- ctx->ctx_state));
- return -EBUSY;
- }
-
- DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
-
- if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
- DPRINT(("cannot use blocking mode on self\n"));
- return -EINVAL;
- }
-
- ret = pfm_get_task(ctx, req->load_pid, &task);
- if (ret) {
- DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
- return ret;
- }
-
- ret = -EINVAL;
-
- /*
- * system wide is self monitoring only
- */
- if (is_system && task != current) {
- DPRINT(("system wide is self monitoring only load_pid=%d\n",
- req->load_pid));
- goto error;
- }
-
- thread = &task->thread;
-
- ret = 0;
- /*
- * cannot load a context which is using range restrictions,
- * into a task that is being debugged.
- */
- if (ctx->ctx_fl_using_dbreg) {
- if (thread->flags & IA64_THREAD_DBG_VALID) {
- ret = -EBUSY;
- DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
- goto error;
- }
- LOCK_PFS(flags);
-
- if (is_system) {
- if (pfm_sessions.pfs_ptrace_use_dbregs) {
- DPRINT(("cannot load [%d] dbregs in use\n",
- task_pid_nr(task)));
- ret = -EBUSY;
- } else {
- pfm_sessions.pfs_sys_use_dbregs++;
- DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task), pfm_sessions.pfs_sys_use_dbregs));
- set_dbregs = 1;
- }
- }
-
- UNLOCK_PFS(flags);
-
- if (ret) goto error;
- }
-
- /*
- * SMP system-wide monitoring implies self-monitoring.
- *
- * The programming model expects the task to
- * be pinned on a CPU throughout the session.
- * Here we take note of the current CPU at the
- * time the context is loaded. No call from
- * another CPU will be allowed.
- *
- * The pinning via shed_setaffinity()
- * must be done by the calling task prior
- * to this call.
- *
- * systemwide: keep track of CPU this session is supposed to run on
- */
- the_cpu = ctx->ctx_cpu = smp_processor_id();
-
- ret = -EBUSY;
- /*
- * now reserve the session
- */
- ret = pfm_reserve_session(current, is_system, the_cpu);
- if (ret) goto error;
-
- /*
- * task is necessarily stopped at this point.
- *
- * If the previous context was zombie, then it got removed in
- * pfm_save_regs(). Therefore we should not see it here.
- * If we see a context, then this is an active context
- *
- * XXX: needs to be atomic
- */
- DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
- thread->pfm_context, ctx));
-
- ret = -EBUSY;
- old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
- if (old != NULL) {
- DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
- goto error_unres;
- }
-
- pfm_reset_msgq(ctx);
-
- ctx->ctx_state = PFM_CTX_LOADED;
-
- /*
- * link context to task
- */
- ctx->ctx_task = task;
-
- if (is_system) {
- /*
- * we load as stopped
- */
- PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
- PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
-
- if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
- } else {
- thread->flags |= IA64_THREAD_PM_VALID;
- }
-
- /*
- * propagate into thread-state
- */
- pfm_copy_pmds(task, ctx);
- pfm_copy_pmcs(task, ctx);
-
- pmcs_source = ctx->th_pmcs;
- pmds_source = ctx->th_pmds;
-
- /*
- * always the case for system-wide
- */
- if (task == current) {
-
- if (is_system == 0) {
-
- /* allow user level control */
- ia64_psr(regs)->sp = 0;
- DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task)));
-
- SET_LAST_CPU(ctx, smp_processor_id());
- INC_ACTIVATION();
- SET_ACTIVATION(ctx);
-#ifndef CONFIG_SMP
- /*
- * push the other task out, if any
- */
- owner_task = GET_PMU_OWNER();
- if (owner_task) pfm_lazy_save_regs(owner_task);
-#endif
- }
- /*
- * load all PMD from ctx to PMU (as opposed to thread state)
- * restore all PMC from ctx to PMU
- */
- pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
- pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
-
- ctx->ctx_reload_pmcs[0] = 0UL;
- ctx->ctx_reload_pmds[0] = 0UL;
-
- /*
- * guaranteed safe by earlier check against DBG_VALID
- */
- if (ctx->ctx_fl_using_dbreg) {
- pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
- pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
- }
- /*
- * set new ownership
- */
- SET_PMU_OWNER(task, ctx);
-
- DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task)));
- } else {
- /*
- * when not current, task MUST be stopped, so this is safe
- */
- regs = task_pt_regs(task);
-
- /* force a full reload */
- ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
- SET_LAST_CPU(ctx, -1);
-
- /* initial saved psr (stopped) */
- ctx->ctx_saved_psr_up = 0UL;
- ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
- }
-
- ret = 0;
-
-error_unres:
- if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
-error:
- /*
- * we must undo the dbregs setting (for system-wide)
- */
- if (ret && set_dbregs) {
- LOCK_PFS(flags);
- pfm_sessions.pfs_sys_use_dbregs--;
- UNLOCK_PFS(flags);
- }
- /*
- * release task, there is now a link with the context
- */
- if (is_system == 0 && task != current) {
- pfm_put_task(task);
-
- if (ret == 0) {
- ret = pfm_check_task_exist(ctx);
- if (ret) {
- ctx->ctx_state = PFM_CTX_UNLOADED;
- ctx->ctx_task = NULL;
- }
- }
- }
- return ret;
-}
-
-/*
- * in this function, we do not need to increase the use count
- * for the task via get_task_struct(), because we hold the
- * context lock. If the task were to disappear while having
- * a context attached, it would go through pfm_exit_thread()
- * which also grabs the context lock and would therefore be blocked
- * until we are here.
- */
-static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
-
-static int
-pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
-{
- struct task_struct *task = PFM_CTX_TASK(ctx);
- struct pt_regs *tregs;
- int prev_state, is_system;
- int ret;
-
- DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task_pid_nr(task) : -1));
-
- prev_state = ctx->ctx_state;
- is_system = ctx->ctx_fl_system;
-
- /*
- * unload only when necessary
- */
- if (prev_state == PFM_CTX_UNLOADED) {
- DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
- return 0;
- }
-
- /*
- * clear psr and dcr bits
- */
- ret = pfm_stop(ctx, NULL, 0, regs);
- if (ret) return ret;
-
- ctx->ctx_state = PFM_CTX_UNLOADED;
-
- /*
- * in system mode, we need to update the PMU directly
- * and the user level state of the caller, which may not
- * necessarily be the creator of the context.
- */
- if (is_system) {
-
- /*
- * Update cpuinfo
- *
- * local PMU is taken care of in pfm_stop()
- */
- PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
- PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
-
- /*
- * save PMDs in context
- * release ownership
- */
- pfm_flush_pmds(current, ctx);
-
- /*
- * at this point we are done with the PMU
- * so we can unreserve the resource.
- */
- if (prev_state != PFM_CTX_ZOMBIE)
- pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
-
- /*
- * disconnect context from task
- */
- task->thread.pfm_context = NULL;
- /*
- * disconnect task from context
- */
- ctx->ctx_task = NULL;
-
- /*
- * There is nothing more to cleanup here.
- */
- return 0;
- }
-
- /*
- * per-task mode
- */
- tregs = task == current ? regs : task_pt_regs(task);
-
- if (task == current) {
- /*
- * cancel user level control
- */
- ia64_psr(regs)->sp = 1;
-
- DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task)));
- }
- /*
- * save PMDs to context
- * release ownership
- */
- pfm_flush_pmds(task, ctx);
-
- /*
- * at this point we are done with the PMU
- * so we can unreserve the resource.
- *
- * when state was ZOMBIE, we have already unreserved.
- */
- if (prev_state != PFM_CTX_ZOMBIE)
- pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
-
- /*
- * reset activation counter and psr
- */
- ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
- SET_LAST_CPU(ctx, -1);
-
- /*
- * PMU state will not be restored
- */
- task->thread.flags &= ~IA64_THREAD_PM_VALID;
-
- /*
- * break links between context and task
- */
- task->thread.pfm_context = NULL;
- ctx->ctx_task = NULL;
-
- PFM_SET_WORK_PENDING(task, 0);
-
- ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
- ctx->ctx_fl_can_restart = 0;
- ctx->ctx_fl_going_zombie = 0;
-
- DPRINT(("disconnected [%d] from context\n", task_pid_nr(task)));
-
- return 0;
-}
-
-
-/*
- * called only from exit_thread()
- * we come here only if the task has a context attached (loaded or masked)
- */
-void
-pfm_exit_thread(struct task_struct *task)
-{
- pfm_context_t *ctx;
- unsigned long flags;
- struct pt_regs *regs = task_pt_regs(task);
- int ret, state;
- int free_ok = 0;
-
- ctx = PFM_GET_CTX(task);
-
- PROTECT_CTX(ctx, flags);
-
- DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task_pid_nr(task)));
-
- state = ctx->ctx_state;
- switch(state) {
- case PFM_CTX_UNLOADED:
- /*
- * only comes to this function if pfm_context is not NULL, i.e., cannot
- * be in unloaded state
- */
- printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task));
- break;
- case PFM_CTX_LOADED:
- case PFM_CTX_MASKED:
- ret = pfm_context_unload(ctx, NULL, 0, regs);
- if (ret) {
- printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
- }
- DPRINT(("ctx unloaded for current state was %d\n", state));
-
- pfm_end_notify_user(ctx);
- break;
- case PFM_CTX_ZOMBIE:
- ret = pfm_context_unload(ctx, NULL, 0, regs);
- if (ret) {
- printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
- }
- free_ok = 1;
- break;
- default:
- printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task), state);
- break;
- }
- UNPROTECT_CTX(ctx, flags);
-
- { u64 psr = pfm_get_psr();
- BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
- BUG_ON(GET_PMU_OWNER());
- BUG_ON(ia64_psr(regs)->up);
- BUG_ON(ia64_psr(regs)->pp);
- }
-
- /*
- * All memory free operations (especially for vmalloc'ed memory)
- * MUST be done with interrupts ENABLED.
- */
- if (free_ok) pfm_context_free(ctx);
-}
-
-/*
- * functions MUST be listed in the increasing order of their index (see permfon.h)
- */
-#define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
-#define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
-#define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
-#define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW)
-#define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL}
-
-static pfm_cmd_desc_t pfm_cmd_tab[]={
-/* 0 */PFM_CMD_NONE,
-/* 1 */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
-/* 2 */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
-/* 3 */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
-/* 4 */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
-/* 5 */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
-/* 6 */PFM_CMD_NONE,
-/* 7 */PFM_CMD_NONE,
-/* 8 */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
-/* 9 */PFM_CMD_NONE,
-/* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
-/* 11 */PFM_CMD_NONE,
-/* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
-/* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
-/* 14 */PFM_CMD_NONE,
-/* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
-/* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
-/* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
-/* 18 */PFM_CMD_NONE,
-/* 19 */PFM_CMD_NONE,
-/* 20 */PFM_CMD_NONE,
-/* 21 */PFM_CMD_NONE,
-/* 22 */PFM_CMD_NONE,
-/* 23 */PFM_CMD_NONE,
-/* 24 */PFM_CMD_NONE,
-/* 25 */PFM_CMD_NONE,
-/* 26 */PFM_CMD_NONE,
-/* 27 */PFM_CMD_NONE,
-/* 28 */PFM_CMD_NONE,
-/* 29 */PFM_CMD_NONE,
-/* 30 */PFM_CMD_NONE,
-/* 31 */PFM_CMD_NONE,
-/* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
-/* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
-};
-#define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
-
-static int
-pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
-{
- struct task_struct *task;
- int state, old_state;
-
-recheck:
- state = ctx->ctx_state;
- task = ctx->ctx_task;
-
- if (task == NULL) {
- DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
- return 0;
- }
-
- DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
- ctx->ctx_fd,
- state,
- task_pid_nr(task),
- task->state, PFM_CMD_STOPPED(cmd)));
-
- /*
- * self-monitoring always ok.
- *
- * for system-wide the caller can either be the creator of the
- * context (to one to which the context is attached to) OR
- * a task running on the same CPU as the session.
- */
- if (task == current || ctx->ctx_fl_system) return 0;
-
- /*
- * we are monitoring another thread
- */
- switch(state) {
- case PFM_CTX_UNLOADED:
- /*
- * if context is UNLOADED we are safe to go
- */
- return 0;
- case PFM_CTX_ZOMBIE:
- /*
- * no command can operate on a zombie context
- */
- DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
- return -EINVAL;
- case PFM_CTX_MASKED:
- /*
- * PMU state has been saved to software even though
- * the thread may still be running.
- */
- if (cmd != PFM_UNLOAD_CONTEXT) return 0;
- }
-
- /*
- * context is LOADED or MASKED. Some commands may need to have
- * the task stopped.
- *
- * We could lift this restriction for UP but it would mean that
- * the user has no guarantee the task would not run between
- * two successive calls to perfmonctl(). That's probably OK.
- * If this user wants to ensure the task does not run, then
- * the task must be stopped.
- */
- if (PFM_CMD_STOPPED(cmd)) {
- if (!task_is_stopped_or_traced(task)) {
- DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task)));
- return -EBUSY;
- }
- /*
- * task is now stopped, wait for ctxsw out
- *
- * This is an interesting point in the code.
- * We need to unprotect the context because
- * the pfm_save_regs() routines needs to grab
- * the same lock. There are danger in doing
- * this because it leaves a window open for
- * another task to get access to the context
- * and possibly change its state. The one thing
- * that is not possible is for the context to disappear
- * because we are protected by the VFS layer, i.e.,
- * get_fd()/put_fd().
- */
- old_state = state;
-
- UNPROTECT_CTX(ctx, flags);
-
- wait_task_inactive(task, 0);
-
- PROTECT_CTX(ctx, flags);
-
- /*
- * we must recheck to verify if state has changed
- */
- if (ctx->ctx_state != old_state) {
- DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
- goto recheck;
- }
- }
- return 0;
-}
-
-/*
- * system-call entry point (must return long)
- */
-asmlinkage long
-sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
-{
- struct fd f = {NULL, 0};
- pfm_context_t *ctx = NULL;
- unsigned long flags = 0UL;
- void *args_k = NULL;
- long ret; /* will expand int return types */
- size_t base_sz, sz, xtra_sz = 0;
- int narg, completed_args = 0, call_made = 0, cmd_flags;
- int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
- int (*getsize)(void *arg, size_t *sz);
-#define PFM_MAX_ARGSIZE 4096
-
- /*
- * reject any call if perfmon was disabled at initialization
- */
- if (unlikely(pmu_conf == NULL)) return -ENOSYS;
-
- if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
- DPRINT(("invalid cmd=%d\n", cmd));
- return -EINVAL;
- }
-
- func = pfm_cmd_tab[cmd].cmd_func;
- narg = pfm_cmd_tab[cmd].cmd_narg;
- base_sz = pfm_cmd_tab[cmd].cmd_argsize;
- getsize = pfm_cmd_tab[cmd].cmd_getsize;
- cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
-
- if (unlikely(func == NULL)) {
- DPRINT(("invalid cmd=%d\n", cmd));
- return -EINVAL;
- }
-
- DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
- PFM_CMD_NAME(cmd),
- cmd,
- narg,
- base_sz,
- count));
-
- /*
- * check if number of arguments matches what the command expects
- */
- if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
- return -EINVAL;
-
-restart_args:
- sz = xtra_sz + base_sz*count;
- /*
- * limit abuse to min page size
- */
- if (unlikely(sz > PFM_MAX_ARGSIZE)) {
- printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", task_pid_nr(current), sz);
- return -E2BIG;
- }
-
- /*
- * allocate default-sized argument buffer
- */
- if (likely(count && args_k == NULL)) {
- args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
- if (args_k == NULL) return -ENOMEM;
- }
-
- ret = -EFAULT;
-
- /*
- * copy arguments
- *
- * assume sz = 0 for command without parameters
- */
- if (sz && copy_from_user(args_k, arg, sz)) {
- DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
- goto error_args;
- }
-
- /*
- * check if command supports extra parameters
- */
- if (completed_args == 0 && getsize) {
- /*
- * get extra parameters size (based on main argument)
- */
- ret = (*getsize)(args_k, &xtra_sz);
- if (ret) goto error_args;
-
- completed_args = 1;
-
- DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
-
- /* retry if necessary */
- if (likely(xtra_sz)) goto restart_args;
- }
-
- if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
-
- ret = -EBADF;
-
- f = fdget(fd);
- if (unlikely(f.file == NULL)) {
- DPRINT(("invalid fd %d\n", fd));
- goto error_args;
- }
- if (unlikely(PFM_IS_FILE(f.file) == 0)) {
- DPRINT(("fd %d not related to perfmon\n", fd));
- goto error_args;
- }
-
- ctx = f.file->private_data;
- if (unlikely(ctx == NULL)) {
- DPRINT(("no context for fd %d\n", fd));
- goto error_args;
- }
- prefetch(&ctx->ctx_state);
-
- PROTECT_CTX(ctx, flags);
-
- /*
- * check task is stopped
- */
- ret = pfm_check_task_state(ctx, cmd, flags);
- if (unlikely(ret)) goto abort_locked;
-
-skip_fd:
- ret = (*func)(ctx, args_k, count, task_pt_regs(current));
-
- call_made = 1;
-
-abort_locked:
- if (likely(ctx)) {
- DPRINT(("context unlocked\n"));
- UNPROTECT_CTX(ctx, flags);
- }
-
- /* copy argument back to user, if needed */
- if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
-
-error_args:
- if (f.file)
- fdput(f);
-
- kfree(args_k);
-
- DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
-
- return ret;
-}
-
-static void
-pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
-{
- pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
- pfm_ovfl_ctrl_t rst_ctrl;
- int state;
- int ret = 0;
-
- state = ctx->ctx_state;
- /*
- * Unlock sampling buffer and reset index atomically
- * XXX: not really needed when blocking
- */
- if (CTX_HAS_SMPL(ctx)) {
-
- rst_ctrl.bits.mask_monitoring = 0;
- rst_ctrl.bits.reset_ovfl_pmds = 0;
-
- if (state == PFM_CTX_LOADED)
- ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
- else
- ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
- } else {
- rst_ctrl.bits.mask_monitoring = 0;
- rst_ctrl.bits.reset_ovfl_pmds = 1;
- }
-
- if (ret == 0) {
- if (rst_ctrl.bits.reset_ovfl_pmds) {
- pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
- }
- if (rst_ctrl.bits.mask_monitoring == 0) {
- DPRINT(("resuming monitoring\n"));
- if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
- } else {
- DPRINT(("stopping monitoring\n"));
- //pfm_stop_monitoring(current, regs);
- }
- ctx->ctx_state = PFM_CTX_LOADED;
- }
-}
-
-/*
- * context MUST BE LOCKED when calling
- * can only be called for current
- */
-static void
-pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
-{
- int ret;
-
- DPRINT(("entering for [%d]\n", task_pid_nr(current)));
-
- ret = pfm_context_unload(ctx, NULL, 0, regs);
- if (ret) {
- printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current), ret);
- }
-
- /*
- * and wakeup controlling task, indicating we are now disconnected
- */
- wake_up_interruptible(&ctx->ctx_zombieq);
-
- /*
- * given that context is still locked, the controlling
- * task will only get access when we return from
- * pfm_handle_work().
- */
-}
-
-static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
-
- /*
- * pfm_handle_work() can be called with interrupts enabled
- * (TIF_NEED_RESCHED) or disabled. The down_interruptible
- * call may sleep, therefore we must re-enable interrupts
- * to avoid deadlocks. It is safe to do so because this function
- * is called ONLY when returning to user level (pUStk=1), in which case
- * there is no risk of kernel stack overflow due to deep
- * interrupt nesting.
- */
-void
-pfm_handle_work(void)
-{
- pfm_context_t *ctx;
- struct pt_regs *regs;
- unsigned long flags, dummy_flags;
- unsigned long ovfl_regs;
- unsigned int reason;
- int ret;
-
- ctx = PFM_GET_CTX(current);
- if (ctx == NULL) {
- printk(KERN_ERR "perfmon: [%d] has no PFM context\n",
- task_pid_nr(current));
- return;
- }
-
- PROTECT_CTX(ctx, flags);
-
- PFM_SET_WORK_PENDING(current, 0);
-
- regs = task_pt_regs(current);
-
- /*
- * extract reason for being here and clear
- */
- reason = ctx->ctx_fl_trap_reason;
- ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
- ovfl_regs = ctx->ctx_ovfl_regs[0];
-
- DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
-
- /*
- * must be done before we check for simple-reset mode
- */
- if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE)
- goto do_zombie;
-
- //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
- if (reason == PFM_TRAP_REASON_RESET)
- goto skip_blocking;
-
- /*
- * restore interrupt mask to what it was on entry.
- * Could be enabled/diasbled.
- */
- UNPROTECT_CTX(ctx, flags);
-
- /*
- * force interrupt enable because of down_interruptible()
- */
- local_irq_enable();
-
- DPRINT(("before block sleeping\n"));
-
- /*
- * may go through without blocking on SMP systems
- * if restart has been received already by the time we call down()
- */
- ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
-
- DPRINT(("after block sleeping ret=%d\n", ret));
-
- /*
- * lock context and mask interrupts again
- * We save flags into a dummy because we may have
- * altered interrupts mask compared to entry in this
- * function.
- */
- PROTECT_CTX(ctx, dummy_flags);
-
- /*
- * we need to read the ovfl_regs only after wake-up
- * because we may have had pfm_write_pmds() in between
- * and that can changed PMD values and therefore
- * ovfl_regs is reset for these new PMD values.
- */
- ovfl_regs = ctx->ctx_ovfl_regs[0];
-
- if (ctx->ctx_fl_going_zombie) {
-do_zombie:
- DPRINT(("context is zombie, bailing out\n"));
- pfm_context_force_terminate(ctx, regs);
- goto nothing_to_do;
- }
- /*
- * in case of interruption of down() we don't restart anything
- */
- if (ret < 0)
- goto nothing_to_do;
-
-skip_blocking:
- pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
- ctx->ctx_ovfl_regs[0] = 0UL;
-
-nothing_to_do:
- /*
- * restore flags as they were upon entry
- */
- UNPROTECT_CTX(ctx, flags);
-}
-
-static int
-pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
-{
- if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
- DPRINT(("ignoring overflow notification, owner is zombie\n"));
- return 0;
- }
-
- DPRINT(("waking up somebody\n"));
-
- if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
-
- /*
- * safe, we are not in intr handler, nor in ctxsw when
- * we come here
- */
- kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
-
- return 0;
-}
-
-static int
-pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
-{
- pfm_msg_t *msg = NULL;
-
- if (ctx->ctx_fl_no_msg == 0) {
- msg = pfm_get_new_msg(ctx);
- if (msg == NULL) {
- printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
- return -1;
- }
-
- msg->pfm_ovfl_msg.msg_type = PFM_MSG_OVFL;
- msg->pfm_ovfl_msg.msg_ctx_fd = ctx->ctx_fd;
- msg->pfm_ovfl_msg.msg_active_set = 0;
- msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
- msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
- msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
- msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
- msg->pfm_ovfl_msg.msg_tstamp = 0UL;
- }
-
- DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
- msg,
- ctx->ctx_fl_no_msg,
- ctx->ctx_fd,
- ovfl_pmds));
-
- return pfm_notify_user(ctx, msg);
-}
-
-static int
-pfm_end_notify_user(pfm_context_t *ctx)
-{
- pfm_msg_t *msg;
-
- msg = pfm_get_new_msg(ctx);
- if (msg == NULL) {
- printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
- return -1;
- }
- /* no leak */
- memset(msg, 0, sizeof(*msg));
-
- msg->pfm_end_msg.msg_type = PFM_MSG_END;
- msg->pfm_end_msg.msg_ctx_fd = ctx->ctx_fd;
- msg->pfm_ovfl_msg.msg_tstamp = 0UL;
-
- DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
- msg,
- ctx->ctx_fl_no_msg,
- ctx->ctx_fd));
-
- return pfm_notify_user(ctx, msg);
-}
-
-/*
- * main overflow processing routine.
- * it can be called from the interrupt path or explicitly during the context switch code
- */
-static void pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx,
- unsigned long pmc0, struct pt_regs *regs)
-{
- pfm_ovfl_arg_t *ovfl_arg;
- unsigned long mask;
- unsigned long old_val, ovfl_val, new_val;
- unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
- unsigned long tstamp;
- pfm_ovfl_ctrl_t ovfl_ctrl;
- unsigned int i, has_smpl;
- int must_notify = 0;
-
- if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
-
- /*
- * sanity test. Should never happen
- */
- if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
-
- tstamp = ia64_get_itc();
- mask = pmc0 >> PMU_FIRST_COUNTER;
- ovfl_val = pmu_conf->ovfl_val;
- has_smpl = CTX_HAS_SMPL(ctx);
-
- DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
- "used_pmds=0x%lx\n",
- pmc0,
- task ? task_pid_nr(task): -1,
- (regs ? regs->cr_iip : 0),
- CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
- ctx->ctx_used_pmds[0]));
-
-
- /*
- * first we update the virtual counters
- * assume there was a prior ia64_srlz_d() issued
- */
- for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
-
- /* skip pmd which did not overflow */
- if ((mask & 0x1) == 0) continue;
-
- /*
- * Note that the pmd is not necessarily 0 at this point as qualified events
- * may have happened before the PMU was frozen. The residual count is not
- * taken into consideration here but will be with any read of the pmd via
- * pfm_read_pmds().
- */
- old_val = new_val = ctx->ctx_pmds[i].val;
- new_val += 1 + ovfl_val;
- ctx->ctx_pmds[i].val = new_val;
-
- /*
- * check for overflow condition
- */
- if (likely(old_val > new_val)) {
- ovfl_pmds |= 1UL << i;
- if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
- }
-
- DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
- i,
- new_val,
- old_val,
- ia64_get_pmd(i) & ovfl_val,
- ovfl_pmds,
- ovfl_notify));
- }
-
- /*
- * there was no 64-bit overflow, nothing else to do
- */
- if (ovfl_pmds == 0UL) return;
-
- /*
- * reset all control bits
- */
- ovfl_ctrl.val = 0;
- reset_pmds = 0UL;
-
- /*
- * if a sampling format module exists, then we "cache" the overflow by
- * calling the module's handler() routine.
- */
- if (has_smpl) {
- unsigned long start_cycles, end_cycles;
- unsigned long pmd_mask;
- int j, k, ret = 0;
- int this_cpu = smp_processor_id();
-
- pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
- ovfl_arg = &ctx->ctx_ovfl_arg;
-
- prefetch(ctx->ctx_smpl_hdr);
-
- for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
-
- mask = 1UL << i;
-
- if ((pmd_mask & 0x1) == 0) continue;
-
- ovfl_arg->ovfl_pmd = (unsigned char )i;
- ovfl_arg->ovfl_notify = ovfl_notify & mask ? 1 : 0;
- ovfl_arg->active_set = 0;
- ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
- ovfl_arg->smpl_pmds[0] = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
-
- ovfl_arg->pmd_value = ctx->ctx_pmds[i].val;
- ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
- ovfl_arg->pmd_eventid = ctx->ctx_pmds[i].eventid;
-
- /*
- * copy values of pmds of interest. Sampling format may copy them
- * into sampling buffer.
- */
- if (smpl_pmds) {
- for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
- if ((smpl_pmds & 0x1) == 0) continue;
- ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ? pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
- DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
- }
- }
-
- pfm_stats[this_cpu].pfm_smpl_handler_calls++;
-
- start_cycles = ia64_get_itc();
-
- /*
- * call custom buffer format record (handler) routine
- */
- ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
-
- end_cycles = ia64_get_itc();
-
- /*
- * For those controls, we take the union because they have
- * an all or nothing behavior.
- */
- ovfl_ctrl.bits.notify_user |= ovfl_arg->ovfl_ctrl.bits.notify_user;
- ovfl_ctrl.bits.block_task |= ovfl_arg->ovfl_ctrl.bits.block_task;
- ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
- /*
- * build the bitmask of pmds to reset now
- */
- if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
-
- pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
- }
- /*
- * when the module cannot handle the rest of the overflows, we abort right here
- */
- if (ret && pmd_mask) {
- DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
- pmd_mask<<PMU_FIRST_COUNTER));
- }
- /*
- * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
- */
- ovfl_pmds &= ~reset_pmds;
- } else {
- /*
- * when no sampling module is used, then the default
- * is to notify on overflow if requested by user
- */
- ovfl_ctrl.bits.notify_user = ovfl_notify ? 1 : 0;
- ovfl_ctrl.bits.block_task = ovfl_notify ? 1 : 0;
- ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
- ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
- /*
- * if needed, we reset all overflowed pmds
- */
- if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
- }
-
- DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
-
- /*
- * reset the requested PMD registers using the short reset values
- */
- if (reset_pmds) {
- unsigned long bm = reset_pmds;
- pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
- }
-
- if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
- /*
- * keep track of what to reset when unblocking
- */
- ctx->ctx_ovfl_regs[0] = ovfl_pmds;
-
- /*
- * check for blocking context
- */
- if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
-
- ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
-
- /*
- * set the perfmon specific checking pending work for the task
- */
- PFM_SET_WORK_PENDING(task, 1);
-
- /*
- * when coming from ctxsw, current still points to the
- * previous task, therefore we must work with task and not current.
- */
- set_notify_resume(task);
- }
- /*
- * defer until state is changed (shorten spin window). the context is locked
- * anyway, so the signal receiver would come spin for nothing.
- */
- must_notify = 1;
- }
-
- DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
- GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1,
- PFM_GET_WORK_PENDING(task),
- ctx->ctx_fl_trap_reason,
- ovfl_pmds,
- ovfl_notify,
- ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
- /*
- * in case monitoring must be stopped, we toggle the psr bits
- */
- if (ovfl_ctrl.bits.mask_monitoring) {
- pfm_mask_monitoring(task);
- ctx->ctx_state = PFM_CTX_MASKED;
- ctx->ctx_fl_can_restart = 1;
- }
-
- /*
- * send notification now
- */
- if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
-
- return;
-
-sanity_check:
- printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
- smp_processor_id(),
- task ? task_pid_nr(task) : -1,
- pmc0);
- return;
-
-stop_monitoring:
- /*
- * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
- * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
- * come here as zombie only if the task is the current task. In which case, we
- * can access the PMU hardware directly.
- *
- * Note that zombies do have PM_VALID set. So here we do the minimal.
- *
- * In case the context was zombified it could not be reclaimed at the time
- * the monitoring program exited. At this point, the PMU reservation has been
- * returned, the sampiing buffer has been freed. We must convert this call
- * into a spurious interrupt. However, we must also avoid infinite overflows
- * by stopping monitoring for this task. We can only come here for a per-task
- * context. All we need to do is to stop monitoring using the psr bits which
- * are always task private. By re-enabling secure montioring, we ensure that
- * the monitored task will not be able to re-activate monitoring.
- * The task will eventually be context switched out, at which point the context
- * will be reclaimed (that includes releasing ownership of the PMU).
- *
- * So there might be a window of time where the number of per-task session is zero
- * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
- * context. This is safe because if a per-task session comes in, it will push this one
- * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
- * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
- * also push our zombie context out.
- *
- * Overall pretty hairy stuff....
- */
- DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task_pid_nr(task): -1));
- pfm_clear_psr_up();
- ia64_psr(regs)->up = 0;
- ia64_psr(regs)->sp = 1;
- return;
-}
-
-static int
-pfm_do_interrupt_handler(void *arg, struct pt_regs *regs)
-{
- struct task_struct *task;
- pfm_context_t *ctx;
- unsigned long flags;
- u64 pmc0;
- int this_cpu = smp_processor_id();
- int retval = 0;
-
- pfm_stats[this_cpu].pfm_ovfl_intr_count++;
-
- /*
- * srlz.d done before arriving here
- */
- pmc0 = ia64_get_pmc(0);
-
- task = GET_PMU_OWNER();
- ctx = GET_PMU_CTX();
-
- /*
- * if we have some pending bits set
- * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
- */
- if (PMC0_HAS_OVFL(pmc0) && task) {
- /*
- * we assume that pmc0.fr is always set here
- */
-
- /* sanity check */
- if (!ctx) goto report_spurious1;
-
- if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0)
- goto report_spurious2;
-
- PROTECT_CTX_NOPRINT(ctx, flags);
-
- pfm_overflow_handler(task, ctx, pmc0, regs);
-
- UNPROTECT_CTX_NOPRINT(ctx, flags);
-
- } else {
- pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
- retval = -1;
- }
- /*
- * keep it unfrozen at all times
- */
- pfm_unfreeze_pmu();
-
- return retval;
-
-report_spurious1:
- printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
- this_cpu, task_pid_nr(task));
- pfm_unfreeze_pmu();
- return -1;
-report_spurious2:
- printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
- this_cpu,
- task_pid_nr(task));
- pfm_unfreeze_pmu();
- return -1;
-}
-
-static irqreturn_t
-pfm_interrupt_handler(int irq, void *arg)
-{
- unsigned long start_cycles, total_cycles;
- unsigned long min, max;
- int this_cpu;
- int ret;
- struct pt_regs *regs = get_irq_regs();
-
- this_cpu = get_cpu();
- if (likely(!pfm_alt_intr_handler)) {
- min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
- max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
-
- start_cycles = ia64_get_itc();
-
- ret = pfm_do_interrupt_handler(arg, regs);
-
- total_cycles = ia64_get_itc();
-
- /*
- * don't measure spurious interrupts
- */
- if (likely(ret == 0)) {
- total_cycles -= start_cycles;
-
- if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
- if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
-
- pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
- }
- }
- else {
- (*pfm_alt_intr_handler->handler)(irq, arg, regs);
- }
-
- put_cpu();
- return IRQ_HANDLED;
-}
-
-/*
- * /proc/perfmon interface, for debug only
- */
-
-#define PFM_PROC_SHOW_HEADER ((void *)(long)nr_cpu_ids+1)
-
-static void *
-pfm_proc_start(struct seq_file *m, loff_t *pos)
-{
- if (*pos == 0) {
- return PFM_PROC_SHOW_HEADER;
- }
-
- while (*pos <= nr_cpu_ids) {
- if (cpu_online(*pos - 1)) {
- return (void *)*pos;
- }
- ++*pos;
- }
- return NULL;
-}
-
-static void *
-pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
-{
- ++*pos;
- return pfm_proc_start(m, pos);
-}
-
-static void
-pfm_proc_stop(struct seq_file *m, void *v)
-{
-}
-
-static void
-pfm_proc_show_header(struct seq_file *m)
-{
- struct list_head * pos;
- pfm_buffer_fmt_t * entry;
- unsigned long flags;
-
- seq_printf(m,
- "perfmon version : %u.%u\n"
- "model : %s\n"
- "fastctxsw : %s\n"
- "expert mode : %s\n"
- "ovfl_mask : 0x%lx\n"
- "PMU flags : 0x%x\n",
- PFM_VERSION_MAJ, PFM_VERSION_MIN,
- pmu_conf->pmu_name,
- pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
- pfm_sysctl.expert_mode > 0 ? "Yes": "No",
- pmu_conf->ovfl_val,
- pmu_conf->flags);
-
- LOCK_PFS(flags);
-
- seq_printf(m,
- "proc_sessions : %u\n"
- "sys_sessions : %u\n"
- "sys_use_dbregs : %u\n"
- "ptrace_use_dbregs : %u\n",
- pfm_sessions.pfs_task_sessions,
- pfm_sessions.pfs_sys_sessions,
- pfm_sessions.pfs_sys_use_dbregs,
- pfm_sessions.pfs_ptrace_use_dbregs);
-
- UNLOCK_PFS(flags);
-
- spin_lock(&pfm_buffer_fmt_lock);
-
- list_for_each(pos, &pfm_buffer_fmt_list) {
- entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
- seq_printf(m, "format : %16phD %s\n",
- entry->fmt_uuid, entry->fmt_name);
- }
- spin_unlock(&pfm_buffer_fmt_lock);
-
-}
-
-static int
-pfm_proc_show(struct seq_file *m, void *v)
-{
- unsigned long psr;
- unsigned int i;
- int cpu;
-
- if (v == PFM_PROC_SHOW_HEADER) {
- pfm_proc_show_header(m);
- return 0;
- }
-
- /* show info for CPU (v - 1) */
-
- cpu = (long)v - 1;
- seq_printf(m,
- "CPU%-2d overflow intrs : %lu\n"
- "CPU%-2d overflow cycles : %lu\n"
- "CPU%-2d overflow min : %lu\n"
- "CPU%-2d overflow max : %lu\n"
- "CPU%-2d smpl handler calls : %lu\n"
- "CPU%-2d smpl handler cycles : %lu\n"
- "CPU%-2d spurious intrs : %lu\n"
- "CPU%-2d replay intrs : %lu\n"
- "CPU%-2d syst_wide : %d\n"
- "CPU%-2d dcr_pp : %d\n"
- "CPU%-2d exclude idle : %d\n"
- "CPU%-2d owner : %d\n"
- "CPU%-2d context : %p\n"
- "CPU%-2d activations : %lu\n",
- cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
- cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
- cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
- cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
- cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
- cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
- cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
- cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
- cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
- cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
- cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
- cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
- cpu, pfm_get_cpu_data(pmu_ctx, cpu),
- cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
-
- if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
-
- psr = pfm_get_psr();
-
- ia64_srlz_d();
-
- seq_printf(m,
- "CPU%-2d psr : 0x%lx\n"
- "CPU%-2d pmc0 : 0x%lx\n",
- cpu, psr,
- cpu, ia64_get_pmc(0));
-
- for (i=0; PMC_IS_LAST(i) == 0; i++) {
- if (PMC_IS_COUNTING(i) == 0) continue;
- seq_printf(m,
- "CPU%-2d pmc%u : 0x%lx\n"
- "CPU%-2d pmd%u : 0x%lx\n",
- cpu, i, ia64_get_pmc(i),
- cpu, i, ia64_get_pmd(i));
- }
- }
- return 0;
-}
-
-const struct seq_operations pfm_seq_ops = {
- .start = pfm_proc_start,
- .next = pfm_proc_next,
- .stop = pfm_proc_stop,
- .show = pfm_proc_show
-};
-
-/*
- * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
- * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
- * is active or inactive based on mode. We must rely on the value in
- * local_cpu_data->pfm_syst_info
- */
-void
-pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
-{
- struct pt_regs *regs;
- unsigned long dcr;
- unsigned long dcr_pp;
-
- dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
-
- /*
- * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
- * on every CPU, so we can rely on the pid to identify the idle task.
- */
- if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
- regs = task_pt_regs(task);
- ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
- return;
- }
- /*
- * if monitoring has started
- */
- if (dcr_pp) {
- dcr = ia64_getreg(_IA64_REG_CR_DCR);
- /*
- * context switching in?
- */
- if (is_ctxswin) {
- /* mask monitoring for the idle task */
- ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
- pfm_clear_psr_pp();
- ia64_srlz_i();
- return;
- }
- /*
- * context switching out
- * restore monitoring for next task
- *
- * Due to inlining this odd if-then-else construction generates
- * better code.
- */
- ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
- pfm_set_psr_pp();
- ia64_srlz_i();
- }
-}
-
-#ifdef CONFIG_SMP
-
-static void
-pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
-{
- struct task_struct *task = ctx->ctx_task;
-
- ia64_psr(regs)->up = 0;
- ia64_psr(regs)->sp = 1;
-
- if (GET_PMU_OWNER() == task) {
- DPRINT(("cleared ownership for [%d]\n",
- task_pid_nr(ctx->ctx_task)));
- SET_PMU_OWNER(NULL, NULL);
- }
-
- /*
- * disconnect the task from the context and vice-versa
- */
- PFM_SET_WORK_PENDING(task, 0);
-
- task->thread.pfm_context = NULL;
- task->thread.flags &= ~IA64_THREAD_PM_VALID;
-
- DPRINT(("force cleanup for [%d]\n", task_pid_nr(task)));
-}
-
-
-/*
- * in 2.6, interrupts are masked when we come here and the runqueue lock is held
- */
-void
-pfm_save_regs(struct task_struct *task)
-{
- pfm_context_t *ctx;
- unsigned long flags;
- u64 psr;
-
-
- ctx = PFM_GET_CTX(task);
- if (ctx == NULL) return;
-
- /*
- * we always come here with interrupts ALREADY disabled by
- * the scheduler. So we simply need to protect against concurrent
- * access, not CPU concurrency.
- */
- flags = pfm_protect_ctx_ctxsw(ctx);
-
- if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
- struct pt_regs *regs = task_pt_regs(task);
-
- pfm_clear_psr_up();
-
- pfm_force_cleanup(ctx, regs);
-
- BUG_ON(ctx->ctx_smpl_hdr);
-
- pfm_unprotect_ctx_ctxsw(ctx, flags);
-
- pfm_context_free(ctx);
- return;
- }
-
- /*
- * save current PSR: needed because we modify it
- */
- ia64_srlz_d();
- psr = pfm_get_psr();
-
- BUG_ON(psr & (IA64_PSR_I));
-
- /*
- * stop monitoring:
- * This is the last instruction which may generate an overflow
- *
- * We do not need to set psr.sp because, it is irrelevant in kernel.
- * It will be restored from ipsr when going back to user level
- */
- pfm_clear_psr_up();
-
- /*
- * keep a copy of psr.up (for reload)
- */
- ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
-
- /*
- * release ownership of this PMU.
- * PM interrupts are masked, so nothing
- * can happen.
- */
- SET_PMU_OWNER(NULL, NULL);
-
- /*
- * we systematically save the PMD as we have no
- * guarantee we will be schedule at that same
- * CPU again.
- */
- pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
-
- /*
- * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
- * we will need it on the restore path to check
- * for pending overflow.
- */
- ctx->th_pmcs[0] = ia64_get_pmc(0);
-
- /*
- * unfreeze PMU if had pending overflows
- */
- if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
-
- /*
- * finally, allow context access.
- * interrupts will still be masked after this call.
- */
- pfm_unprotect_ctx_ctxsw(ctx, flags);
-}
-
-#else /* !CONFIG_SMP */
-void
-pfm_save_regs(struct task_struct *task)
-{
- pfm_context_t *ctx;
- u64 psr;
-
- ctx = PFM_GET_CTX(task);
- if (ctx == NULL) return;
-
- /*
- * save current PSR: needed because we modify it
- */
- psr = pfm_get_psr();
-
- BUG_ON(psr & (IA64_PSR_I));
-
- /*
- * stop monitoring:
- * This is the last instruction which may generate an overflow
- *
- * We do not need to set psr.sp because, it is irrelevant in kernel.
- * It will be restored from ipsr when going back to user level
- */
- pfm_clear_psr_up();
-
- /*
- * keep a copy of psr.up (for reload)
- */
- ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
-}
-
-static void
-pfm_lazy_save_regs (struct task_struct *task)
-{
- pfm_context_t *ctx;
- unsigned long flags;
-
- { u64 psr = pfm_get_psr();
- BUG_ON(psr & IA64_PSR_UP);
- }
-
- ctx = PFM_GET_CTX(task);
-
- /*
- * we need to mask PMU overflow here to
- * make sure that we maintain pmc0 until
- * we save it. overflow interrupts are
- * treated as spurious if there is no
- * owner.
- *
- * XXX: I don't think this is necessary
- */
- PROTECT_CTX(ctx,flags);
-
- /*
- * release ownership of this PMU.
- * must be done before we save the registers.
- *
- * after this call any PMU interrupt is treated
- * as spurious.
- */
- SET_PMU_OWNER(NULL, NULL);
-
- /*
- * save all the pmds we use
- */
- pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
-
- /*
- * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
- * it is needed to check for pended overflow
- * on the restore path
- */
- ctx->th_pmcs[0] = ia64_get_pmc(0);
-
- /*
- * unfreeze PMU if had pending overflows
- */
- if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
-
- /*
- * now get can unmask PMU interrupts, they will
- * be treated as purely spurious and we will not
- * lose any information
- */
- UNPROTECT_CTX(ctx,flags);
-}
-#endif /* CONFIG_SMP */
-
-#ifdef CONFIG_SMP
-/*
- * in 2.6, interrupts are masked when we come here and the runqueue lock is held
- */
-void
-pfm_load_regs (struct task_struct *task)
-{
- pfm_context_t *ctx;
- unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
- unsigned long flags;
- u64 psr, psr_up;
- int need_irq_resend;
-
- ctx = PFM_GET_CTX(task);
- if (unlikely(ctx == NULL)) return;
-
- BUG_ON(GET_PMU_OWNER());
-
- /*
- * possible on unload
- */
- if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return;
-
- /*
- * we always come here with interrupts ALREADY disabled by
- * the scheduler. So we simply need to protect against concurrent
- * access, not CPU concurrency.
- */
- flags = pfm_protect_ctx_ctxsw(ctx);
- psr = pfm_get_psr();
-
- need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
-
- BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
- BUG_ON(psr & IA64_PSR_I);
-
- if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
- struct pt_regs *regs = task_pt_regs(task);
-
- BUG_ON(ctx->ctx_smpl_hdr);
-
- pfm_force_cleanup(ctx, regs);
-
- pfm_unprotect_ctx_ctxsw(ctx, flags);
-
- /*
- * this one (kmalloc'ed) is fine with interrupts disabled
- */
- pfm_context_free(ctx);
-
- return;
- }
-
- /*
- * we restore ALL the debug registers to avoid picking up
- * stale state.
- */
- if (ctx->ctx_fl_using_dbreg) {
- pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
- pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
- }
- /*
- * retrieve saved psr.up
- */
- psr_up = ctx->ctx_saved_psr_up;
-
- /*
- * if we were the last user of the PMU on that CPU,
- * then nothing to do except restore psr
- */
- if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
-
- /*
- * retrieve partial reload masks (due to user modifications)
- */
- pmc_mask = ctx->ctx_reload_pmcs[0];
- pmd_mask = ctx->ctx_reload_pmds[0];
-
- } else {
- /*
- * To avoid leaking information to the user level when psr.sp=0,
- * we must reload ALL implemented pmds (even the ones we don't use).
- * In the kernel we only allow PFM_READ_PMDS on registers which
- * we initialized or requested (sampling) so there is no risk there.
- */
- pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
-
- /*
- * ALL accessible PMCs are systematically reloaded, unused registers
- * get their default (from pfm_reset_pmu_state()) values to avoid picking
- * up stale configuration.
- *
- * PMC0 is never in the mask. It is always restored separately.
- */
- pmc_mask = ctx->ctx_all_pmcs[0];
- }
- /*
- * when context is MASKED, we will restore PMC with plm=0
- * and PMD with stale information, but that's ok, nothing
- * will be captured.
- *
- * XXX: optimize here
- */
- if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask);
- if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
-
- /*
- * check for pending overflow at the time the state
- * was saved.
- */
- if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
- /*
- * reload pmc0 with the overflow information
- * On McKinley PMU, this will trigger a PMU interrupt
- */
- ia64_set_pmc(0, ctx->th_pmcs[0]);
- ia64_srlz_d();
- ctx->th_pmcs[0] = 0UL;
-
- /*
- * will replay the PMU interrupt
- */
- if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
-
- pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
- }
-
- /*
- * we just did a reload, so we reset the partial reload fields
- */
- ctx->ctx_reload_pmcs[0] = 0UL;
- ctx->ctx_reload_pmds[0] = 0UL;
-
- SET_LAST_CPU(ctx, smp_processor_id());
-
- /*
- * dump activation value for this PMU
- */
- INC_ACTIVATION();
- /*
- * record current activation for this context
- */
- SET_ACTIVATION(ctx);
-
- /*
- * establish new ownership.
- */
- SET_PMU_OWNER(task, ctx);
-
- /*
- * restore the psr.up bit. measurement
- * is active again.
- * no PMU interrupt can happen at this point
- * because we still have interrupts disabled.
- */
- if (likely(psr_up)) pfm_set_psr_up();
-
- /*
- * allow concurrent access to context
- */
- pfm_unprotect_ctx_ctxsw(ctx, flags);
-}
-#else /* !CONFIG_SMP */
-/*
- * reload PMU state for UP kernels
- * in 2.5 we come here with interrupts disabled
- */
-void
-pfm_load_regs (struct task_struct *task)
-{
- pfm_context_t *ctx;
- struct task_struct *owner;
- unsigned long pmd_mask, pmc_mask;
- u64 psr, psr_up;
- int need_irq_resend;
-
- owner = GET_PMU_OWNER();
- ctx = PFM_GET_CTX(task);
- psr = pfm_get_psr();
-
- BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
- BUG_ON(psr & IA64_PSR_I);
-
- /*
- * we restore ALL the debug registers to avoid picking up
- * stale state.
- *
- * This must be done even when the task is still the owner
- * as the registers may have been modified via ptrace()
- * (not perfmon) by the previous task.
- */
- if (ctx->ctx_fl_using_dbreg) {
- pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
- pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
- }
-
- /*
- * retrieved saved psr.up
- */
- psr_up = ctx->ctx_saved_psr_up;
- need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
-
- /*
- * short path, our state is still there, just
- * need to restore psr and we go
- *
- * we do not touch either PMC nor PMD. the psr is not touched
- * by the overflow_handler. So we are safe w.r.t. to interrupt
- * concurrency even without interrupt masking.
- */
- if (likely(owner == task)) {
- if (likely(psr_up)) pfm_set_psr_up();
- return;
- }
-
- /*
- * someone else is still using the PMU, first push it out and
- * then we'll be able to install our stuff !
- *
- * Upon return, there will be no owner for the current PMU
- */
- if (owner) pfm_lazy_save_regs(owner);
-
- /*
- * To avoid leaking information to the user level when psr.sp=0,
- * we must reload ALL implemented pmds (even the ones we don't use).
- * In the kernel we only allow PFM_READ_PMDS on registers which
- * we initialized or requested (sampling) so there is no risk there.
- */
- pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
-
- /*
- * ALL accessible PMCs are systematically reloaded, unused registers
- * get their default (from pfm_reset_pmu_state()) values to avoid picking
- * up stale configuration.
- *
- * PMC0 is never in the mask. It is always restored separately
- */
- pmc_mask = ctx->ctx_all_pmcs[0];
-
- pfm_restore_pmds(ctx->th_pmds, pmd_mask);
- pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
-
- /*
- * check for pending overflow at the time the state
- * was saved.
- */
- if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
- /*
- * reload pmc0 with the overflow information
- * On McKinley PMU, this will trigger a PMU interrupt
- */
- ia64_set_pmc(0, ctx->th_pmcs[0]);
- ia64_srlz_d();
-
- ctx->th_pmcs[0] = 0UL;
-
- /*
- * will replay the PMU interrupt
- */
- if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
-
- pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
- }
-
- /*
- * establish new ownership.
- */
- SET_PMU_OWNER(task, ctx);
-
- /*
- * restore the psr.up bit. measurement
- * is active again.
- * no PMU interrupt can happen at this point
- * because we still have interrupts disabled.
- */
- if (likely(psr_up)) pfm_set_psr_up();
-}
-#endif /* CONFIG_SMP */
-
-/*
- * this function assumes monitoring is stopped
- */
-static void
-pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
-{
- u64 pmc0;
- unsigned long mask2, val, pmd_val, ovfl_val;
- int i, can_access_pmu = 0;
- int is_self;
-
- /*
- * is the caller the task being monitored (or which initiated the
- * session for system wide measurements)
- */
- is_self = ctx->ctx_task == task ? 1 : 0;
-
- /*
- * can access PMU is task is the owner of the PMU state on the current CPU
- * or if we are running on the CPU bound to the context in system-wide mode
- * (that is not necessarily the task the context is attached to in this mode).
- * In system-wide we always have can_access_pmu true because a task running on an
- * invalid processor is flagged earlier in the call stack (see pfm_stop).
- */
- can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
- if (can_access_pmu) {
- /*
- * Mark the PMU as not owned
- * This will cause the interrupt handler to do nothing in case an overflow
- * interrupt was in-flight
- * This also guarantees that pmc0 will contain the final state
- * It virtually gives us full control on overflow processing from that point
- * on.
- */
- SET_PMU_OWNER(NULL, NULL);
- DPRINT(("releasing ownership\n"));
-
- /*
- * read current overflow status:
- *
- * we are guaranteed to read the final stable state
- */
- ia64_srlz_d();
- pmc0 = ia64_get_pmc(0); /* slow */
-
- /*
- * reset freeze bit, overflow status information destroyed
- */
- pfm_unfreeze_pmu();
- } else {
- pmc0 = ctx->th_pmcs[0];
- /*
- * clear whatever overflow status bits there were
- */
- ctx->th_pmcs[0] = 0;
- }
- ovfl_val = pmu_conf->ovfl_val;
- /*
- * we save all the used pmds
- * we take care of overflows for counting PMDs
- *
- * XXX: sampling situation is not taken into account here
- */
- mask2 = ctx->ctx_used_pmds[0];
-
- DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
-
- for (i = 0; mask2; i++, mask2>>=1) {
-
- /* skip non used pmds */
- if ((mask2 & 0x1) == 0) continue;
-
- /*
- * can access PMU always true in system wide mode
- */
- val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i];
-
- if (PMD_IS_COUNTING(i)) {
- DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
- task_pid_nr(task),
- i,
- ctx->ctx_pmds[i].val,
- val & ovfl_val));
-
- /*
- * we rebuild the full 64 bit value of the counter
- */
- val = ctx->ctx_pmds[i].val + (val & ovfl_val);
-
- /*
- * now everything is in ctx_pmds[] and we need
- * to clear the saved context from save_regs() such that
- * pfm_read_pmds() gets the correct value
- */
- pmd_val = 0UL;
-
- /*
- * take care of overflow inline
- */
- if (pmc0 & (1UL << i)) {
- val += 1 + ovfl_val;
- DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task), i));
- }
- }
-
- DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task_pid_nr(task), i, val, pmd_val));
-
- if (is_self) ctx->th_pmds[i] = pmd_val;
-
- ctx->ctx_pmds[i].val = val;
- }
-}
-
-static void
-pfm_alt_save_pmu_state(void *data)
-{
- struct pt_regs *regs;
-
- regs = task_pt_regs(current);
-
- DPRINT(("called\n"));
-
- /*
- * should not be necessary but
- * let's take not risk
- */
- pfm_clear_psr_up();
- pfm_clear_psr_pp();
- ia64_psr(regs)->pp = 0;
-
- /*
- * This call is required
- * May cause a spurious interrupt on some processors
- */
- pfm_freeze_pmu();
-
- ia64_srlz_d();
-}
-
-void
-pfm_alt_restore_pmu_state(void *data)
-{
- struct pt_regs *regs;
-
- regs = task_pt_regs(current);
-
- DPRINT(("called\n"));
-
- /*
- * put PMU back in state expected
- * by perfmon
- */
- pfm_clear_psr_up();
- pfm_clear_psr_pp();
- ia64_psr(regs)->pp = 0;
-
- /*
- * perfmon runs with PMU unfrozen at all times
- */
- pfm_unfreeze_pmu();
-
- ia64_srlz_d();
-}
-
-int
-pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
-{
- int ret, i;
- int reserve_cpu;
-
- /* some sanity checks */
- if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
-
- /* do the easy test first */
- if (pfm_alt_intr_handler) return -EBUSY;
-
- /* one at a time in the install or remove, just fail the others */
- if (!spin_trylock(&pfm_alt_install_check)) {
- return -EBUSY;
- }
-
- /* reserve our session */
- for_each_online_cpu(reserve_cpu) {
- ret = pfm_reserve_session(NULL, 1, reserve_cpu);
- if (ret) goto cleanup_reserve;
- }
-
- /* save the current system wide pmu states */
- on_each_cpu(pfm_alt_save_pmu_state, NULL, 1);
-
- /* officially change to the alternate interrupt handler */
- pfm_alt_intr_handler = hdl;
-
- spin_unlock(&pfm_alt_install_check);
-
- return 0;
-
-cleanup_reserve:
- for_each_online_cpu(i) {
- /* don't unreserve more than we reserved */
- if (i >= reserve_cpu) break;
-
- pfm_unreserve_session(NULL, 1, i);
- }
-
- spin_unlock(&pfm_alt_install_check);
-
- return ret;
-}
-EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
-
-int
-pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
-{
- int i;
-
- if (hdl == NULL) return -EINVAL;
-
- /* cannot remove someone else's handler! */
- if (pfm_alt_intr_handler != hdl) return -EINVAL;
-
- /* one at a time in the install or remove, just fail the others */
- if (!spin_trylock(&pfm_alt_install_check)) {
- return -EBUSY;
- }
-
- pfm_alt_intr_handler = NULL;
-
- on_each_cpu(pfm_alt_restore_pmu_state, NULL, 1);
-
- for_each_online_cpu(i) {
- pfm_unreserve_session(NULL, 1, i);
- }
-
- spin_unlock(&pfm_alt_install_check);
-
- return 0;
-}
-EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
-
-/*
- * perfmon initialization routine, called from the initcall() table
- */
-static int init_pfm_fs(void);
-
-static int __init
-pfm_probe_pmu(void)
-{
- pmu_config_t **p;
- int family;
-
- family = local_cpu_data->family;
- p = pmu_confs;
-
- while(*p) {
- if ((*p)->probe) {
- if ((*p)->probe() == 0) goto found;
- } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
- goto found;
- }
- p++;
- }
- return -1;
-found:
- pmu_conf = *p;
- return 0;
-}
-
-int __init
-pfm_init(void)
-{
- unsigned int n, n_counters, i;
-
- printk("perfmon: version %u.%u IRQ %u\n",
- PFM_VERSION_MAJ,
- PFM_VERSION_MIN,
- IA64_PERFMON_VECTOR);
-
- if (pfm_probe_pmu()) {
- printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n",
- local_cpu_data->family);
- return -ENODEV;
- }
-
- /*
- * compute the number of implemented PMD/PMC from the
- * description tables
- */
- n = 0;
- for (i=0; PMC_IS_LAST(i) == 0; i++) {
- if (PMC_IS_IMPL(i) == 0) continue;
- pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
- n++;
- }
- pmu_conf->num_pmcs = n;
-
- n = 0; n_counters = 0;
- for (i=0; PMD_IS_LAST(i) == 0; i++) {
- if (PMD_IS_IMPL(i) == 0) continue;
- pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
- n++;
- if (PMD_IS_COUNTING(i)) n_counters++;
- }
- pmu_conf->num_pmds = n;
- pmu_conf->num_counters = n_counters;
-
- /*
- * sanity checks on the number of debug registers
- */
- if (pmu_conf->use_rr_dbregs) {
- if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
- printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
- pmu_conf = NULL;
- return -1;
- }
- if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
- printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
- pmu_conf = NULL;
- return -1;
- }
- }
-
- printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
- pmu_conf->pmu_name,
- pmu_conf->num_pmcs,
- pmu_conf->num_pmds,
- pmu_conf->num_counters,
- ffz(pmu_conf->ovfl_val));
-
- /* sanity check */
- if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) {
- printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
- pmu_conf = NULL;
- return -1;
- }
-
- /*
- * create /proc/perfmon (mostly for debugging purposes)
- */
- perfmon_dir = proc_create_seq("perfmon", S_IRUGO, NULL, &pfm_seq_ops);
- if (perfmon_dir == NULL) {
- printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
- pmu_conf = NULL;
- return -1;
- }
-
- /*
- * create /proc/sys/kernel/perfmon (for debugging purposes)
- */
- pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root);
-
- /*
- * initialize all our spinlocks
- */
- spin_lock_init(&pfm_sessions.pfs_lock);
- spin_lock_init(&pfm_buffer_fmt_lock);
-
- init_pfm_fs();
-
- for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
-
- return 0;
-}
-
-__initcall(pfm_init);
-
-/*
- * this function is called before pfm_init()
- */
-void
-pfm_init_percpu (void)
-{
- static int first_time=1;
- /*
- * make sure no measurement is active
- * (may inherit programmed PMCs from EFI).
- */
- pfm_clear_psr_pp();
- pfm_clear_psr_up();
-
- /*
- * we run with the PMU not frozen at all times
- */
- pfm_unfreeze_pmu();
-
- if (first_time) {
- register_percpu_irq(IA64_PERFMON_VECTOR, pfm_interrupt_handler,
- 0, "perfmon");
- first_time=0;
- }
-
- ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
- ia64_srlz_d();
-}
-
-/*
- * used for debug purposes only
- */
-void
-dump_pmu_state(const char *from)
-{
- struct task_struct *task;
- struct pt_regs *regs;
- pfm_context_t *ctx;
- unsigned long psr, dcr, info, flags;
- int i, this_cpu;
-
- local_irq_save(flags);
-
- this_cpu = smp_processor_id();
- regs = task_pt_regs(current);
- info = PFM_CPUINFO_GET();
- dcr = ia64_getreg(_IA64_REG_CR_DCR);
-
- if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
- local_irq_restore(flags);
- return;
- }
-
- printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
- this_cpu,
- from,
- task_pid_nr(current),
- regs->cr_iip,
- current->comm);
-
- task = GET_PMU_OWNER();
- ctx = GET_PMU_CTX();
-
- printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task_pid_nr(task) : -1, ctx);
-
- psr = pfm_get_psr();
-
- printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
- this_cpu,
- ia64_get_pmc(0),
- psr & IA64_PSR_PP ? 1 : 0,
- psr & IA64_PSR_UP ? 1 : 0,
- dcr & IA64_DCR_PP ? 1 : 0,
- info,
- ia64_psr(regs)->up,
- ia64_psr(regs)->pp);
-
- ia64_psr(regs)->up = 0;
- ia64_psr(regs)->pp = 0;
-
- for (i=1; PMC_IS_LAST(i) == 0; i++) {
- if (PMC_IS_IMPL(i) == 0) continue;
- printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]);
- }
-
- for (i=1; PMD_IS_LAST(i) == 0; i++) {
- if (PMD_IS_IMPL(i) == 0) continue;
- printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]);
- }
-
- if (ctx) {
- printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
- this_cpu,
- ctx->ctx_state,
- ctx->ctx_smpl_vaddr,
- ctx->ctx_smpl_hdr,
- ctx->ctx_msgq_head,
- ctx->ctx_msgq_tail,
- ctx->ctx_saved_psr_up);
- }
- local_irq_restore(flags);
-}
-
-/*
- * called from process.c:copy_thread(). task is new child.
- */
-void
-pfm_inherit(struct task_struct *task, struct pt_regs *regs)
-{
- struct thread_struct *thread;
-
- DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task)));
-
- thread = &task->thread;
-
- /*
- * cut links inherited from parent (current)
- */
- thread->pfm_context = NULL;
-
- PFM_SET_WORK_PENDING(task, 0);
-
- /*
- * the psr bits are already set properly in copy_threads()
- */
-}
-#else /* !CONFIG_PERFMON */
-asmlinkage long
-sys_perfmonctl (int fd, int cmd, void *arg, int count)
-{
- return -ENOSYS;
-}
-#endif /* CONFIG_PERFMON */
diff --git a/arch/ia64/kernel/process.c b/arch/ia64/kernel/process.c
index f19cb97c0098..e74e10f19fff 100644
--- a/arch/ia64/kernel/process.c
+++ b/arch/ia64/kernel/process.c
@@ -51,10 +51,6 @@
#include "entry.h"
-#ifdef CONFIG_PERFMON
-# include <asm/perfmon.h>
-#endif
-
#include "sigframe.h"
void (*ia64_mark_idle)(int);
@@ -174,15 +170,6 @@ do_notify_resume_user(sigset_t *unused, struct sigscratch *scr, long in_syscall)
return;
}
-#ifdef CONFIG_PERFMON
- if (current->thread.pfm_needs_checking)
- /*
- * Note: pfm_handle_work() allow us to call it with interrupts
- * disabled, and may enable interrupts within the function.
- */
- pfm_handle_work();
-#endif
-
/* deal with pending signal delivery */
if (test_thread_flag(TIF_SIGPENDING)) {
local_irq_enable(); /* force interrupt enable */
@@ -264,41 +251,15 @@ void arch_cpu_idle(void)
void
ia64_save_extra (struct task_struct *task)
{
-#ifdef CONFIG_PERFMON
- unsigned long info;
-#endif
-
if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
ia64_save_debug_regs(&task->thread.dbr[0]);
-
-#ifdef CONFIG_PERFMON
- if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
- pfm_save_regs(task);
-
- info = __this_cpu_read(pfm_syst_info);
- if (info & PFM_CPUINFO_SYST_WIDE)
- pfm_syst_wide_update_task(task, info, 0);
-#endif
}
void
ia64_load_extra (struct task_struct *task)
{
-#ifdef CONFIG_PERFMON
- unsigned long info;
-#endif
-
if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
ia64_load_debug_regs(&task->thread.dbr[0]);
-
-#ifdef CONFIG_PERFMON
- if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
- pfm_load_regs(task);
-
- info = __this_cpu_read(pfm_syst_info);
- if (info & PFM_CPUINFO_SYST_WIDE)
- pfm_syst_wide_update_task(task, info, 1);
-#endif
}
/*
@@ -432,11 +393,6 @@ copy_thread(unsigned long clone_flags, unsigned long user_stack_base,
*/
child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
& ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
-
-#ifdef CONFIG_PERFMON
- if (current->thread.pfm_context)
- pfm_inherit(p, child_ptregs);
-#endif
return retval;
}
@@ -563,15 +519,6 @@ exit_thread (struct task_struct *tsk)
{
ia64_drop_fpu(tsk);
-#ifdef CONFIG_PERFMON
- /* if needed, stop monitoring and flush state to perfmon context */
- if (tsk->thread.pfm_context)
- pfm_exit_thread(tsk);
-
- /* free debug register resources */
- if (tsk->thread.flags & IA64_THREAD_DBG_VALID)
- pfm_release_debug_registers(tsk);
-#endif
}
unsigned long
diff --git a/arch/ia64/kernel/ptrace.c b/arch/ia64/kernel/ptrace.c
index 33ca9fa0fbf5..75c070aed81e 100644
--- a/arch/ia64/kernel/ptrace.c
+++ b/arch/ia64/kernel/ptrace.c
@@ -30,9 +30,6 @@
#include <asm/rse.h>
#include <linux/uaccess.h>
#include <asm/unwind.h>
-#ifdef CONFIG_PERFMON
-#include <asm/perfmon.h>
-#endif
#include "entry.h"
@@ -1951,27 +1948,6 @@ access_uarea(struct task_struct *child, unsigned long addr,
"address 0x%lx\n", addr);
return -1;
}
-#ifdef CONFIG_PERFMON
- /*
- * Check if debug registers are used by perfmon. This
- * test must be done once we know that we can do the
- * operation, i.e. the arguments are all valid, but
- * before we start modifying the state.
- *
- * Perfmon needs to keep a count of how many processes
- * are trying to modify the debug registers for system
- * wide monitoring sessions.
- *
- * We also include read access here, because they may
- * cause the PMU-installed debug register state
- * (dbr[], ibr[]) to be reset. The two arrays are also
- * used by perfmon, but we do not use
- * IA64_THREAD_DBG_VALID. The registers are restored
- * by the PMU context switch code.
- */
- if (pfm_use_debug_registers(child))
- return -1;
-#endif
if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
child->thread.flags |= IA64_THREAD_DBG_VALID;
diff --git a/arch/ia64/kernel/smpboot.c b/arch/ia64/kernel/smpboot.c
index c29c600d7967..093040f7e626 100644
--- a/arch/ia64/kernel/smpboot.c
+++ b/arch/ia64/kernel/smpboot.c
@@ -355,10 +355,6 @@ smp_callin (void)
extern void ia64_init_itm(void);
extern volatile int time_keeper_id;
-#ifdef CONFIG_PERFMON
- extern void pfm_init_percpu(void);
-#endif
-
cpuid = smp_processor_id();
phys_id = hard_smp_processor_id();
itc_master = time_keeper_id;
@@ -389,10 +385,6 @@ smp_callin (void)
ia64_mca_cmc_vector_setup(); /* Setup vector on AP */
-#ifdef CONFIG_PERFMON
- pfm_init_percpu();
-#endif
-
local_irq_enable();
if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
diff --git a/arch/ia64/kernel/syscalls/syscall.tbl b/arch/ia64/kernel/syscalls/syscall.tbl
index f52a41f4c340..4799c96c325f 100644
--- a/arch/ia64/kernel/syscalls/syscall.tbl
+++ b/arch/ia64/kernel/syscalls/syscall.tbl
@@ -160,7 +160,7 @@
148 common mmap2 sys_mmap2
149 common pciconfig_read sys_pciconfig_read
150 common pciconfig_write sys_pciconfig_write
-151 common perfmonctl sys_perfmonctl
+151 common perfmonctl sys_ni_syscall
152 common sigaltstack sys_sigaltstack
153 common rt_sigaction sys_rt_sigaction
154 common rt_sigpending sys_rt_sigpending
diff --git a/arch/ia64/lib/Makefile b/arch/ia64/lib/Makefile
index 82118b38532f..081fcba01dc0 100644
--- a/arch/ia64/lib/Makefile
+++ b/arch/ia64/lib/Makefile
@@ -12,7 +12,6 @@ lib-y := io.o __divsi3.o __udivsi3.o __modsi3.o __umodsi3.o \
lib-$(CONFIG_ITANIUM) += copy_page.o copy_user.o memcpy.o
lib-$(CONFIG_MCKINLEY) += copy_page_mck.o memcpy_mck.o
-lib-$(CONFIG_PERFMON) += carta_random.o
AFLAGS___divdi3.o =
AFLAGS___udivdi3.o = -DUNSIGNED
diff --git a/arch/ia64/lib/carta_random.S b/arch/ia64/lib/carta_random.S
deleted file mode 100644
index 1a4a639dc42f..000000000000
--- a/arch/ia64/lib/carta_random.S
+++ /dev/null
@@ -1,55 +0,0 @@
-/* SPDX-License-Identifier: GPL-2.0 */
-/*
- * Fast, simple, yet decent quality random number generator based on
- * a paper by David G. Carta ("Two Fast Implementations of the
- * `Minimal Standard' Random Number Generator," Communications of the
- * ACM, January, 1990).
- *
- * Copyright (C) 2002 Hewlett-Packard Co
- * David Mosberger-Tang <davidm@hpl.hp.com>
- */
-
-#include <asm/asmmacro.h>
-
-#define a r2
-#define m r3
-#define lo r8
-#define hi r9
-#define t0 r16
-#define t1 r17
-#define seed r32
-
-GLOBAL_ENTRY(carta_random32)
- movl a = (16807 << 16) | 16807
- ;;
- pmpyshr2.u t0 = a, seed, 0
- pmpyshr2.u t1 = a, seed, 16
- ;;
- unpack2.l t0 = t1, t0
- dep m = -1, r0, 0, 31
- ;;
- zxt4 lo = t0
- shr.u hi = t0, 32
- ;;
- dep t0 = 0, hi, 15, 49 // t0 = (hi & 0x7fff)
- ;;
- shl t0 = t0, 16 // t0 = (hi & 0x7fff) << 16
- shr t1 = hi, 15 // t1 = (hi >> 15)
- ;;
- add lo = lo, t0
- ;;
- cmp.gtu p6, p0 = lo, m
- ;;
-(p6) and lo = lo, m
- ;;
-(p6) add lo = 1, lo
- ;;
- add lo = lo, t1
- ;;
- cmp.gtu p6, p0 = lo, m
- ;;
-(p6) and lo = lo, m
- ;;
-(p6) add lo = 1, lo
- br.ret.sptk.many rp
-END(carta_random32)
diff --git a/arch/ia64/oprofile/Makefile b/arch/ia64/oprofile/Makefile
index cd134d6643bf..fc7944d462f4 100644
--- a/arch/ia64/oprofile/Makefile
+++ b/arch/ia64/oprofile/Makefile
@@ -8,4 +8,3 @@ DRIVER_OBJS := $(addprefix ../../../drivers/oprofile/, \
timer_int.o )
oprofile-y := $(DRIVER_OBJS) init.o backtrace.o
-oprofile-$(CONFIG_PERFMON) += perfmon.o
diff --git a/arch/ia64/oprofile/init.c b/arch/ia64/oprofile/init.c
index 31b545c35460..a692ba16a07b 100644
--- a/arch/ia64/oprofile/init.c
+++ b/arch/ia64/oprofile/init.c
@@ -18,21 +18,11 @@ extern void ia64_backtrace(struct pt_regs * const regs, unsigned int depth);
int __init oprofile_arch_init(struct oprofile_operations *ops)
{
- int ret = -ENODEV;
-
-#ifdef CONFIG_PERFMON
- /* perfmon_init() can fail, but we have no way to report it */
- ret = perfmon_init(ops);
-#endif
ops->backtrace = ia64_backtrace;
-
- return ret;
+ return -ENODEV;
}
void oprofile_arch_exit(void)
{
-#ifdef CONFIG_PERFMON
- perfmon_exit();
-#endif
}
diff --git a/arch/ia64/oprofile/perfmon.c b/arch/ia64/oprofile/perfmon.c
deleted file mode 100644
index 192d3e8e1f65..000000000000
--- a/arch/ia64/oprofile/perfmon.c
+++ /dev/null
@@ -1,99 +0,0 @@
-/**
- * @file perfmon.c
- *
- * @remark Copyright 2003 OProfile authors
- * @remark Read the file COPYING
- *
- * @author John Levon <levon@movementarian.org>
- */
-
-#include <linux/kernel.h>
-#include <linux/oprofile.h>
-#include <linux/sched.h>
-#include <asm/perfmon.h>
-#include <asm/ptrace.h>
-#include <asm/errno.h>
-
-static int allow_ints;
-
-static int
-perfmon_handler(struct task_struct *task, void *buf, pfm_ovfl_arg_t *arg,
- struct pt_regs *regs, unsigned long stamp)
-{
- int event = arg->pmd_eventid;
-
- arg->ovfl_ctrl.bits.reset_ovfl_pmds = 1;
-
- /* the owner of the oprofile event buffer may have exited
- * without perfmon being shutdown (e.g. SIGSEGV)
- */
- if (allow_ints)
- oprofile_add_sample(regs, event);
- return 0;
-}
-
-
-static int perfmon_start(void)
-{
- allow_ints = 1;
- return 0;
-}
-
-
-static void perfmon_stop(void)
-{
- allow_ints = 0;
-}
-
-
-#define OPROFILE_FMT_UUID { \
- 0x77, 0x7a, 0x6e, 0x61, 0x20, 0x65, 0x73, 0x69, 0x74, 0x6e, 0x72, 0x20, 0x61, 0x65, 0x0a, 0x6c }
-
-static pfm_buffer_fmt_t oprofile_fmt = {
- .fmt_name = "oprofile_format",
- .fmt_uuid = OPROFILE_FMT_UUID,
- .fmt_handler = perfmon_handler,
-};
-
-
-static char *get_cpu_type(void)
-{
- __u8 family = local_cpu_data->family;
-
- switch (family) {
- case 0x07:
- return "ia64/itanium";
- case 0x1f:
- return "ia64/itanium2";
- default:
- return "ia64/ia64";
- }
-}
-
-
-/* all the ops are handled via userspace for IA64 perfmon */
-
-static int using_perfmon;
-
-int perfmon_init(struct oprofile_operations *ops)
-{
- int ret = pfm_register_buffer_fmt(&oprofile_fmt);
- if (ret)
- return -ENODEV;
-
- ops->cpu_type = get_cpu_type();
- ops->start = perfmon_start;
- ops->stop = perfmon_stop;
- using_perfmon = 1;
- printk(KERN_INFO "oprofile: using perfmon.\n");
- return 0;
-}
-
-
-void perfmon_exit(void)
-{
- if (!using_perfmon)
- return;
-
- pfm_unregister_buffer_fmt(oprofile_fmt.fmt_uuid);
-}